jdk

Форк
0
/
chaitin.cpp 
2586 строк · 96.7 Кб
1
/*
2
 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
 *
5
 * This code is free software; you can redistribute it and/or modify it
6
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.
8
 *
9
 * This code is distributed in the hope that it will be useful, but WITHOUT
10
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12
 * version 2 for more details (a copy is included in the LICENSE file that
13
 * accompanied this code).
14
 *
15
 * You should have received a copy of the GNU General Public License version
16
 * 2 along with this work; if not, write to the Free Software Foundation,
17
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
 *
19
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
 * or visit www.oracle.com if you need additional information or have any
21
 * questions.
22
 *
23
 */
24

25
#include "precompiled.hpp"
26
#include "compiler/compileLog.hpp"
27
#include "compiler/oopMap.hpp"
28
#include "memory/allocation.inline.hpp"
29
#include "memory/resourceArea.hpp"
30
#include "opto/addnode.hpp"
31
#include "opto/block.hpp"
32
#include "opto/callnode.hpp"
33
#include "opto/cfgnode.hpp"
34
#include "opto/chaitin.hpp"
35
#include "opto/coalesce.hpp"
36
#include "opto/connode.hpp"
37
#include "opto/idealGraphPrinter.hpp"
38
#include "opto/indexSet.hpp"
39
#include "opto/machnode.hpp"
40
#include "opto/memnode.hpp"
41
#include "opto/movenode.hpp"
42
#include "opto/opcodes.hpp"
43
#include "opto/rootnode.hpp"
44
#include "utilities/align.hpp"
45

46
#ifndef PRODUCT
47
void LRG::dump() const {
48
  ttyLocker ttyl;
49
  tty->print("%d ",num_regs());
50
  _mask.dump();
51
  if( _msize_valid ) {
52
    if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
53
    else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
54
  } else {
55
    tty->print(", #?(%d) ",_mask.Size());
56
  }
57

58
  tty->print("EffDeg: ");
59
  if( _degree_valid ) tty->print( "%d ", _eff_degree );
60
  else tty->print("? ");
61

62
  if( is_multidef() ) {
63
    tty->print("MultiDef ");
64
    if (_defs != nullptr) {
65
      tty->print("(");
66
      for (int i = 0; i < _defs->length(); i++) {
67
        tty->print("N%d ", _defs->at(i)->_idx);
68
      }
69
      tty->print(") ");
70
    }
71
  }
72
  else if( _def == nullptr ) tty->print("Dead ");
73
  else tty->print("Def: N%d ",_def->_idx);
74

75
  tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
76
  // Flags
77
  if( _is_oop ) tty->print("Oop ");
78
  if( _is_float ) tty->print("Float ");
79
  if( _is_vector ) tty->print("Vector ");
80
  if( _is_predicate ) tty->print("Predicate ");
81
  if( _is_scalable ) tty->print("Scalable ");
82
  if( _was_spilled1 ) tty->print("Spilled ");
83
  if( _was_spilled2 ) tty->print("Spilled2 ");
84
  if( _direct_conflict ) tty->print("Direct_conflict ");
85
  if( _fat_proj ) tty->print("Fat ");
86
  if( _was_lo ) tty->print("Lo ");
87
  if( _has_copy ) tty->print("Copy ");
88
  if( _at_risk ) tty->print("Risk ");
89

90
  if( _must_spill ) tty->print("Must_spill ");
91
  if( _is_bound ) tty->print("Bound ");
92
  if( _msize_valid ) {
93
    if( _degree_valid && lo_degree() ) tty->print("Trivial ");
94
  }
95

96
  tty->cr();
97
}
98
#endif
99

100
// Compute score from cost and area.  Low score is best to spill.
101
static double raw_score( double cost, double area ) {
102
  return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
103
}
104

105
double LRG::score() const {
106
  // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
107
  // Bigger area lowers score, encourages spilling this live range.
108
  // Bigger cost raise score, prevents spilling this live range.
109
  // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
110
  // to turn a divide by a constant into a multiply by the reciprical).
111
  double score = raw_score( _cost, _area);
112

113
  // Account for area.  Basically, LRGs covering large areas are better
114
  // to spill because more other LRGs get freed up.
115
  if( _area == 0.0 )            // No area?  Then no progress to spill
116
    return 1e35;
117

118
  if( _was_spilled2 )           // If spilled once before, we are unlikely
119
    return score + 1e30;        // to make progress again.
120

121
  if( _cost >= _area*3.0 )      // Tiny area relative to cost
122
    return score + 1e17;        // Probably no progress to spill
123

124
  if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
125
    return score + 1e10;        // Likely no progress to spill
126

127
  return score;
128
}
129

130
#define NUMBUCKS 3
131

132
// Straight out of Tarjan's union-find algorithm
133
uint LiveRangeMap::find_compress(uint lrg) {
134
  uint cur = lrg;
135
  uint next = _uf_map.at(cur);
136
  while (next != cur) { // Scan chain of equivalences
137
    assert( next < cur, "always union smaller");
138
    cur = next; // until find a fixed-point
139
    next = _uf_map.at(cur);
140
  }
141

142
  // Core of union-find algorithm: update chain of
143
  // equivalences to be equal to the root.
144
  while (lrg != next) {
145
    uint tmp = _uf_map.at(lrg);
146
    _uf_map.at_put(lrg, next);
147
    lrg = tmp;
148
  }
149
  return lrg;
150
}
151

152
// Reset the Union-Find map to identity
153
void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
154
  _max_lrg_id= max_lrg_id;
155
  // Force the Union-Find mapping to be at least this large
156
  _uf_map.at_put_grow(_max_lrg_id, 0);
157
  // Initialize it to be the ID mapping.
158
  for (uint i = 0; i < _max_lrg_id; ++i) {
159
    _uf_map.at_put(i, i);
160
  }
161
}
162

163
// Make all Nodes map directly to their final live range; no need for
164
// the Union-Find mapping after this call.
165
void LiveRangeMap::compress_uf_map_for_nodes() {
166
  // For all Nodes, compress mapping
167
  uint unique = _names.length();
168
  for (uint i = 0; i < unique; ++i) {
169
    uint lrg = _names.at(i);
170
    uint compressed_lrg = find(lrg);
171
    if (lrg != compressed_lrg) {
172
      _names.at_put(i, compressed_lrg);
173
    }
174
  }
175
}
176

177
// Like Find above, but no path compress, so bad asymptotic behavior
178
uint LiveRangeMap::find_const(uint lrg) const {
179
  if (!lrg) {
180
    return lrg; // Ignore the zero LRG
181
  }
182

183
  // Off the end?  This happens during debugging dumps when you got
184
  // brand new live ranges but have not told the allocator yet.
185
  if (lrg >= _max_lrg_id) {
186
    return lrg;
187
  }
188

189
  uint next = _uf_map.at(lrg);
190
  while (next != lrg) { // Scan chain of equivalences
191
    assert(next < lrg, "always union smaller");
192
    lrg = next; // until find a fixed-point
193
    next = _uf_map.at(lrg);
194
  }
195
  return next;
196
}
197

198
PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool scheduling_info_generated)
199
  : PhaseRegAlloc(unique, cfg, matcher,
200
#ifndef PRODUCT
201
       print_chaitin_statistics
202
#else
203
       nullptr
204
#endif
205
       )
206
  , _live(nullptr)
207
  , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
208
  , _oldphi(unique)
209
#ifndef PRODUCT
210
  , _trace_spilling(C->directive()->TraceSpillingOption)
211
#endif
212
  , _lrg_map(Thread::current()->resource_area(), unique)
213
  , _scheduling_info_generated(scheduling_info_generated)
214
  , _sched_int_pressure(0, Matcher::int_pressure_limit())
215
  , _sched_float_pressure(0, Matcher::float_pressure_limit())
216
  , _scratch_int_pressure(0, Matcher::int_pressure_limit())
217
  , _scratch_float_pressure(0, Matcher::float_pressure_limit())
218
{
219
  Compile::TracePhase tp("ctorChaitin", &timers[_t_ctorChaitin]);
220

221
  _high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
222

223
  // Build a list of basic blocks, sorted by frequency
224
  // Experiment with sorting strategies to speed compilation
225
  uint nr_blocks = _cfg.number_of_blocks();
226
  double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
227
  Block **buckets[NUMBUCKS];             // Array of buckets
228
  uint    buckcnt[NUMBUCKS];             // Array of bucket counters
229
  double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
230

231
  // The space which our buckets point into.
232
  Block** start = NEW_RESOURCE_ARRAY(Block *, nr_blocks*NUMBUCKS);
233

234
  for (uint i = 0; i < NUMBUCKS; i++) {
235
    buckets[i] = &start[i*nr_blocks];
236
    buckcnt[i] = 0;
237
    // Bump by three orders of magnitude each time
238
    cutoff *= 0.001;
239
    buckval[i] = cutoff;
240
  }
241

242
  // Sort blocks into buckets
243
  for (uint i = 0; i < nr_blocks; i++) {
244
    for (uint j = 0; j < NUMBUCKS; j++) {
245
      double bval = buckval[j];
246
      Block* blk = _cfg.get_block(i);
247
      if (j == NUMBUCKS - 1 || blk->_freq > bval) {
248
        uint cnt = buckcnt[j];
249
        // Assign block to end of list for appropriate bucket
250
        buckets[j][cnt] = blk;
251
        buckcnt[j] = cnt+1;
252
        break; // kick out of inner loop
253
      }
254
    }
255
  }
256

257
  // Squash the partially filled buckets together into the first one.
258
  static_assert(NUMBUCKS >= 2, "must"); // If this isn't true then it'll mess up the squashing.
259
  Block** offset = &buckets[0][buckcnt[0]];
260
  for (int i = 1; i < NUMBUCKS; i++) {
261
    ::memmove(offset, buckets[i], buckcnt[i]*sizeof(Block*));
262
    offset += buckcnt[i];
263
  }
264
  assert((&buckets[0][0] + nr_blocks) == offset, "should be");
265

266
  // Free the now unused memory
267
  FREE_RESOURCE_ARRAY(Block*, buckets[1], (NUMBUCKS-1)*nr_blocks);
268
  // Finally, point the _blks to our memory
269
  _blks = buckets[0];
270

271
#ifdef ASSERT
272
  uint blkcnt = 0;
273
  for (uint i = 0; i < NUMBUCKS; i++) {
274
    blkcnt += buckcnt[i];
275
  }
276
  assert(blkcnt == nr_blocks, "Block array not totally filled");
277
#endif
278
}
279

280
// union 2 sets together.
281
void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
282
  uint src = _lrg_map.find(src_n);
283
  uint dst = _lrg_map.find(dst_n);
284
  assert(src, "");
285
  assert(dst, "");
286
  assert(src < _lrg_map.max_lrg_id(), "oob");
287
  assert(dst < _lrg_map.max_lrg_id(), "oob");
288
  assert(src < dst, "always union smaller");
289
  _lrg_map.uf_map(dst, src);
290
}
291

292
void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
293
  // Make the Node->LRG mapping
294
  _lrg_map.extend(x->_idx,lrg);
295
  // Make the Union-Find mapping an identity function
296
  _lrg_map.uf_extend(lrg, lrg);
297
}
298

299

300
int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
301
  assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
302
  DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
303
  int found_projs = 0;
304
  uint cnt = orig->outcnt();
305
  for (uint i = 0; i < cnt; i++) {
306
    Node* proj = orig->raw_out(i);
307
    if (proj->is_MachProj()) {
308
      assert(proj->outcnt() == 0, "only kill projections are expected here");
309
      assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
310
      found_projs++;
311
      // Copy kill projections after the cloned node
312
      Node* kills = proj->clone();
313
      kills->set_req(0, copy);
314
      b->insert_node(kills, idx++);
315
      _cfg.map_node_to_block(kills, b);
316
      new_lrg(kills, max_lrg_id++);
317
    }
318
  }
319
  return found_projs;
320
}
321

322
// Renumber the live ranges to compact them.  Makes the IFG smaller.
323
void PhaseChaitin::compact() {
324
  Compile::TracePhase tp("chaitinCompact", &timers[_t_chaitinCompact]);
325

326
  // Current the _uf_map contains a series of short chains which are headed
327
  // by a self-cycle.  All the chains run from big numbers to little numbers.
328
  // The Find() call chases the chains & shortens them for the next Find call.
329
  // We are going to change this structure slightly.  Numbers above a moving
330
  // wave 'i' are unchanged.  Numbers below 'j' point directly to their
331
  // compacted live range with no further chaining.  There are no chains or
332
  // cycles below 'i', so the Find call no longer works.
333
  uint j=1;
334
  uint i;
335
  for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
336
    uint lr = _lrg_map.uf_live_range_id(i);
337
    // Ignore unallocated live ranges
338
    if (!lr) {
339
      continue;
340
    }
341
    assert(lr <= i, "");
342
    _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
343
  }
344
  // Now change the Node->LR mapping to reflect the compacted names
345
  uint unique = _lrg_map.size();
346
  for (i = 0; i < unique; i++) {
347
    uint lrg_id = _lrg_map.live_range_id(i);
348
    _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
349
  }
350

351
  // Reset the Union-Find mapping
352
  _lrg_map.reset_uf_map(j);
353
}
354

355
void PhaseChaitin::Register_Allocate() {
356

357
  // Above the OLD FP (and in registers) are the incoming arguments.  Stack
358
  // slots in this area are called "arg_slots".  Above the NEW FP (and in
359
  // registers) is the outgoing argument area; above that is the spill/temp
360
  // area.  These are all "frame_slots".  Arg_slots start at the zero
361
  // stack_slots and count up to the known arg_size.  Frame_slots start at
362
  // the stack_slot #arg_size and go up.  After allocation I map stack
363
  // slots to actual offsets.  Stack-slots in the arg_slot area are biased
364
  // by the frame_size; stack-slots in the frame_slot area are biased by 0.
365

366
  _trip_cnt = 0;
367
  _alternate = 0;
368
  _matcher._allocation_started = true;
369

370
  ResourceArea split_arena(mtCompiler);     // Arena for Split local resources
371
  ResourceArea live_arena(mtCompiler);      // Arena for liveness & IFG info
372
  ResourceMark rm(&live_arena);
373

374
  // Need live-ness for the IFG; need the IFG for coalescing.  If the
375
  // liveness is JUST for coalescing, then I can get some mileage by renaming
376
  // all copy-related live ranges low and then using the max copy-related
377
  // live range as a cut-off for LIVE and the IFG.  In other words, I can
378
  // build a subset of LIVE and IFG just for copies.
379
  PhaseLive live(_cfg, _lrg_map.names(), &live_arena, false);
380

381
  // Need IFG for coalescing and coloring
382
  PhaseIFG ifg(&live_arena);
383
  _ifg = &ifg;
384

385
  // Come out of SSA world to the Named world.  Assign (virtual) registers to
386
  // Nodes.  Use the same register for all inputs and the output of PhiNodes
387
  // - effectively ending SSA form.  This requires either coalescing live
388
  // ranges or inserting copies.  For the moment, we insert "virtual copies"
389
  // - we pretend there is a copy prior to each Phi in predecessor blocks.
390
  // We will attempt to coalesce such "virtual copies" before we manifest
391
  // them for real.
392
  de_ssa();
393

394
#ifdef ASSERT
395
  // Verify the graph before RA.
396
  verify(&live_arena);
397
#endif
398

399
  {
400
    Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
401
    _live = nullptr;              // Mark live as being not available
402
    rm.reset_to_mark();           // Reclaim working storage
403
    IndexSet::reset_memory(C, &live_arena);
404
    ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
405
    gather_lrg_masks( false );    // Collect LRG masks
406
    live.compute(_lrg_map.max_lrg_id()); // Compute liveness
407
    _live = &live;                // Mark LIVE as being available
408
  }
409

410
  // Base pointers are currently "used" by instructions which define new
411
  // derived pointers.  This makes base pointers live up to the where the
412
  // derived pointer is made, but not beyond.  Really, they need to be live
413
  // across any GC point where the derived value is live.  So this code looks
414
  // at all the GC points, and "stretches" the live range of any base pointer
415
  // to the GC point.
416
  if (stretch_base_pointer_live_ranges(&live_arena)) {
417
    Compile::TracePhase tp("computeLive (sbplr)", &timers[_t_computeLive]);
418
    // Since some live range stretched, I need to recompute live
419
    _live = nullptr;
420
    rm.reset_to_mark();         // Reclaim working storage
421
    IndexSet::reset_memory(C, &live_arena);
422
    ifg.init(_lrg_map.max_lrg_id());
423
    gather_lrg_masks(false);
424
    live.compute(_lrg_map.max_lrg_id());
425
    _live = &live;
426
  }
427
  // Create the interference graph using virtual copies
428
  build_ifg_virtual();  // Include stack slots this time
429

430
  // The IFG is/was triangular.  I am 'squaring it up' so Union can run
431
  // faster.  Union requires a 'for all' operation which is slow on the
432
  // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
433
  // meaning I can visit all the Nodes neighbors less than a Node in time
434
  // O(# of neighbors), but I have to visit all the Nodes greater than a
435
  // given Node and search them for an instance, i.e., time O(#MaxLRG)).
436
  _ifg->SquareUp();
437

438
  // Aggressive (but pessimistic) copy coalescing.
439
  // This pass works on virtual copies.  Any virtual copies which are not
440
  // coalesced get manifested as actual copies
441
  {
442
    Compile::TracePhase tp("chaitinCoalesce1", &timers[_t_chaitinCoalesce1]);
443

444
    PhaseAggressiveCoalesce coalesce(*this);
445
    coalesce.coalesce_driver();
446
    // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
447
    // not match the Phi itself, insert a copy.
448
    coalesce.insert_copies(_matcher);
449
    if (C->failing()) {
450
      return;
451
    }
452
  }
453

454
  // After aggressive coalesce, attempt a first cut at coloring.
455
  // To color, we need the IFG and for that we need LIVE.
456
  {
457
    Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
458
    _live = nullptr;
459
    rm.reset_to_mark();           // Reclaim working storage
460
    IndexSet::reset_memory(C, &live_arena);
461
    ifg.init(_lrg_map.max_lrg_id());
462
    gather_lrg_masks( true );
463
    live.compute(_lrg_map.max_lrg_id());
464
    _live = &live;
465
  }
466

467
  // Build physical interference graph
468
  uint must_spill = 0;
469
  must_spill = build_ifg_physical(&live_arena);
470
  // If we have a guaranteed spill, might as well spill now
471
  if (must_spill) {
472
    if(!_lrg_map.max_lrg_id()) {
473
      return;
474
    }
475
    // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
476
    C->check_node_count(10*must_spill, "out of nodes before split");
477
    if (C->failing()) {
478
      return;
479
    }
480

481
    uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
482
    _lrg_map.set_max_lrg_id(new_max_lrg_id);
483
    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
484
    // or we failed to split
485
    C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
486
    if (C->failing()) {
487
      return;
488
    }
489

490
    NOT_PRODUCT(C->verify_graph_edges();)
491

492
    compact();                  // Compact LRGs; return new lower max lrg
493

494
    {
495
      Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
496
      _live = nullptr;
497
      rm.reset_to_mark();         // Reclaim working storage
498
      IndexSet::reset_memory(C, &live_arena);
499
      ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
500
      gather_lrg_masks( true );   // Collect intersect mask
501
      live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
502
      _live = &live;
503
    }
504
    build_ifg_physical(&live_arena);
505
    _ifg->SquareUp();
506
    _ifg->Compute_Effective_Degree();
507
    // Only do conservative coalescing if requested
508
    if (OptoCoalesce) {
509
      Compile::TracePhase tp("chaitinCoalesce2", &timers[_t_chaitinCoalesce2]);
510
      // Conservative (and pessimistic) copy coalescing of those spills
511
      PhaseConservativeCoalesce coalesce(*this);
512
      // If max live ranges greater than cutoff, don't color the stack.
513
      // This cutoff can be larger than below since it is only done once.
514
      coalesce.coalesce_driver();
515
    }
516
    _lrg_map.compress_uf_map_for_nodes();
517

518
#ifdef ASSERT
519
    verify(&live_arena, true);
520
#endif
521
  } else {
522
    ifg.SquareUp();
523
    ifg.Compute_Effective_Degree();
524
#ifdef ASSERT
525
    set_was_low();
526
#endif
527
  }
528

529
  // Prepare for Simplify & Select
530
  cache_lrg_info();           // Count degree of LRGs
531

532
  // Simplify the InterFerence Graph by removing LRGs of low degree.
533
  // LRGs of low degree are trivially colorable.
534
  Simplify();
535

536
  // Select colors by re-inserting LRGs back into the IFG in reverse order.
537
  // Return whether or not something spills.
538
  uint spills = Select( );
539

540
  // If we spill, split and recycle the entire thing
541
  while( spills ) {
542
    if( _trip_cnt++ > 24 ) {
543
      DEBUG_ONLY( dump_for_spill_split_recycle(); )
544
      if( _trip_cnt > 27 ) {
545
        C->record_method_not_compilable("failed spill-split-recycle sanity check");
546
        return;
547
      }
548
    }
549

550
    if (!_lrg_map.max_lrg_id()) {
551
      return;
552
    }
553
    uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
554
    _lrg_map.set_max_lrg_id(new_max_lrg_id);
555
    // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
556
    C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
557
    if (C->failing()) {
558
      return;
559
    }
560

561
    compact(); // Compact LRGs; return new lower max lrg
562

563
    // Nuke the live-ness and interference graph and LiveRanGe info
564
    {
565
      Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
566
      _live = nullptr;
567
      rm.reset_to_mark();         // Reclaim working storage
568
      IndexSet::reset_memory(C, &live_arena);
569
      ifg.init(_lrg_map.max_lrg_id());
570

571
      // Create LiveRanGe array.
572
      // Intersect register masks for all USEs and DEFs
573
      gather_lrg_masks(true);
574
      live.compute(_lrg_map.max_lrg_id());
575
      _live = &live;
576
    }
577
    must_spill = build_ifg_physical(&live_arena);
578
    _ifg->SquareUp();
579
    _ifg->Compute_Effective_Degree();
580

581
    // Only do conservative coalescing if requested
582
    if (OptoCoalesce) {
583
      Compile::TracePhase tp("chaitinCoalesce3", &timers[_t_chaitinCoalesce3]);
584
      // Conservative (and pessimistic) copy coalescing
585
      PhaseConservativeCoalesce coalesce(*this);
586
      // Check for few live ranges determines how aggressive coalesce is.
587
      coalesce.coalesce_driver();
588
    }
589
    _lrg_map.compress_uf_map_for_nodes();
590
#ifdef ASSERT
591
    verify(&live_arena, true);
592
#endif
593
    cache_lrg_info();           // Count degree of LRGs
594

595
    // Simplify the InterFerence Graph by removing LRGs of low degree.
596
    // LRGs of low degree are trivially colorable.
597
    Simplify();
598

599
    // Select colors by re-inserting LRGs back into the IFG in reverse order.
600
    // Return whether or not something spills.
601
    spills = Select();
602
  }
603

604
  // Count number of Simplify-Select trips per coloring success.
605
  _allocator_attempts += _trip_cnt + 1;
606
  _allocator_successes += 1;
607

608
  // Peephole remove copies
609
  post_allocate_copy_removal();
610

611
  // Merge multidefs if multiple defs representing the same value are used in a single block.
612
  merge_multidefs();
613

614
#ifdef ASSERT
615
  // Verify the graph after RA.
616
  verify(&live_arena);
617
#endif
618

619
  // max_reg is past the largest *register* used.
620
  // Convert that to a frame_slot number.
621
  if (_max_reg <= _matcher._new_SP) {
622
    _framesize = C->out_preserve_stack_slots();
623
  }
624
  else {
625
    _framesize = _max_reg -_matcher._new_SP;
626
  }
627
  assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
628

629
  // This frame must preserve the required fp alignment
630
  _framesize = align_up(_framesize, Matcher::stack_alignment_in_slots());
631
  assert(_framesize <= 1000000, "sanity check");
632
#ifndef PRODUCT
633
  _total_framesize += _framesize;
634
  if ((int)_framesize > _max_framesize) {
635
    _max_framesize = _framesize;
636
  }
637
#endif
638

639
  // Convert CISC spills
640
  fixup_spills();
641

642
  // Log regalloc results
643
  CompileLog* log = Compile::current()->log();
644
  if (log != nullptr) {
645
    log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
646
  }
647

648
  if (C->failing()) {
649
    return;
650
  }
651

652
  NOT_PRODUCT(C->verify_graph_edges();)
653

654
  // Move important info out of the live_arena to longer lasting storage.
655
  alloc_node_regs(_lrg_map.size());
656
  for (uint i=0; i < _lrg_map.size(); i++) {
657
    if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
658
      LRG &lrg = lrgs(_lrg_map.live_range_id(i));
659
      if (!lrg.alive()) {
660
        set_bad(i);
661
      } else if ((lrg.num_regs() == 1 && !lrg.is_scalable()) ||
662
                 (lrg.is_scalable() && lrg.scalable_reg_slots() == 1)) {
663
        set1(i, lrg.reg());
664
      } else {                  // Must be a register-set
665
        if (!lrg._fat_proj) {   // Must be aligned adjacent register set
666
          // Live ranges record the highest register in their mask.
667
          // We want the low register for the AD file writer's convenience.
668
          OptoReg::Name hi = lrg.reg(); // Get hi register
669
          int num_regs = lrg.num_regs();
670
          if (lrg.is_scalable() && OptoReg::is_stack(hi)) {
671
            // For scalable vector registers, when they are allocated in physical
672
            // registers, num_regs is RegMask::SlotsPerVecA for reg mask of scalable
673
            // vector. If they are allocated on stack, we need to get the actual
674
            // num_regs, which reflects the physical length of scalable registers.
675
            num_regs = lrg.scalable_reg_slots();
676
          }
677
          if (num_regs == 1) {
678
            set1(i, hi);
679
          } else {
680
            OptoReg::Name lo = OptoReg::add(hi, (1 - num_regs)); // Find lo
681
            // We have to use pair [lo,lo+1] even for wide vectors/vmasks because
682
            // the rest of code generation works only with pairs. It is safe
683
            // since for registers encoding only 'lo' is used.
684
            // Second reg from pair is used in ScheduleAndBundle with vector max
685
            // size 8 which corresponds to registers pair.
686
            // It is also used in BuildOopMaps but oop operations are not
687
            // vectorized.
688
            set2(i, lo);
689
          }
690
        } else {                // Misaligned; extract 2 bits
691
          OptoReg::Name hi = lrg.reg(); // Get hi register
692
          lrg.Remove(hi);       // Yank from mask
693
          int lo = lrg.mask().find_first_elem(); // Find lo
694
          set_pair(i, hi, lo);
695
        }
696
      }
697
      if( lrg._is_oop ) _node_oops.set(i);
698
    } else {
699
      set_bad(i);
700
    }
701
  }
702

703
  // Done!
704
  _live = nullptr;
705
  _ifg = nullptr;
706
  C->set_indexSet_arena(nullptr);  // ResourceArea is at end of scope
707
}
708

709
void PhaseChaitin::de_ssa() {
710
  // Set initial Names for all Nodes.  Most Nodes get the virtual register
711
  // number.  A few get the ZERO live range number.  These do not
712
  // get allocated, but instead rely on correct scheduling to ensure that
713
  // only one instance is simultaneously live at a time.
714
  uint lr_counter = 1;
715
  for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
716
    Block* block = _cfg.get_block(i);
717
    uint cnt = block->number_of_nodes();
718

719
    // Handle all the normal Nodes in the block
720
    for( uint j = 0; j < cnt; j++ ) {
721
      Node *n = block->get_node(j);
722
      // Pre-color to the zero live range, or pick virtual register
723
      const RegMask &rm = n->out_RegMask();
724
      _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
725
    }
726
  }
727

728
  // Reset the Union-Find mapping to be identity
729
  _lrg_map.reset_uf_map(lr_counter);
730
}
731

732
void PhaseChaitin::mark_ssa() {
733
  // Use ssa names to populate the live range maps or if no mask
734
  // is available, use the 0 entry.
735
  uint max_idx = 0;
736
  for ( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
737
    Block* block = _cfg.get_block(i);
738
    uint cnt = block->number_of_nodes();
739

740
    // Handle all the normal Nodes in the block
741
    for ( uint j = 0; j < cnt; j++ ) {
742
      Node *n = block->get_node(j);
743
      // Pre-color to the zero live range, or pick virtual register
744
      const RegMask &rm = n->out_RegMask();
745
      _lrg_map.map(n->_idx, rm.is_NotEmpty() ? n->_idx : 0);
746
      max_idx = (n->_idx > max_idx) ? n->_idx : max_idx;
747
    }
748
  }
749
  _lrg_map.set_max_lrg_id(max_idx+1);
750

751
  // Reset the Union-Find mapping to be identity
752
  _lrg_map.reset_uf_map(max_idx+1);
753
}
754

755

756
// Gather LiveRanGe information, including register masks.  Modification of
757
// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
758
void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
759

760
  // Nail down the frame pointer live range
761
  uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
762
  lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
763

764
  // For all blocks
765
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
766
    Block* block = _cfg.get_block(i);
767

768
    // For all instructions
769
    for (uint j = 1; j < block->number_of_nodes(); j++) {
770
      Node* n = block->get_node(j);
771
      uint input_edge_start =1; // Skip control most nodes
772
      bool is_machine_node = false;
773
      if (n->is_Mach()) {
774
        is_machine_node = true;
775
        input_edge_start = n->as_Mach()->oper_input_base();
776
      }
777
      uint idx = n->is_Copy();
778

779
      // Get virtual register number, same as LiveRanGe index
780
      uint vreg = _lrg_map.live_range_id(n);
781
      LRG& lrg = lrgs(vreg);
782
      if (vreg) {              // No vreg means un-allocable (e.g. memory)
783

784
        // Check for float-vs-int live range (used in register-pressure
785
        // calculations)
786
        const Type *n_type = n->bottom_type();
787
        if (n_type->is_floatingpoint()) {
788
          lrg._is_float = 1;
789
        }
790

791
        // Check for twice prior spilling.  Once prior spilling might have
792
        // spilled 'soft', 2nd prior spill should have spilled 'hard' and
793
        // further spilling is unlikely to make progress.
794
        if (_spilled_once.test(n->_idx)) {
795
          lrg._was_spilled1 = 1;
796
          if (_spilled_twice.test(n->_idx)) {
797
            lrg._was_spilled2 = 1;
798
          }
799
        }
800

801
#ifndef PRODUCT
802
        // Collect bits not used by product code, but which may be useful for
803
        // debugging.
804

805
        // Collect has-copy bit
806
        if (idx) {
807
          lrg._has_copy = 1;
808
          uint clidx = _lrg_map.live_range_id(n->in(idx));
809
          LRG& copy_src = lrgs(clidx);
810
          copy_src._has_copy = 1;
811
        }
812

813
        if (trace_spilling() && lrg._def != nullptr) {
814
          // collect defs for MultiDef printing
815
          if (lrg._defs == nullptr) {
816
            lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, nullptr);
817
            lrg._defs->append(lrg._def);
818
          }
819
          lrg._defs->append(n);
820
        }
821
#endif
822

823
        // Check for a single def LRG; these can spill nicely
824
        // via rematerialization.  Flag as null for no def found
825
        // yet, or 'n' for single def or -1 for many defs.
826
        lrg._def = lrg._def ? NodeSentinel : n;
827

828
        // Limit result register mask to acceptable registers
829
        const RegMask &rm = n->out_RegMask();
830
        lrg.AND( rm );
831

832
        uint ireg = n->ideal_reg();
833
        assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
834
                "oops must be in Op_RegP's" );
835

836
        // Check for vector live range (only if vector register is used).
837
        // On SPARC vector uses RegD which could be misaligned so it is not
838
        // processes as vector in RA.
839
        if (RegMask::is_vector(ireg)) {
840
          lrg._is_vector = 1;
841
          if (Matcher::implements_scalable_vector && ireg == Op_VecA) {
842
            assert(Matcher::supports_scalable_vector(), "scalable vector should be supported");
843
            lrg._is_scalable = 1;
844
            // For scalable vector, when it is allocated in physical register,
845
            // num_regs is RegMask::SlotsPerVecA for reg mask,
846
            // which may not be the actual physical register size.
847
            // If it is allocated in stack, we need to get the actual
848
            // physical length of scalable vector register.
849
            lrg.set_scalable_reg_slots(Matcher::scalable_vector_reg_size(T_FLOAT));
850
          }
851
        }
852

853
        if (ireg == Op_RegVectMask) {
854
          assert(Matcher::has_predicated_vectors(), "predicated vector should be supported");
855
          lrg._is_predicate = 1;
856
          if (Matcher::supports_scalable_vector()) {
857
            lrg._is_scalable = 1;
858
            // For scalable predicate, when it is allocated in physical register,
859
            // num_regs is RegMask::SlotsPerRegVectMask for reg mask,
860
            // which may not be the actual physical register size.
861
            // If it is allocated in stack, we need to get the actual
862
            // physical length of scalable predicate register.
863
            lrg.set_scalable_reg_slots(Matcher::scalable_predicate_reg_slots());
864
          }
865
        }
866
        assert(n_type->isa_vect() == nullptr || lrg._is_vector ||
867
               ireg == Op_RegD || ireg == Op_RegL || ireg == Op_RegVectMask,
868
               "vector must be in vector registers");
869

870
        // Check for bound register masks
871
        const RegMask &lrgmask = lrg.mask();
872
        if (lrgmask.is_bound(ireg)) {
873
          lrg._is_bound = 1;
874
        }
875

876
        // Check for maximum frequency value
877
        if (lrg._maxfreq < block->_freq) {
878
          lrg._maxfreq = block->_freq;
879
        }
880

881
        // Check for oop-iness, or long/double
882
        // Check for multi-kill projection
883
        switch (ireg) {
884
        case MachProjNode::fat_proj:
885
          // Fat projections have size equal to number of registers killed
886
          lrg.set_num_regs(rm.Size());
887
          lrg.set_reg_pressure(lrg.num_regs());
888
          lrg._fat_proj = 1;
889
          lrg._is_bound = 1;
890
          break;
891
        case Op_RegP:
892
#ifdef _LP64
893
          lrg.set_num_regs(2);  // Size is 2 stack words
894
#else
895
          lrg.set_num_regs(1);  // Size is 1 stack word
896
#endif
897
          // Register pressure is tracked relative to the maximum values
898
          // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
899
          // and relative to other types which compete for the same regs.
900
          //
901
          // The following table contains suggested values based on the
902
          // architectures as defined in each .ad file.
903
          // INTPRESSURE and FLOATPRESSURE may be tuned differently for
904
          // compile-speed or performance.
905
          // Note1:
906
          // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
907
          // since .ad registers are defined as high and low halves.
908
          // These reg_pressure values remain compatible with the code
909
          // in is_high_pressure() which relates get_invalid_mask_size(),
910
          // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
911
          // Note2:
912
          // SPARC -d32 has 24 registers available for integral values,
913
          // but only 10 of these are safe for 64-bit longs.
914
          // Using set_reg_pressure(2) for both int and long means
915
          // the allocator will believe it can fit 26 longs into
916
          // registers.  Using 2 for longs and 1 for ints means the
917
          // allocator will attempt to put 52 integers into registers.
918
          // The settings below limit this problem to methods with
919
          // many long values which are being run on 32-bit SPARC.
920
          //
921
          // ------------------- reg_pressure --------------------
922
          // Each entry is reg_pressure_per_value,number_of_regs
923
          //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
924
          // IA32     2     1     1          1    1          6           6
925
          // IA64     1     1     1          1    1         50          41
926
          // SPARC    2     2     2          2    2         48 (24)     52 (26)
927
          // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
928
          // AMD64    1     1     1          1    1         14          15
929
          // -----------------------------------------------------
930
          lrg.set_reg_pressure(1);  // normally one value per register
931
          if( n_type->isa_oop_ptr() ) {
932
            lrg._is_oop = 1;
933
          }
934
          break;
935
        case Op_RegL:           // Check for long or double
936
        case Op_RegD:
937
          lrg.set_num_regs(2);
938
          // Define platform specific register pressure
939
#if defined(ARM32)
940
          lrg.set_reg_pressure(2);
941
#elif defined(IA32)
942
          if( ireg == Op_RegL ) {
943
            lrg.set_reg_pressure(2);
944
          } else {
945
            lrg.set_reg_pressure(1);
946
          }
947
#else
948
          lrg.set_reg_pressure(1);  // normally one value per register
949
#endif
950
          // If this def of a double forces a mis-aligned double,
951
          // flag as '_fat_proj' - really flag as allowing misalignment
952
          // AND changes how we count interferences.  A mis-aligned
953
          // double can interfere with TWO aligned pairs, or effectively
954
          // FOUR registers!
955
          if (rm.is_misaligned_pair()) {
956
            lrg._fat_proj = 1;
957
            lrg._is_bound = 1;
958
          }
959
          break;
960
        case Op_RegVectMask:
961
          assert(Matcher::has_predicated_vectors(), "sanity");
962
          assert(RegMask::num_registers(Op_RegVectMask) == RegMask::SlotsPerRegVectMask, "sanity");
963
          lrg.set_num_regs(RegMask::SlotsPerRegVectMask);
964
          lrg.set_reg_pressure(1);
965
          break;
966
        case Op_RegF:
967
        case Op_RegI:
968
        case Op_RegN:
969
        case Op_RegFlags:
970
        case 0:                 // not an ideal register
971
          lrg.set_num_regs(1);
972
          lrg.set_reg_pressure(1);
973
          break;
974
        case Op_VecA:
975
          assert(Matcher::supports_scalable_vector(), "does not support scalable vector");
976
          assert(RegMask::num_registers(Op_VecA) == RegMask::SlotsPerVecA, "sanity");
977
          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecA), "vector should be aligned");
978
          lrg.set_num_regs(RegMask::SlotsPerVecA);
979
          lrg.set_reg_pressure(1);
980
          break;
981
        case Op_VecS:
982
          assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
983
          assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
984
          lrg.set_num_regs(RegMask::SlotsPerVecS);
985
          lrg.set_reg_pressure(1);
986
          break;
987
        case Op_VecD:
988
          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
989
          assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
990
          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
991
          lrg.set_num_regs(RegMask::SlotsPerVecD);
992
          lrg.set_reg_pressure(1);
993
          break;
994
        case Op_VecX:
995
          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
996
          assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
997
          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
998
          lrg.set_num_regs(RegMask::SlotsPerVecX);
999
          lrg.set_reg_pressure(1);
1000
          break;
1001
        case Op_VecY:
1002
          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
1003
          assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
1004
          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
1005
          lrg.set_num_regs(RegMask::SlotsPerVecY);
1006
          lrg.set_reg_pressure(1);
1007
          break;
1008
        case Op_VecZ:
1009
          assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity");
1010
          assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity");
1011
          assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned");
1012
          lrg.set_num_regs(RegMask::SlotsPerVecZ);
1013
          lrg.set_reg_pressure(1);
1014
          break;
1015
        default:
1016
          ShouldNotReachHere();
1017
        }
1018
      }
1019

1020
      // Now do the same for inputs
1021
      uint cnt = n->req();
1022
      // Setup for CISC SPILLING
1023
      uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
1024
      if( UseCISCSpill && after_aggressive ) {
1025
        inp = n->cisc_operand();
1026
        if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
1027
          // Convert operand number to edge index number
1028
          inp = n->as_Mach()->operand_index(inp);
1029
      }
1030

1031
      // Prepare register mask for each input
1032
      for( uint k = input_edge_start; k < cnt; k++ ) {
1033
        uint vreg = _lrg_map.live_range_id(n->in(k));
1034
        if (!vreg) {
1035
          continue;
1036
        }
1037

1038
        // If this instruction is CISC Spillable, add the flags
1039
        // bit to its appropriate input
1040
        if( UseCISCSpill && after_aggressive && inp == k ) {
1041
#ifndef PRODUCT
1042
          if( TraceCISCSpill ) {
1043
            tty->print("  use_cisc_RegMask: ");
1044
            n->dump();
1045
          }
1046
#endif
1047
          n->as_Mach()->use_cisc_RegMask();
1048
        }
1049

1050
        if (is_machine_node && _scheduling_info_generated) {
1051
          MachNode* cur_node = n->as_Mach();
1052
          // this is cleaned up by register allocation
1053
          if (k >= cur_node->num_opnds()) continue;
1054
        }
1055

1056
        LRG &lrg = lrgs(vreg);
1057
        // // Testing for floating point code shape
1058
        // Node *test = n->in(k);
1059
        // if( test->is_Mach() ) {
1060
        //   MachNode *m = test->as_Mach();
1061
        //   int  op = m->ideal_Opcode();
1062
        //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
1063
        //     int zzz = 1;
1064
        //   }
1065
        // }
1066

1067
        // Limit result register mask to acceptable registers.
1068
        // Do not limit registers from uncommon uses before
1069
        // AggressiveCoalesce.  This effectively pre-virtual-splits
1070
        // around uncommon uses of common defs.
1071
        const RegMask &rm = n->in_RegMask(k);
1072
        if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
1073
          // Since we are BEFORE aggressive coalesce, leave the register
1074
          // mask untrimmed by the call.  This encourages more coalescing.
1075
          // Later, AFTER aggressive, this live range will have to spill
1076
          // but the spiller handles slow-path calls very nicely.
1077
        } else {
1078
          lrg.AND( rm );
1079
        }
1080

1081
        // Check for bound register masks
1082
        const RegMask &lrgmask = lrg.mask();
1083
        uint kreg = n->in(k)->ideal_reg();
1084
        bool is_vect = RegMask::is_vector(kreg);
1085
        assert(n->in(k)->bottom_type()->isa_vect() == nullptr || is_vect ||
1086
               kreg == Op_RegD || kreg == Op_RegL || kreg == Op_RegVectMask,
1087
               "vector must be in vector registers");
1088
        if (lrgmask.is_bound(kreg))
1089
          lrg._is_bound = 1;
1090

1091
        // If this use of a double forces a mis-aligned double,
1092
        // flag as '_fat_proj' - really flag as allowing misalignment
1093
        // AND changes how we count interferences.  A mis-aligned
1094
        // double can interfere with TWO aligned pairs, or effectively
1095
        // FOUR registers!
1096
#ifdef ASSERT
1097
        if (is_vect && !_scheduling_info_generated) {
1098
          if (lrg.num_regs() != 0) {
1099
            assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
1100
            assert(!lrg._fat_proj, "sanity");
1101
            assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
1102
          } else {
1103
            assert(n->is_Phi(), "not all inputs processed only if Phi");
1104
          }
1105
        }
1106
#endif
1107
        if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
1108
          lrg._fat_proj = 1;
1109
          lrg._is_bound = 1;
1110
        }
1111
        // if the LRG is an unaligned pair, we will have to spill
1112
        // so clear the LRG's register mask if it is not already spilled
1113
        if (!is_vect && !n->is_SpillCopy() &&
1114
            (lrg._def == nullptr || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
1115
            lrgmask.is_misaligned_pair()) {
1116
          lrg.Clear();
1117
        }
1118

1119
        // Check for maximum frequency value
1120
        if (lrg._maxfreq < block->_freq) {
1121
          lrg._maxfreq = block->_freq;
1122
        }
1123

1124
      } // End for all allocated inputs
1125
    } // end for all instructions
1126
  } // end for all blocks
1127

1128
  // Final per-liverange setup
1129
  for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
1130
    LRG &lrg = lrgs(i2);
1131
    assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
1132
    if (lrg.num_regs() > 1 && !lrg._fat_proj) {
1133
      lrg.clear_to_sets();
1134
    }
1135
    lrg.compute_set_mask_size();
1136
    if (lrg.not_free()) {      // Handle case where we lose from the start
1137
      lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
1138
      lrg._direct_conflict = 1;
1139
    }
1140
    lrg.set_degree(0);          // no neighbors in IFG yet
1141
  }
1142
}
1143

1144
// Set the was-lo-degree bit.  Conservative coalescing should not change the
1145
// colorability of the graph.  If any live range was of low-degree before
1146
// coalescing, it should Simplify.  This call sets the was-lo-degree bit.
1147
// The bit is checked in Simplify.
1148
void PhaseChaitin::set_was_low() {
1149
#ifdef ASSERT
1150
  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1151
    int size = lrgs(i).num_regs();
1152
    uint old_was_lo = lrgs(i)._was_lo;
1153
    lrgs(i)._was_lo = 0;
1154
    if( lrgs(i).lo_degree() ) {
1155
      lrgs(i)._was_lo = 1;      // Trivially of low degree
1156
    } else {                    // Else check the Brigg's assertion
1157
      // Brigg's observation is that the lo-degree neighbors of a
1158
      // hi-degree live range will not interfere with the color choices
1159
      // of said hi-degree live range.  The Simplify reverse-stack-coloring
1160
      // order takes care of the details.  Hence you do not have to count
1161
      // low-degree neighbors when determining if this guy colors.
1162
      int briggs_degree = 0;
1163
      IndexSet *s = _ifg->neighbors(i);
1164
      IndexSetIterator elements(s);
1165
      uint lidx;
1166
      while((lidx = elements.next()) != 0) {
1167
        if( !lrgs(lidx).lo_degree() )
1168
          briggs_degree += MAX2(size,lrgs(lidx).num_regs());
1169
      }
1170
      if( briggs_degree < lrgs(i).degrees_of_freedom() )
1171
        lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
1172
    }
1173
    assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
1174
  }
1175
#endif
1176
}
1177

1178
// Compute cost/area ratio, in case we spill.  Build the lo-degree list.
1179
void PhaseChaitin::cache_lrg_info( ) {
1180
  Compile::TracePhase tp("chaitinCacheLRG", &timers[_t_chaitinCacheLRG]);
1181

1182
  for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
1183
    LRG &lrg = lrgs(i);
1184

1185
    // Check for being of low degree: means we can be trivially colored.
1186
    // Low degree, dead or must-spill guys just get to simplify right away
1187
    if( lrg.lo_degree() ||
1188
       !lrg.alive() ||
1189
        lrg._must_spill ) {
1190
      // Split low degree list into those guys that must get a
1191
      // register and those that can go to register or stack.
1192
      // The idea is LRGs that can go register or stack color first when
1193
      // they have a good chance of getting a register.  The register-only
1194
      // lo-degree live ranges always get a register.
1195
      OptoReg::Name hi_reg = lrg.mask().find_last_elem();
1196
      if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
1197
        lrg._next = _lo_stk_degree;
1198
        _lo_stk_degree = i;
1199
      } else {
1200
        lrg._next = _lo_degree;
1201
        _lo_degree = i;
1202
      }
1203
    } else {                    // Else high degree
1204
      lrgs(_hi_degree)._prev = i;
1205
      lrg._next = _hi_degree;
1206
      lrg._prev = 0;
1207
      _hi_degree = i;
1208
    }
1209
  }
1210
}
1211

1212
// Simplify the IFG by removing LRGs of low degree.
1213
void PhaseChaitin::Simplify( ) {
1214
  Compile::TracePhase tp("chaitinSimplify", &timers[_t_chaitinSimplify]);
1215

1216
  while( 1 ) {                  // Repeat till simplified it all
1217
    // May want to explore simplifying lo_degree before _lo_stk_degree.
1218
    // This might result in more spills coloring into registers during
1219
    // Select().
1220
    while( _lo_degree || _lo_stk_degree ) {
1221
      // If possible, pull from lo_stk first
1222
      uint lo;
1223
      if( _lo_degree ) {
1224
        lo = _lo_degree;
1225
        _lo_degree = lrgs(lo)._next;
1226
      } else {
1227
        lo = _lo_stk_degree;
1228
        _lo_stk_degree = lrgs(lo)._next;
1229
      }
1230

1231
      // Put the simplified guy on the simplified list.
1232
      lrgs(lo)._next = _simplified;
1233
      _simplified = lo;
1234
      // If this guy is "at risk" then mark his current neighbors
1235
      if (lrgs(lo)._at_risk && !_ifg->neighbors(lo)->is_empty()) {
1236
        IndexSetIterator elements(_ifg->neighbors(lo));
1237
        uint datum;
1238
        while ((datum = elements.next()) != 0) {
1239
          lrgs(datum)._risk_bias = lo;
1240
        }
1241
      }
1242

1243
      // Yank this guy from the IFG.
1244
      IndexSet *adj = _ifg->remove_node(lo);
1245
      if (adj->is_empty()) {
1246
        continue;
1247
      }
1248

1249
      // If any neighbors' degrees fall below their number of
1250
      // allowed registers, then put that neighbor on the low degree
1251
      // list.  Note that 'degree' can only fall and 'numregs' is
1252
      // unchanged by this action.  Thus the two are equal at most once,
1253
      // so LRGs hit the lo-degree worklist at most once.
1254
      IndexSetIterator elements(adj);
1255
      uint neighbor;
1256
      while ((neighbor = elements.next()) != 0) {
1257
        LRG *n = &lrgs(neighbor);
1258
#ifdef ASSERT
1259
        if (VerifyRegisterAllocator) {
1260
          assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
1261
        }
1262
#endif
1263

1264
        // Check for just becoming of-low-degree just counting registers.
1265
        // _must_spill live ranges are already on the low degree list.
1266
        if (n->just_lo_degree() && !n->_must_spill) {
1267
          assert(!_ifg->_yanked->test(neighbor), "Cannot move to lo degree twice");
1268
          // Pull from hi-degree list
1269
          uint prev = n->_prev;
1270
          uint next = n->_next;
1271
          if (prev) {
1272
            lrgs(prev)._next = next;
1273
          } else {
1274
            _hi_degree = next;
1275
          }
1276
          lrgs(next)._prev = prev;
1277
          n->_next = _lo_degree;
1278
          _lo_degree = neighbor;
1279
        }
1280
      }
1281
    } // End of while lo-degree/lo_stk_degree worklist not empty
1282

1283
    // Check for got everything: is hi-degree list empty?
1284
    if (!_hi_degree) break;
1285

1286
    // Time to pick a potential spill guy
1287
    uint lo_score = _hi_degree;
1288
    double score = lrgs(lo_score).score();
1289
    double area = lrgs(lo_score)._area;
1290
    double cost = lrgs(lo_score)._cost;
1291
    bool bound = lrgs(lo_score)._is_bound;
1292

1293
    // Find cheapest guy
1294
    debug_only( int lo_no_simplify=0; );
1295
    for (uint i = _hi_degree; i; i = lrgs(i)._next) {
1296
      assert(!_ifg->_yanked->test(i), "");
1297
      // It's just vaguely possible to move hi-degree to lo-degree without
1298
      // going through a just-lo-degree stage: If you remove a double from
1299
      // a float live range it's degree will drop by 2 and you can skip the
1300
      // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
1301
      // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1302
      if( lrgs(i).lo_degree() ) {
1303
        lo_score = i;
1304
        break;
1305
      }
1306
      debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1307
      double iscore = lrgs(i).score();
1308
      double iarea = lrgs(i)._area;
1309
      double icost = lrgs(i)._cost;
1310
      bool ibound = lrgs(i)._is_bound;
1311

1312
      // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1313
      // wins.  Ties happen because all live ranges in question have spilled
1314
      // a few times before and the spill-score adds a huge number which
1315
      // washes out the low order bits.  We are choosing the lesser of 2
1316
      // evils; in this case pick largest area to spill.
1317
      // Ties also happen when live ranges are defined and used only inside
1318
      // one block. In which case their area is 0 and score set to max.
1319
      // In such case choose bound live range over unbound to free registers
1320
      // or with smaller cost to spill.
1321
      if ( iscore < score ||
1322
          (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
1323
          (iscore == score && iarea == area &&
1324
           ( (ibound && !bound) || (ibound == bound && (icost < cost)) )) ) {
1325
        lo_score = i;
1326
        score = iscore;
1327
        area = iarea;
1328
        cost = icost;
1329
        bound = ibound;
1330
      }
1331
    }
1332
    LRG *lo_lrg = &lrgs(lo_score);
1333
    // The live range we choose for spilling is either hi-degree, or very
1334
    // rarely it can be low-degree.  If we choose a hi-degree live range
1335
    // there better not be any lo-degree choices.
1336
    assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1337

1338
    // Pull from hi-degree list
1339
    uint prev = lo_lrg->_prev;
1340
    uint next = lo_lrg->_next;
1341
    if( prev ) lrgs(prev)._next = next;
1342
    else _hi_degree = next;
1343
    lrgs(next)._prev = prev;
1344
    // Jam him on the lo-degree list, despite his high degree.
1345
    // Maybe he'll get a color, and maybe he'll spill.
1346
    // Only Select() will know.
1347
    lrgs(lo_score)._at_risk = true;
1348
    _lo_degree = lo_score;
1349
    lo_lrg->_next = 0;
1350

1351
  } // End of while not simplified everything
1352

1353
}
1354

1355
// Is 'reg' register legal for 'lrg'?
1356
static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
1357
  if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
1358
      lrg.mask().Member(OptoReg::add(reg,-chunk))) {
1359
    // RA uses OptoReg which represent the highest element of a registers set.
1360
    // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
1361
    // in which XMMd is used by RA to represent such vectors. A double value
1362
    // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
1363
    // The register mask uses largest bits set of overlapping register sets.
1364
    // On x86 with AVX it uses 8 bits for each XMM registers set.
1365
    //
1366
    // The 'lrg' already has cleared-to-set register mask (done in Select()
1367
    // before calling choose_color()). Passing mask.Member(reg) check above
1368
    // indicates that the size (num_regs) of 'reg' set is less or equal to
1369
    // 'lrg' set size.
1370
    // For set size 1 any register which is member of 'lrg' mask is legal.
1371
    if (lrg.num_regs()==1)
1372
      return true;
1373
    // For larger sets only an aligned register with the same set size is legal.
1374
    int mask = lrg.num_regs()-1;
1375
    if ((reg&mask) == mask)
1376
      return true;
1377
  }
1378
  return false;
1379
}
1380

1381
static OptoReg::Name find_first_set(LRG &lrg, RegMask mask, int chunk) {
1382
  int num_regs = lrg.num_regs();
1383
  OptoReg::Name assigned = mask.find_first_set(lrg, num_regs);
1384

1385
  if (lrg.is_scalable()) {
1386
    // a physical register is found
1387
    if (chunk == 0 && OptoReg::is_reg(assigned)) {
1388
      return assigned;
1389
    }
1390

1391
    // find available stack slots for scalable register
1392
    if (lrg._is_vector) {
1393
      num_regs = lrg.scalable_reg_slots();
1394
      // if actual scalable vector register is exactly SlotsPerVecA * 32 bits
1395
      if (num_regs == RegMask::SlotsPerVecA) {
1396
        return assigned;
1397
      }
1398

1399
      // mask has been cleared out by clear_to_sets(SlotsPerVecA) before choose_color, but it
1400
      // does not work for scalable size. We have to find adjacent scalable_reg_slots() bits
1401
      // instead of SlotsPerVecA bits.
1402
      assigned = mask.find_first_set(lrg, num_regs); // find highest valid reg
1403
      while (OptoReg::is_valid(assigned) && RegMask::can_represent(assigned)) {
1404
        // Verify the found reg has scalable_reg_slots() bits set.
1405
        if (mask.is_valid_reg(assigned, num_regs)) {
1406
          return assigned;
1407
        } else {
1408
          // Remove more for each iteration
1409
          mask.Remove(assigned - num_regs + 1); // Unmask the lowest reg
1410
          mask.clear_to_sets(RegMask::SlotsPerVecA); // Align by SlotsPerVecA bits
1411
          assigned = mask.find_first_set(lrg, num_regs);
1412
        }
1413
      }
1414
      return OptoReg::Bad; // will cause chunk change, and retry next chunk
1415
    } else if (lrg._is_predicate) {
1416
      assert(num_regs == RegMask::SlotsPerRegVectMask, "scalable predicate register");
1417
      num_regs = lrg.scalable_reg_slots();
1418
      mask.clear_to_sets(num_regs);
1419
      return mask.find_first_set(lrg, num_regs);
1420
    }
1421
  }
1422

1423
  return assigned;
1424
}
1425

1426
// Choose a color using the biasing heuristic
1427
OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1428

1429
  // Check for "at_risk" LRG's
1430
  uint risk_lrg = _lrg_map.find(lrg._risk_bias);
1431
  if (risk_lrg != 0 && !_ifg->neighbors(risk_lrg)->is_empty()) {
1432
    // Walk the colored neighbors of the "at_risk" candidate
1433
    // Choose a color which is both legal and already taken by a neighbor
1434
    // of the "at_risk" candidate in order to improve the chances of the
1435
    // "at_risk" candidate of coloring
1436
    IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1437
    uint datum;
1438
    while ((datum = elements.next()) != 0) {
1439
      OptoReg::Name reg = lrgs(datum).reg();
1440
      // If this LRG's register is legal for us, choose it
1441
      if (is_legal_reg(lrg, reg, chunk))
1442
        return reg;
1443
    }
1444
  }
1445

1446
  uint copy_lrg = _lrg_map.find(lrg._copy_bias);
1447
  if (copy_lrg != 0) {
1448
    // If he has a color,
1449
    if(!_ifg->_yanked->test(copy_lrg)) {
1450
      OptoReg::Name reg = lrgs(copy_lrg).reg();
1451
      //  And it is legal for you,
1452
      if (is_legal_reg(lrg, reg, chunk))
1453
        return reg;
1454
    } else if( chunk == 0 ) {
1455
      // Choose a color which is legal for him
1456
      RegMask tempmask = lrg.mask();
1457
      tempmask.AND(lrgs(copy_lrg).mask());
1458
      tempmask.clear_to_sets(lrg.num_regs());
1459
      OptoReg::Name reg = find_first_set(lrg, tempmask, chunk);
1460
      if (OptoReg::is_valid(reg))
1461
        return reg;
1462
    }
1463
  }
1464

1465
  // If no bias info exists, just go with the register selection ordering
1466
  if (lrg._is_vector || lrg.num_regs() == 2 || lrg.is_scalable()) {
1467
    // Find an aligned set
1468
    return OptoReg::add(find_first_set(lrg, lrg.mask(), chunk), chunk);
1469
  }
1470

1471
  // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1472
  // copy removal to remove many more copies, by preventing a just-assigned
1473
  // register from being repeatedly assigned.
1474
  OptoReg::Name reg = lrg.mask().find_first_elem();
1475
  if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1476
    // This 'Remove; find; Insert' idiom is an expensive way to find the
1477
    // SECOND element in the mask.
1478
    lrg.Remove(reg);
1479
    OptoReg::Name reg2 = lrg.mask().find_first_elem();
1480
    lrg.Insert(reg);
1481
    if( OptoReg::is_reg(reg2))
1482
      reg = reg2;
1483
  }
1484
  return OptoReg::add( reg, chunk );
1485
}
1486

1487
// Choose a color in the current chunk
1488
OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
1489
  assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1490
  assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1491

1492
  if( lrg.num_regs() == 1 ||    // Common Case
1493
      !lrg._fat_proj )          // Aligned+adjacent pairs ok
1494
    // Use a heuristic to "bias" the color choice
1495
    return bias_color(lrg, chunk);
1496

1497
  assert(!lrg._is_vector, "should be not vector here" );
1498
  assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1499

1500
  // Fat-proj case or misaligned double argument.
1501
  assert(lrg.compute_mask_size() == lrg.num_regs() ||
1502
         lrg.num_regs() == 2,"fat projs exactly color" );
1503
  assert( !chunk, "always color in 1st chunk" );
1504
  // Return the highest element in the set.
1505
  return lrg.mask().find_last_elem();
1506
}
1507

1508
// Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1509
// in reverse order of removal.  As long as nothing of hi-degree was yanked,
1510
// everything going back is guaranteed a color.  Select that color.  If some
1511
// hi-degree LRG cannot get a color then we record that we must spill.
1512
uint PhaseChaitin::Select( ) {
1513
  Compile::TracePhase tp("chaitinSelect", &timers[_t_chaitinSelect]);
1514

1515
  uint spill_reg = LRG::SPILL_REG;
1516
  _max_reg = OptoReg::Name(0);  // Past max register used
1517
  while( _simplified ) {
1518
    // Pull next LRG from the simplified list - in reverse order of removal
1519
    uint lidx = _simplified;
1520
    LRG *lrg = &lrgs(lidx);
1521
    _simplified = lrg->_next;
1522

1523
#ifndef PRODUCT
1524
    if (trace_spilling()) {
1525
      ttyLocker ttyl;
1526
      tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1527
                    lrg->degrees_of_freedom());
1528
      lrg->dump();
1529
    }
1530
#endif
1531

1532
    // Re-insert into the IFG
1533
    _ifg->re_insert(lidx);
1534
    if( !lrg->alive() ) continue;
1535
    // capture allstackedness flag before mask is hacked
1536
    const int is_allstack = lrg->mask().is_AllStack();
1537

1538
    // Yeah, yeah, yeah, I know, I know.  I can refactor this
1539
    // to avoid the GOTO, although the refactored code will not
1540
    // be much clearer.  We arrive here IFF we have a stack-based
1541
    // live range that cannot color in the current chunk, and it
1542
    // has to move into the next free stack chunk.
1543
    int chunk = 0;              // Current chunk is first chunk
1544
    retry_next_chunk:
1545

1546
    // Remove neighbor colors
1547
    IndexSet *s = _ifg->neighbors(lidx);
1548
    debug_only(RegMask orig_mask = lrg->mask();)
1549

1550
    if (!s->is_empty()) {
1551
      IndexSetIterator elements(s);
1552
      uint neighbor;
1553
      while ((neighbor = elements.next()) != 0) {
1554
        // Note that neighbor might be a spill_reg.  In this case, exclusion
1555
        // of its color will be a no-op, since the spill_reg chunk is in outer
1556
        // space.  Also, if neighbor is in a different chunk, this exclusion
1557
        // will be a no-op.  (Later on, if lrg runs out of possible colors in
1558
        // its chunk, a new chunk of color may be tried, in which case
1559
        // examination of neighbors is started again, at retry_next_chunk.)
1560
        LRG &nlrg = lrgs(neighbor);
1561
        OptoReg::Name nreg = nlrg.reg();
1562
        // Only subtract masks in the same chunk
1563
        if (nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE) {
1564
#ifndef PRODUCT
1565
          uint size = lrg->mask().Size();
1566
          RegMask rm = lrg->mask();
1567
#endif
1568
          lrg->SUBTRACT(nlrg.mask());
1569
#ifndef PRODUCT
1570
          if (trace_spilling() && lrg->mask().Size() != size) {
1571
            ttyLocker ttyl;
1572
            tty->print("L%d ", lidx);
1573
            rm.dump();
1574
            tty->print(" intersected L%d ", neighbor);
1575
            nlrg.mask().dump();
1576
            tty->print(" removed ");
1577
            rm.SUBTRACT(lrg->mask());
1578
            rm.dump();
1579
            tty->print(" leaving ");
1580
            lrg->mask().dump();
1581
            tty->cr();
1582
          }
1583
#endif
1584
        }
1585
      }
1586
    }
1587
    //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1588
    // Aligned pairs need aligned masks
1589
    assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1590
    if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
1591
      lrg->clear_to_sets();
1592
    }
1593

1594
    // Check if a color is available and if so pick the color
1595
    OptoReg::Name reg = choose_color( *lrg, chunk );
1596

1597
    //---------------
1598
    // If we fail to color and the AllStack flag is set, trigger
1599
    // a chunk-rollover event
1600
    if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1601
      // Bump register mask up to next stack chunk
1602
      chunk += RegMask::CHUNK_SIZE;
1603
      lrg->Set_All();
1604
      goto retry_next_chunk;
1605
    }
1606

1607
    //---------------
1608
    // Did we get a color?
1609
    else if( OptoReg::is_valid(reg)) {
1610
#ifndef PRODUCT
1611
      RegMask avail_rm = lrg->mask();
1612
#endif
1613

1614
      // Record selected register
1615
      lrg->set_reg(reg);
1616

1617
      if( reg >= _max_reg )     // Compute max register limit
1618
        _max_reg = OptoReg::add(reg,1);
1619
      // Fold reg back into normal space
1620
      reg = OptoReg::add(reg,-chunk);
1621

1622
      // If the live range is not bound, then we actually had some choices
1623
      // to make.  In this case, the mask has more bits in it than the colors
1624
      // chosen.  Restrict the mask to just what was picked.
1625
      int n_regs = lrg->num_regs();
1626
      assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
1627
      if (n_regs == 1 || !lrg->_fat_proj) {
1628
        if (Matcher::supports_scalable_vector()) {
1629
          assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecA, "sanity");
1630
        } else {
1631
          assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity");
1632
        }
1633
        lrg->Clear();           // Clear the mask
1634
        lrg->Insert(reg);       // Set regmask to match selected reg
1635
        // For vectors and pairs, also insert the low bit of the pair
1636
        // We always choose the high bit, then mask the low bits by register size
1637
        if (lrg->is_scalable() && OptoReg::is_stack(lrg->reg())) { // stack
1638
          n_regs = lrg->scalable_reg_slots();
1639
        }
1640
        for (int i = 1; i < n_regs; i++) {
1641
          lrg->Insert(OptoReg::add(reg,-i));
1642
        }
1643
        lrg->set_mask_size(n_regs);
1644
      } else {                  // Else fatproj
1645
        // mask must be equal to fatproj bits, by definition
1646
      }
1647
#ifndef PRODUCT
1648
      if (trace_spilling()) {
1649
        ttyLocker ttyl;
1650
        tty->print("L%d selected ", lidx);
1651
        lrg->mask().dump();
1652
        tty->print(" from ");
1653
        avail_rm.dump();
1654
        tty->cr();
1655
      }
1656
#endif
1657
      // Note that reg is the highest-numbered register in the newly-bound mask.
1658
    } // end color available case
1659

1660
    //---------------
1661
    // Live range is live and no colors available
1662
    else {
1663
      assert( lrg->alive(), "" );
1664
      assert( !lrg->_fat_proj || lrg->is_multidef() ||
1665
              lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1666
      assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1667

1668
      // Assign the special spillreg register
1669
      lrg->set_reg(OptoReg::Name(spill_reg++));
1670
      // Do not empty the regmask; leave mask_size lying around
1671
      // for use during Spilling
1672
#ifndef PRODUCT
1673
      if( trace_spilling() ) {
1674
        ttyLocker ttyl;
1675
        tty->print("L%d spilling with neighbors: ", lidx);
1676
        s->dump();
1677
        debug_only(tty->print(" original mask: "));
1678
        debug_only(orig_mask.dump());
1679
        dump_lrg(lidx);
1680
      }
1681
#endif
1682
    } // end spill case
1683

1684
  }
1685

1686
  return spill_reg-LRG::SPILL_REG;      // Return number of spills
1687
}
1688

1689
// Set the 'spilled_once' or 'spilled_twice' flag on a node.
1690
void PhaseChaitin::set_was_spilled( Node *n ) {
1691
  if( _spilled_once.test_set(n->_idx) )
1692
    _spilled_twice.set(n->_idx);
1693
}
1694

1695
// Convert Ideal spill instructions into proper FramePtr + offset Loads and
1696
// Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1697
void PhaseChaitin::fixup_spills() {
1698
  // This function does only cisc spill work.
1699
  if( !UseCISCSpill ) return;
1700

1701
  Compile::TracePhase tp("fixupSpills", &timers[_t_fixupSpills]);
1702

1703
  // Grab the Frame Pointer
1704
  Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
1705

1706
  // For all blocks
1707
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1708
    Block* block = _cfg.get_block(i);
1709

1710
    // For all instructions in block
1711
    uint last_inst = block->end_idx();
1712
    for (uint j = 1; j <= last_inst; j++) {
1713
      Node* n = block->get_node(j);
1714

1715
      // Dead instruction???
1716
      assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1717
              C->top() == n ||  // Or the random TOP node
1718
              n->is_Proj(),     // Or a fat-proj kill node
1719
              "No dead instructions after post-alloc" );
1720

1721
      int inp = n->cisc_operand();
1722
      if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1723
        // Convert operand number to edge index number
1724
        MachNode *mach = n->as_Mach();
1725
        inp = mach->operand_index(inp);
1726
        Node *src = n->in(inp);   // Value to load or store
1727
        LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
1728
        OptoReg::Name src_reg = lrg_cisc.reg();
1729
        // Doubles record the HIGH register of an adjacent pair.
1730
        src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1731
        if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1732
          // This is a CISC Spill, get stack offset and construct new node
1733
#ifndef PRODUCT
1734
          if( TraceCISCSpill ) {
1735
            tty->print("    reg-instr:  ");
1736
            n->dump();
1737
          }
1738
#endif
1739
          int stk_offset = reg2offset(src_reg);
1740
          // Bailout if we might exceed node limit when spilling this instruction
1741
          C->check_node_count(0, "out of nodes fixing spills");
1742
          if (C->failing())  return;
1743
          // Transform node
1744
          MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach();
1745
          cisc->set_req(inp,fp);          // Base register is frame pointer
1746
          if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1747
            assert( cisc->oper_input_base() == 2, "Only adding one edge");
1748
            cisc->ins_req(1,src);         // Requires a memory edge
1749
          } else {
1750
            // There is no space reserved for a memory edge before the inputs for
1751
            // instructions which have "stackSlotX" parameter instead of "memory".
1752
            // For example, "MoveF2I_stack_reg". We always need a memory edge from
1753
            // src to cisc, else we might schedule cisc before src, loading from a
1754
            // spill location before storing the spill. On some platforms, we land
1755
            // in this else case because mach->oper_input_base() > 1, i.e. we have
1756
            // multiple inputs. In some rare cases there are even multiple memory
1757
            // operands, before and after spilling.
1758
            // (e.g. spilling "addFPR24_reg_mem" to "addFPR24_mem_cisc")
1759
            // In either case, there is no space in the inputs for the memory edge
1760
            // so we add an additional precedence / memory edge.
1761
            cisc->add_prec(src);
1762
          }
1763
          block->map_node(cisc, j);          // Insert into basic block
1764
          n->subsume_by(cisc, C); // Correct graph
1765
          //
1766
          ++_used_cisc_instructions;
1767
#ifndef PRODUCT
1768
          if( TraceCISCSpill ) {
1769
            tty->print("    cisc-instr: ");
1770
            cisc->dump();
1771
          }
1772
#endif
1773
        } else {
1774
#ifndef PRODUCT
1775
          if( TraceCISCSpill ) {
1776
            tty->print("    using reg-instr: ");
1777
            n->dump();
1778
          }
1779
#endif
1780
          ++_unused_cisc_instructions;    // input can be on stack
1781
        }
1782
      }
1783

1784
    } // End of for all instructions
1785

1786
  } // End of for all blocks
1787
}
1788

1789
// Helper to stretch above; recursively discover the base Node for a
1790
// given derived Node.  Easy for AddP-related machine nodes, but needs
1791
// to be recursive for derived Phis.
1792
Node* PhaseChaitin::find_base_for_derived(Node** derived_base_map, Node* derived, uint& maxlrg) {
1793
  // See if already computed; if so return it
1794
  if (derived_base_map[derived->_idx]) {
1795
    return derived_base_map[derived->_idx];
1796
  }
1797

1798
#ifdef ASSERT
1799
  if (derived->is_Mach() && derived->as_Mach()->ideal_Opcode() == Op_VerifyVectorAlignment) {
1800
    // Bypass the verification node
1801
    Node* base = find_base_for_derived(derived_base_map, derived->in(1), maxlrg);
1802
    derived_base_map[derived->_idx] = base;
1803
    return base;
1804
  }
1805
#endif
1806

1807
  // See if this happens to be a base.
1808
  // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1809
  // pointers derived from null!  These are always along paths that
1810
  // can't happen at run-time but the optimizer cannot deduce it so
1811
  // we have to handle it gracefully.
1812
  assert(!derived->bottom_type()->isa_narrowoop() ||
1813
          derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1814
  const TypePtr *tj = derived->bottom_type()->isa_ptr();
1815
  // If its an OOP with a non-zero offset, then it is derived.
1816
  if( tj == nullptr || tj->_offset == 0 ) {
1817
    derived_base_map[derived->_idx] = derived;
1818
    return derived;
1819
  }
1820
  // Derived is null+offset?  Base is null!
1821
  if( derived->is_Con() ) {
1822
    Node *base = _matcher.mach_null();
1823
    assert(base != nullptr, "sanity");
1824
    if (base->in(0) == nullptr) {
1825
      // Initialize it once and make it shared:
1826
      // set control to _root and place it into Start block
1827
      // (where top() node is placed).
1828
      base->init_req(0, _cfg.get_root_node());
1829
      Block *startb = _cfg.get_block_for_node(C->top());
1830
      uint node_pos = startb->find_node(C->top());
1831
      startb->insert_node(base, node_pos);
1832
      _cfg.map_node_to_block(base, startb);
1833
      assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
1834

1835
      // The loadConP0 might have projection nodes depending on architecture
1836
      // Add the projection nodes to the CFG
1837
      for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
1838
        Node* use = base->fast_out(i);
1839
        if (use->is_MachProj()) {
1840
          startb->insert_node(use, ++node_pos);
1841
          _cfg.map_node_to_block(use, startb);
1842
          new_lrg(use, maxlrg++);
1843
        }
1844
      }
1845
    }
1846
    if (_lrg_map.live_range_id(base) == 0) {
1847
      new_lrg(base, maxlrg++);
1848
    }
1849
    assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base null should be shared");
1850
    derived_base_map[derived->_idx] = base;
1851
    return base;
1852
  }
1853

1854
  // Check for AddP-related opcodes
1855
  if (!derived->is_Phi()) {
1856
    assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name());
1857
    Node *base = derived->in(AddPNode::Base);
1858
    derived_base_map[derived->_idx] = base;
1859
    return base;
1860
  }
1861

1862
  // Recursively find bases for Phis.
1863
  // First check to see if we can avoid a base Phi here.
1864
  Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1865
  uint i;
1866
  for( i = 2; i < derived->req(); i++ )
1867
    if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1868
      break;
1869
  // Went to the end without finding any different bases?
1870
  if( i == derived->req() ) {   // No need for a base Phi here
1871
    derived_base_map[derived->_idx] = base;
1872
    return base;
1873
  }
1874

1875
  // Now we see we need a base-Phi here to merge the bases
1876
  const Type *t = base->bottom_type();
1877
  base = new PhiNode( derived->in(0), t );
1878
  for( i = 1; i < derived->req(); i++ ) {
1879
    base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1880
    t = t->meet(base->in(i)->bottom_type());
1881
  }
1882
  base->as_Phi()->set_type(t);
1883

1884
  // Search the current block for an existing base-Phi
1885
  Block *b = _cfg.get_block_for_node(derived);
1886
  for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1887
    Node *phi = b->get_node(i);
1888
    if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1889
      b->insert_node(base,  i); // Must insert created Phi here as base
1890
      _cfg.map_node_to_block(base, b);
1891
      new_lrg(base,maxlrg++);
1892
      break;
1893
    }
1894
    // See if Phi matches.
1895
    uint j;
1896
    for( j = 1; j < base->req(); j++ )
1897
      if( phi->in(j) != base->in(j) &&
1898
          !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different nulls
1899
        break;
1900
    if( j == base->req() ) {    // All inputs match?
1901
      base = phi;               // Then use existing 'phi' and drop 'base'
1902
      break;
1903
    }
1904
  }
1905

1906

1907
  // Cache info for later passes
1908
  derived_base_map[derived->_idx] = base;
1909
  return base;
1910
}
1911

1912
// At each Safepoint, insert extra debug edges for each pair of derived value/
1913
// base pointer that is live across the Safepoint for oopmap building.  The
1914
// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1915
// required edge set.
1916
bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
1917
  int must_recompute_live = false;
1918
  uint maxlrg = _lrg_map.max_lrg_id();
1919
  Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1920
  memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1921

1922
  // For all blocks in RPO do...
1923
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
1924
    Block* block = _cfg.get_block(i);
1925
    // Note use of deep-copy constructor.  I cannot hammer the original
1926
    // liveout bits, because they are needed by the following coalesce pass.
1927
    IndexSet liveout(_live->live(block));
1928

1929
    for (uint j = block->end_idx() + 1; j > 1; j--) {
1930
      Node* n = block->get_node(j - 1);
1931

1932
      // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1933
      // like to see in the same register.  Compare uses the loop-phi and so
1934
      // extends its live range BUT cannot be part of the cycle.  If this
1935
      // extended live range overlaps with the update of the loop-phi value
1936
      // we need both alive at the same time -- which requires at least 1
1937
      // copy.  But because Intel has only 2-address registers we end up with
1938
      // at least 2 copies, one before the loop-phi update instruction and
1939
      // one after.  Instead we split the input to the compare just after the
1940
      // phi.
1941
      if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1942
        Node *phi = n->in(1);
1943
        if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1944
          Block *phi_block = _cfg.get_block_for_node(phi);
1945
          if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
1946
            const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1947
            Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask);
1948
            insert_proj( phi_block, 1, spill, maxlrg++ );
1949
            n->set_req(1,spill);
1950
            must_recompute_live = true;
1951
          }
1952
        }
1953
      }
1954

1955
      // Get value being defined
1956
      uint lidx = _lrg_map.live_range_id(n);
1957
      // Ignore the occasional brand-new live range
1958
      if (lidx && lidx < _lrg_map.max_lrg_id()) {
1959
        // Remove from live-out set
1960
        liveout.remove(lidx);
1961

1962
        // Copies do not define a new value and so do not interfere.
1963
        // Remove the copies source from the liveout set before interfering.
1964
        uint idx = n->is_Copy();
1965
        if (idx) {
1966
          liveout.remove(_lrg_map.live_range_id(n->in(idx)));
1967
        }
1968
      }
1969

1970
      // Found a safepoint?
1971
      JVMState *jvms = n->jvms();
1972
      if (jvms && !liveout.is_empty()) {
1973
        // Now scan for a live derived pointer
1974
        IndexSetIterator elements(&liveout);
1975
        uint neighbor;
1976
        while ((neighbor = elements.next()) != 0) {
1977
          // Find reaching DEF for base and derived values
1978
          // This works because we are still in SSA during this call.
1979
          Node *derived = lrgs(neighbor)._def;
1980
          const TypePtr *tj = derived->bottom_type()->isa_ptr();
1981
          assert(!derived->bottom_type()->isa_narrowoop() ||
1982
                  derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
1983
          // If its an OOP with a non-zero offset, then it is derived.
1984
          if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1985
            Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
1986
            assert(base->_idx < _lrg_map.size(), "");
1987
            // Add reaching DEFs of derived pointer and base pointer as a
1988
            // pair of inputs
1989
            n->add_req(derived);
1990
            n->add_req(base);
1991

1992
            // See if the base pointer is already live to this point.
1993
            // Since I'm working on the SSA form, live-ness amounts to
1994
            // reaching def's.  So if I find the base's live range then
1995
            // I know the base's def reaches here.
1996
            if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
1997
                 !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
1998
                 (_lrg_map.live_range_id(base) > 0) && // not a constant
1999
                 _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
2000
              // Base pointer is not currently live.  Since I stretched
2001
              // the base pointer to here and it crosses basic-block
2002
              // boundaries, the global live info is now incorrect.
2003
              // Recompute live.
2004
              must_recompute_live = true;
2005
            } // End of if base pointer is not live to debug info
2006
          }
2007
        } // End of scan all live data for derived ptrs crossing GC point
2008
      } // End of if found a GC point
2009

2010
      // Make all inputs live
2011
      if (!n->is_Phi()) {      // Phi function uses come from prior block
2012
        for (uint k = 1; k < n->req(); k++) {
2013
          uint lidx = _lrg_map.live_range_id(n->in(k));
2014
          if (lidx < _lrg_map.max_lrg_id()) {
2015
            liveout.insert(lidx);
2016
          }
2017
        }
2018
      }
2019

2020
    } // End of forall instructions in block
2021
    liveout.clear();  // Free the memory used by liveout.
2022

2023
  } // End of forall blocks
2024
  _lrg_map.set_max_lrg_id(maxlrg);
2025

2026
  // If I created a new live range I need to recompute live
2027
  if (maxlrg != _ifg->_maxlrg) {
2028
    must_recompute_live = true;
2029
  }
2030

2031
  return must_recompute_live != 0;
2032
}
2033

2034
// Extend the node to LRG mapping
2035

2036
void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
2037
  _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
2038
}
2039

2040
#ifndef PRODUCT
2041
void PhaseChaitin::dump(const Node* n) const {
2042
  uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
2043
  tty->print("L%d",r);
2044
  if (r && n->Opcode() != Op_Phi) {
2045
    if( _node_regs ) {          // Got a post-allocation copy of allocation?
2046
      tty->print("[");
2047
      OptoReg::Name second = get_reg_second(n);
2048
      if( OptoReg::is_valid(second) ) {
2049
        if( OptoReg::is_reg(second) )
2050
          tty->print("%s:",Matcher::regName[second]);
2051
        else
2052
          tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
2053
      }
2054
      OptoReg::Name first = get_reg_first(n);
2055
      if( OptoReg::is_reg(first) )
2056
        tty->print("%s]",Matcher::regName[first]);
2057
      else
2058
         tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
2059
    } else
2060
    n->out_RegMask().dump();
2061
  }
2062
  tty->print("/N%d\t",n->_idx);
2063
  tty->print("%s === ", n->Name());
2064
  uint k;
2065
  for (k = 0; k < n->req(); k++) {
2066
    Node *m = n->in(k);
2067
    if (!m) {
2068
      tty->print("_ ");
2069
    }
2070
    else {
2071
      uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2072
      tty->print("L%d",r);
2073
      // Data MultiNode's can have projections with no real registers.
2074
      // Don't die while dumping them.
2075
      int op = n->Opcode();
2076
      if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
2077
        if( _node_regs ) {
2078
          tty->print("[");
2079
          OptoReg::Name second = get_reg_second(n->in(k));
2080
          if( OptoReg::is_valid(second) ) {
2081
            if( OptoReg::is_reg(second) )
2082
              tty->print("%s:",Matcher::regName[second]);
2083
            else
2084
              tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
2085
                         reg2offset_unchecked(second));
2086
          }
2087
          OptoReg::Name first = get_reg_first(n->in(k));
2088
          if( OptoReg::is_reg(first) )
2089
            tty->print("%s]",Matcher::regName[first]);
2090
          else
2091
            tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
2092
                       reg2offset_unchecked(first));
2093
        } else
2094
          n->in_RegMask(k).dump();
2095
      }
2096
      tty->print("/N%d ",m->_idx);
2097
    }
2098
  }
2099
  if( k < n->len() && n->in(k) ) tty->print("| ");
2100
  for( ; k < n->len(); k++ ) {
2101
    Node *m = n->in(k);
2102
    if(!m) {
2103
      break;
2104
    }
2105
    uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
2106
    tty->print("L%d",r);
2107
    tty->print("/N%d ",m->_idx);
2108
  }
2109
  if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
2110
  else n->dump_spec(tty);
2111
  if( _spilled_once.test(n->_idx ) ) {
2112
    tty->print(" Spill_1");
2113
    if( _spilled_twice.test(n->_idx ) )
2114
      tty->print(" Spill_2");
2115
  }
2116
  tty->print("\n");
2117
}
2118

2119
void PhaseChaitin::dump(const Block* b) const {
2120
  b->dump_head(&_cfg);
2121

2122
  // For all instructions
2123
  for( uint j = 0; j < b->number_of_nodes(); j++ )
2124
    dump(b->get_node(j));
2125
  // Print live-out info at end of block
2126
  if( _live ) {
2127
    tty->print("Liveout: ");
2128
    IndexSet *live = _live->live(b);
2129
    IndexSetIterator elements(live);
2130
    tty->print("{");
2131
    uint i;
2132
    while ((i = elements.next()) != 0) {
2133
      tty->print("L%d ", _lrg_map.find_const(i));
2134
    }
2135
    tty->print_cr("}");
2136
  }
2137
  tty->print("\n");
2138
}
2139

2140
void PhaseChaitin::dump() const {
2141
  tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
2142
              _matcher._new_SP, _framesize );
2143

2144
  // For all blocks
2145
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2146
    dump(_cfg.get_block(i));
2147
  }
2148
  // End of per-block dump
2149
  tty->print("\n");
2150

2151
  if (!_ifg) {
2152
    tty->print("(No IFG.)\n");
2153
    return;
2154
  }
2155

2156
  // Dump LRG array
2157
  tty->print("--- Live RanGe Array ---\n");
2158
  for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
2159
    tty->print("L%d: ",i2);
2160
    if (i2 < _ifg->_maxlrg) {
2161
      lrgs(i2).dump();
2162
    }
2163
    else {
2164
      tty->print_cr("new LRG");
2165
    }
2166
  }
2167
  tty->cr();
2168

2169
  // Dump lo-degree list
2170
  tty->print("Lo degree: ");
2171
  for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
2172
    tty->print("L%d ",i3);
2173
  tty->cr();
2174

2175
  // Dump lo-stk-degree list
2176
  tty->print("Lo stk degree: ");
2177
  for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
2178
    tty->print("L%d ",i4);
2179
  tty->cr();
2180

2181
  // Dump lo-degree list
2182
  tty->print("Hi degree: ");
2183
  for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
2184
    tty->print("L%d ",i5);
2185
  tty->cr();
2186
}
2187

2188
void PhaseChaitin::dump_degree_lists() const {
2189
  // Dump lo-degree list
2190
  tty->print("Lo degree: ");
2191
  for( uint i = _lo_degree; i; i = lrgs(i)._next )
2192
    tty->print("L%d ",i);
2193
  tty->cr();
2194

2195
  // Dump lo-stk-degree list
2196
  tty->print("Lo stk degree: ");
2197
  for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
2198
    tty->print("L%d ",i2);
2199
  tty->cr();
2200

2201
  // Dump lo-degree list
2202
  tty->print("Hi degree: ");
2203
  for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
2204
    tty->print("L%d ",i3);
2205
  tty->cr();
2206
}
2207

2208
void PhaseChaitin::dump_simplified() const {
2209
  tty->print("Simplified: ");
2210
  for( uint i = _simplified; i; i = lrgs(i)._next )
2211
    tty->print("L%d ",i);
2212
  tty->cr();
2213
}
2214

2215
static char *print_reg(OptoReg::Name reg, const PhaseChaitin* pc, char* buf, size_t buf_size) {
2216
  if ((int)reg < 0)
2217
    os::snprintf_checked(buf, buf_size, "<OptoReg::%d>", (int)reg);
2218
  else if (OptoReg::is_reg(reg))
2219
    strcpy(buf, Matcher::regName[reg]);
2220
  else
2221
    os::snprintf_checked(buf, buf_size, "%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
2222
            pc->reg2offset(reg));
2223
  return buf+strlen(buf);
2224
}
2225

2226
// Dump a register name into a buffer.  Be intelligent if we get called
2227
// before allocation is complete.
2228
char *PhaseChaitin::dump_register(const Node* n, char* buf, size_t buf_size) const {
2229
  if( _node_regs ) {
2230
    // Post allocation, use direct mappings, no LRG info available
2231
    print_reg( get_reg_first(n), this, buf, buf_size);
2232
  } else {
2233
    uint lidx = _lrg_map.find_const(n); // Grab LRG number
2234
    if( !_ifg ) {
2235
      os::snprintf_checked(buf, buf_size, "L%d",lidx);  // No register binding yet
2236
    } else if( !lidx ) {        // Special, not allocated value
2237
      strcpy(buf,"Special");
2238
    } else {
2239
      if (lrgs(lidx)._is_vector) {
2240
        if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
2241
          print_reg( lrgs(lidx).reg(), this, buf, buf_size); // a bound machine register
2242
        else
2243
          os::snprintf_checked(buf, buf_size, "L%d",lidx); // No register binding yet
2244
      } else if( (lrgs(lidx).num_regs() == 1)
2245
                 ? lrgs(lidx).mask().is_bound1()
2246
                 : lrgs(lidx).mask().is_bound_pair() ) {
2247
        // Hah!  We have a bound machine register
2248
        print_reg( lrgs(lidx).reg(), this, buf, buf_size);
2249
      } else {
2250
        os::snprintf_checked(buf, buf_size, "L%d",lidx); // No register binding yet
2251
      }
2252
    }
2253
  }
2254
  return buf+strlen(buf);
2255
}
2256

2257
void PhaseChaitin::dump_for_spill_split_recycle() const {
2258
  if( WizardMode && (PrintCompilation || PrintOpto) ) {
2259
    // Display which live ranges need to be split and the allocator's state
2260
    tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
2261
    for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
2262
      if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
2263
        tty->print("L%d: ", bidx);
2264
        lrgs(bidx).dump();
2265
      }
2266
    }
2267
    tty->cr();
2268
    dump();
2269
  }
2270
}
2271

2272
void PhaseChaitin::dump_frame() const {
2273
  const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
2274
  const TypeTuple *domain = C->tf()->domain();
2275
  const int        argcnt = domain->cnt() - TypeFunc::Parms;
2276

2277
  // Incoming arguments in registers dump
2278
  for( int k = 0; k < argcnt; k++ ) {
2279
    OptoReg::Name parmreg = _matcher._parm_regs[k].first();
2280
    if( OptoReg::is_reg(parmreg))  {
2281
      const char *reg_name = OptoReg::regname(parmreg);
2282
      tty->print("#r%3.3d %s", parmreg, reg_name);
2283
      parmreg = _matcher._parm_regs[k].second();
2284
      if( OptoReg::is_reg(parmreg))  {
2285
        tty->print(":%s", OptoReg::regname(parmreg));
2286
      }
2287
      tty->print("   : parm %d: ", k);
2288
      domain->field_at(k + TypeFunc::Parms)->dump();
2289
      tty->cr();
2290
    }
2291
  }
2292

2293
  // Check for un-owned padding above incoming args
2294
  OptoReg::Name reg = _matcher._new_SP;
2295
  if( reg > _matcher._in_arg_limit ) {
2296
    reg = OptoReg::add(reg, -1);
2297
    tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
2298
  }
2299

2300
  // Incoming argument area dump
2301
  OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
2302
  while( reg > begin_in_arg ) {
2303
    reg = OptoReg::add(reg, -1);
2304
    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2305
    int j;
2306
    for( j = 0; j < argcnt; j++) {
2307
      if( _matcher._parm_regs[j].first() == reg ||
2308
          _matcher._parm_regs[j].second() == reg ) {
2309
        tty->print("parm %d: ",j);
2310
        domain->field_at(j + TypeFunc::Parms)->dump();
2311
        tty->cr();
2312
        break;
2313
      }
2314
    }
2315
    if( j >= argcnt )
2316
      tty->print_cr("HOLE, owned by SELF");
2317
  }
2318

2319
  // Old outgoing preserve area
2320
  while( reg > _matcher._old_SP ) {
2321
    reg = OptoReg::add(reg, -1);
2322
    tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
2323
  }
2324

2325
  // Old SP
2326
  tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
2327
    reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
2328

2329
  // Preserve area dump
2330
  int fixed_slots = C->fixed_slots();
2331
  OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
2332
  OptoReg::Name return_addr = _matcher.return_addr();
2333

2334
  reg = OptoReg::add(reg, -1);
2335
  while (OptoReg::is_stack(reg)) {
2336
    tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
2337
    if (return_addr == reg) {
2338
      tty->print_cr("return address");
2339
    } else if (reg >= begin_in_preserve) {
2340
      // Preserved slots are present on x86
2341
      if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
2342
        tty->print_cr("saved fp register");
2343
      else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
2344
               VerifyStackAtCalls)
2345
        tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
2346
      else
2347
        tty->print_cr("in_preserve");
2348
    } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
2349
      tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
2350
    } else {
2351
      tty->print_cr("pad2, stack alignment");
2352
    }
2353
    reg = OptoReg::add(reg, -1);
2354
  }
2355

2356
  // Spill area dump
2357
  reg = OptoReg::add(_matcher._new_SP, _framesize );
2358
  while( reg > _matcher._out_arg_limit ) {
2359
    reg = OptoReg::add(reg, -1);
2360
    tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
2361
  }
2362

2363
  // Outgoing argument area dump
2364
  while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
2365
    reg = OptoReg::add(reg, -1);
2366
    tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
2367
  }
2368

2369
  // Outgoing new preserve area
2370
  while( reg > _matcher._new_SP ) {
2371
    reg = OptoReg::add(reg, -1);
2372
    tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
2373
  }
2374
  tty->print_cr("#");
2375
}
2376

2377
void PhaseChaitin::dump_bb(uint pre_order) const {
2378
  tty->print_cr("---dump of B%d---",pre_order);
2379
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2380
    Block* block = _cfg.get_block(i);
2381
    if (block->_pre_order == pre_order) {
2382
      dump(block);
2383
    }
2384
  }
2385
}
2386

2387
void PhaseChaitin::dump_lrg(uint lidx, bool defs_only) const {
2388
  tty->print_cr("---dump of L%d---",lidx);
2389

2390
  if (_ifg) {
2391
    if (lidx >= _lrg_map.max_lrg_id()) {
2392
      tty->print("Attempt to print live range index beyond max live range.\n");
2393
      return;
2394
    }
2395
    tty->print("L%d: ",lidx);
2396
    if (lidx < _ifg->_maxlrg) {
2397
      lrgs(lidx).dump();
2398
    } else {
2399
      tty->print_cr("new LRG");
2400
    }
2401
  }
2402
  if( _ifg && lidx < _ifg->_maxlrg) {
2403
    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
2404
    _ifg->neighbors(lidx)->dump();
2405
    tty->cr();
2406
  }
2407
  // For all blocks
2408
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2409
    Block* block = _cfg.get_block(i);
2410
    int dump_once = 0;
2411

2412
    // For all instructions
2413
    for( uint j = 0; j < block->number_of_nodes(); j++ ) {
2414
      Node *n = block->get_node(j);
2415
      if (_lrg_map.find_const(n) == lidx) {
2416
        if (!dump_once++) {
2417
          tty->cr();
2418
          block->dump_head(&_cfg);
2419
        }
2420
        dump(n);
2421
        continue;
2422
      }
2423
      if (!defs_only) {
2424
        uint cnt = n->req();
2425
        for( uint k = 1; k < cnt; k++ ) {
2426
          Node *m = n->in(k);
2427
          if (!m)  {
2428
            continue;  // be robust in the dumper
2429
          }
2430
          if (_lrg_map.find_const(m) == lidx) {
2431
            if (!dump_once++) {
2432
              tty->cr();
2433
              block->dump_head(&_cfg);
2434
            }
2435
            dump(n);
2436
          }
2437
        }
2438
      }
2439
    }
2440
  } // End of per-block dump
2441
  tty->cr();
2442
}
2443
#endif // not PRODUCT
2444

2445
#ifdef ASSERT
2446
// Verify that base pointers and derived pointers are still sane.
2447
void PhaseChaitin::verify_base_ptrs(ResourceArea* a) const {
2448
  Unique_Node_List worklist(a);
2449
  for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
2450
    Block* block = _cfg.get_block(i);
2451
    for (uint j = block->end_idx() + 1; j > 1; j--) {
2452
      Node* n = block->get_node(j-1);
2453
      if (n->is_Phi()) {
2454
        break;
2455
      }
2456
      // Found a safepoint?
2457
      if (n->is_MachSafePoint()) {
2458
        MachSafePointNode* sfpt = n->as_MachSafePoint();
2459
        JVMState* jvms = sfpt->jvms();
2460
        if (jvms != nullptr) {
2461
          // Now scan for a live derived pointer
2462
          if (jvms->oopoff() < sfpt->req()) {
2463
            // Check each derived/base pair
2464
            for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) {
2465
              Node* check = sfpt->in(idx);
2466
              bool is_derived = ((idx - jvms->oopoff()) & 1) == 0;
2467
              // search upwards through spills and spill phis for AddP
2468
              worklist.clear();
2469
              worklist.push(check);
2470
              uint k = 0;
2471
              while (k < worklist.size()) {
2472
                check = worklist.at(k);
2473
                assert(check, "Bad base or derived pointer");
2474
                // See PhaseChaitin::find_base_for_derived() for all cases.
2475
                int isc = check->is_Copy();
2476
                if (isc) {
2477
                  worklist.push(check->in(isc));
2478
                } else if (check->is_Phi()) {
2479
                  for (uint m = 1; m < check->req(); m++) {
2480
                    worklist.push(check->in(m));
2481
                  }
2482
                } else if (check->is_Con()) {
2483
                  if (is_derived && check->bottom_type()->is_ptr()->_offset != 0) {
2484
                    // Derived is null+non-zero offset, base must be null.
2485
                    assert(check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad derived pointer");
2486
                  } else {
2487
                    assert(check->bottom_type()->is_ptr()->_offset == 0, "Bad base pointer");
2488
                    // Base either ConP(nullptr) or loadConP
2489
                    if (check->is_Mach()) {
2490
                      assert(check->as_Mach()->ideal_Opcode() == Op_ConP, "Bad base pointer");
2491
                    } else {
2492
                      assert(check->Opcode() == Op_ConP &&
2493
                             check->bottom_type()->is_ptr()->ptr() == TypePtr::Null, "Bad base pointer");
2494
                    }
2495
                  }
2496
                } else if (check->bottom_type()->is_ptr()->_offset == 0) {
2497
                  if (check->is_Proj() || (check->is_Mach() &&
2498
                     (check->as_Mach()->ideal_Opcode() == Op_CreateEx ||
2499
                      check->as_Mach()->ideal_Opcode() == Op_ThreadLocal ||
2500
                      check->as_Mach()->ideal_Opcode() == Op_CMoveP ||
2501
                      check->as_Mach()->ideal_Opcode() == Op_CheckCastPP ||
2502
#ifdef _LP64
2503
                      (UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP) ||
2504
                      (UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN) ||
2505
                      (UseCompressedClassPointers && check->as_Mach()->ideal_Opcode() == Op_DecodeNKlass) ||
2506
#endif // _LP64
2507
                      check->as_Mach()->ideal_Opcode() == Op_LoadP ||
2508
                      check->as_Mach()->ideal_Opcode() == Op_LoadKlass))) {
2509
                    // Valid nodes
2510
                  } else {
2511
                    check->dump();
2512
                    assert(false, "Bad base or derived pointer");
2513
                  }
2514
                } else {
2515
                  assert(is_derived, "Bad base pointer");
2516
                  assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP, "Bad derived pointer");
2517
                }
2518
                k++;
2519
                assert(k < 100000, "Derived pointer checking in infinite loop");
2520
              } // End while
2521
            }
2522
          } // End of check for derived pointers
2523
        } // End of Kcheck for debug info
2524
      } // End of if found a safepoint
2525
    } // End of forall instructions in block
2526
  } // End of forall blocks
2527
}
2528

2529
// Verify that graphs and base pointers are still sane.
2530
void PhaseChaitin::verify(ResourceArea* a, bool verify_ifg) const {
2531
  if (VerifyRegisterAllocator) {
2532
    _cfg.verify();
2533
    verify_base_ptrs(a);
2534
    if (verify_ifg) {
2535
      _ifg->verify(this);
2536
    }
2537
  }
2538
}
2539
#endif // ASSERT
2540

2541
int PhaseChaitin::_final_loads  = 0;
2542
int PhaseChaitin::_final_stores = 0;
2543
int PhaseChaitin::_final_memoves= 0;
2544
int PhaseChaitin::_final_copies = 0;
2545
double PhaseChaitin::_final_load_cost  = 0;
2546
double PhaseChaitin::_final_store_cost = 0;
2547
double PhaseChaitin::_final_memove_cost= 0;
2548
double PhaseChaitin::_final_copy_cost  = 0;
2549
int PhaseChaitin::_conserv_coalesce = 0;
2550
int PhaseChaitin::_conserv_coalesce_pair = 0;
2551
int PhaseChaitin::_conserv_coalesce_trie = 0;
2552
int PhaseChaitin::_conserv_coalesce_quad = 0;
2553
int PhaseChaitin::_post_alloc = 0;
2554
int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2555
int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2556
int PhaseChaitin::_used_cisc_instructions   = 0;
2557
int PhaseChaitin::_unused_cisc_instructions = 0;
2558
int PhaseChaitin::_allocator_attempts       = 0;
2559
int PhaseChaitin::_allocator_successes      = 0;
2560

2561
#ifndef PRODUCT
2562
uint PhaseChaitin::_high_pressure           = 0;
2563
uint PhaseChaitin::_low_pressure            = 0;
2564

2565
void PhaseChaitin::print_chaitin_statistics() {
2566
  tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2567
  tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2568
  tty->print_cr("Adjusted spill cost = %7.0f.",
2569
                _final_load_cost*4.0 + _final_store_cost  * 2.0 +
2570
                _final_copy_cost*1.0 + _final_memove_cost*12.0);
2571
  tty->print("Conservatively coalesced %d copies, %d pairs",
2572
                _conserv_coalesce, _conserv_coalesce_pair);
2573
  if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2574
    tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2575
  tty->print_cr(", %d post alloc.", _post_alloc);
2576
  if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2577
    tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2578
                  _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2579
  if( _used_cisc_instructions || _unused_cisc_instructions )
2580
    tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2581
                   _used_cisc_instructions, _unused_cisc_instructions);
2582
  if( _allocator_successes != 0 )
2583
    tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2584
  tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2585
}
2586
#endif // not PRODUCT
2587

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.