jdk

Форк
0
/
callnode.cpp 
2303 строки · 79.2 Кб
1
/*
2
 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
 *
5
 * This code is free software; you can redistribute it and/or modify it
6
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.
8
 *
9
 * This code is distributed in the hope that it will be useful, but WITHOUT
10
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12
 * version 2 for more details (a copy is included in the LICENSE file that
13
 * accompanied this code).
14
 *
15
 * You should have received a copy of the GNU General Public License version
16
 * 2 along with this work; if not, write to the Free Software Foundation,
17
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
 *
19
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
 * or visit www.oracle.com if you need additional information or have any
21
 * questions.
22
 *
23
 */
24

25
#include "precompiled.hpp"
26
#include "compiler/compileLog.hpp"
27
#include "ci/bcEscapeAnalyzer.hpp"
28
#include "compiler/oopMap.hpp"
29
#include "gc/shared/barrierSet.hpp"
30
#include "gc/shared/c2/barrierSetC2.hpp"
31
#include "interpreter/interpreter.hpp"
32
#include "opto/callGenerator.hpp"
33
#include "opto/callnode.hpp"
34
#include "opto/castnode.hpp"
35
#include "opto/convertnode.hpp"
36
#include "opto/escape.hpp"
37
#include "opto/locknode.hpp"
38
#include "opto/machnode.hpp"
39
#include "opto/matcher.hpp"
40
#include "opto/parse.hpp"
41
#include "opto/regalloc.hpp"
42
#include "opto/regmask.hpp"
43
#include "opto/rootnode.hpp"
44
#include "opto/runtime.hpp"
45
#include "runtime/sharedRuntime.hpp"
46
#include "utilities/powerOfTwo.hpp"
47
#include "code/vmreg.hpp"
48

49
// Portions of code courtesy of Clifford Click
50

51
// Optimization - Graph Style
52

53
//=============================================================================
54
uint StartNode::size_of() const { return sizeof(*this); }
55
bool StartNode::cmp( const Node &n ) const
56
{ return _domain == ((StartNode&)n)._domain; }
57
const Type *StartNode::bottom_type() const { return _domain; }
58
const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
59
#ifndef PRODUCT
60
void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
61
void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
62
#endif
63

64
//------------------------------Ideal------------------------------------------
65
Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
66
  return remove_dead_region(phase, can_reshape) ? this : nullptr;
67
}
68

69
//------------------------------calling_convention-----------------------------
70
void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
71
  SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
72
}
73

74
//------------------------------Registers--------------------------------------
75
const RegMask &StartNode::in_RegMask(uint) const {
76
  return RegMask::Empty;
77
}
78

79
//------------------------------match------------------------------------------
80
// Construct projections for incoming parameters, and their RegMask info
81
Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
82
  switch (proj->_con) {
83
  case TypeFunc::Control:
84
  case TypeFunc::I_O:
85
  case TypeFunc::Memory:
86
    return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
87
  case TypeFunc::FramePtr:
88
    return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
89
  case TypeFunc::ReturnAdr:
90
    return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
91
  case TypeFunc::Parms:
92
  default: {
93
      uint parm_num = proj->_con - TypeFunc::Parms;
94
      const Type *t = _domain->field_at(proj->_con);
95
      if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
96
        return new ConNode(Type::TOP);
97
      uint ideal_reg = t->ideal_reg();
98
      RegMask &rm = match->_calling_convention_mask[parm_num];
99
      return new MachProjNode(this,proj->_con,rm,ideal_reg);
100
    }
101
  }
102
  return nullptr;
103
}
104

105
//------------------------------StartOSRNode----------------------------------
106
// The method start node for an on stack replacement adapter
107

108
//------------------------------osr_domain-----------------------------
109
const TypeTuple *StartOSRNode::osr_domain() {
110
  const Type **fields = TypeTuple::fields(2);
111
  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
112

113
  return TypeTuple::make(TypeFunc::Parms+1, fields);
114
}
115

116
//=============================================================================
117
const char * const ParmNode::names[TypeFunc::Parms+1] = {
118
  "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
119
};
120

121
#ifndef PRODUCT
122
void ParmNode::dump_spec(outputStream *st) const {
123
  if( _con < TypeFunc::Parms ) {
124
    st->print("%s", names[_con]);
125
  } else {
126
    st->print("Parm%d: ",_con-TypeFunc::Parms);
127
    // Verbose and WizardMode dump bottom_type for all nodes
128
    if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
129
  }
130
}
131

132
void ParmNode::dump_compact_spec(outputStream *st) const {
133
  if (_con < TypeFunc::Parms) {
134
    st->print("%s", names[_con]);
135
  } else {
136
    st->print("%d:", _con-TypeFunc::Parms);
137
    // unconditionally dump bottom_type
138
    bottom_type()->dump_on(st);
139
  }
140
}
141
#endif
142

143
uint ParmNode::ideal_reg() const {
144
  switch( _con ) {
145
  case TypeFunc::Control  : // fall through
146
  case TypeFunc::I_O      : // fall through
147
  case TypeFunc::Memory   : return 0;
148
  case TypeFunc::FramePtr : // fall through
149
  case TypeFunc::ReturnAdr: return Op_RegP;
150
  default                 : assert( _con > TypeFunc::Parms, "" );
151
    // fall through
152
  case TypeFunc::Parms    : {
153
    // Type of argument being passed
154
    const Type *t = in(0)->as_Start()->_domain->field_at(_con);
155
    return t->ideal_reg();
156
  }
157
  }
158
  ShouldNotReachHere();
159
  return 0;
160
}
161

162
//=============================================================================
163
ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
164
  init_req(TypeFunc::Control,cntrl);
165
  init_req(TypeFunc::I_O,i_o);
166
  init_req(TypeFunc::Memory,memory);
167
  init_req(TypeFunc::FramePtr,frameptr);
168
  init_req(TypeFunc::ReturnAdr,retadr);
169
}
170

171
Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
172
  return remove_dead_region(phase, can_reshape) ? this : nullptr;
173
}
174

175
const Type* ReturnNode::Value(PhaseGVN* phase) const {
176
  return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
177
    ? Type::TOP
178
    : Type::BOTTOM;
179
}
180

181
// Do we Match on this edge index or not?  No edges on return nodes
182
uint ReturnNode::match_edge(uint idx) const {
183
  return 0;
184
}
185

186

187
#ifndef PRODUCT
188
void ReturnNode::dump_req(outputStream *st, DumpConfig* dc) const {
189
  // Dump the required inputs, after printing "returns"
190
  uint i;                       // Exit value of loop
191
  for (i = 0; i < req(); i++) {    // For all required inputs
192
    if (i == TypeFunc::Parms) st->print("returns ");
193
    Node* p = in(i);
194
    if (p != nullptr) {
195
      p->dump_idx(false, st, dc);
196
      st->print(" ");
197
    } else {
198
      st->print("_ ");
199
    }
200
  }
201
}
202
#endif
203

204
//=============================================================================
205
RethrowNode::RethrowNode(
206
  Node* cntrl,
207
  Node* i_o,
208
  Node* memory,
209
  Node* frameptr,
210
  Node* ret_adr,
211
  Node* exception
212
) : Node(TypeFunc::Parms + 1) {
213
  init_req(TypeFunc::Control  , cntrl    );
214
  init_req(TypeFunc::I_O      , i_o      );
215
  init_req(TypeFunc::Memory   , memory   );
216
  init_req(TypeFunc::FramePtr , frameptr );
217
  init_req(TypeFunc::ReturnAdr, ret_adr);
218
  init_req(TypeFunc::Parms    , exception);
219
}
220

221
Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
222
  return remove_dead_region(phase, can_reshape) ? this : nullptr;
223
}
224

225
const Type* RethrowNode::Value(PhaseGVN* phase) const {
226
  return (phase->type(in(TypeFunc::Control)) == Type::TOP)
227
    ? Type::TOP
228
    : Type::BOTTOM;
229
}
230

231
uint RethrowNode::match_edge(uint idx) const {
232
  return 0;
233
}
234

235
#ifndef PRODUCT
236
void RethrowNode::dump_req(outputStream *st, DumpConfig* dc) const {
237
  // Dump the required inputs, after printing "exception"
238
  uint i;                       // Exit value of loop
239
  for (i = 0; i < req(); i++) {    // For all required inputs
240
    if (i == TypeFunc::Parms) st->print("exception ");
241
    Node* p = in(i);
242
    if (p != nullptr) {
243
      p->dump_idx(false, st, dc);
244
      st->print(" ");
245
    } else {
246
      st->print("_ ");
247
    }
248
  }
249
}
250
#endif
251

252
//=============================================================================
253
// Do we Match on this edge index or not?  Match only target address & method
254
uint TailCallNode::match_edge(uint idx) const {
255
  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
256
}
257

258
//=============================================================================
259
// Do we Match on this edge index or not?  Match only target address & oop
260
uint TailJumpNode::match_edge(uint idx) const {
261
  return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
262
}
263

264
//=============================================================================
265
JVMState::JVMState(ciMethod* method, JVMState* caller) :
266
  _method(method) {
267
  assert(method != nullptr, "must be valid call site");
268
  _bci = InvocationEntryBci;
269
  _reexecute = Reexecute_Undefined;
270
  debug_only(_bci = -99);  // random garbage value
271
  debug_only(_map = (SafePointNode*)-1);
272
  _caller = caller;
273
  _depth  = 1 + (caller == nullptr ? 0 : caller->depth());
274
  _locoff = TypeFunc::Parms;
275
  _stkoff = _locoff + _method->max_locals();
276
  _monoff = _stkoff + _method->max_stack();
277
  _scloff = _monoff;
278
  _endoff = _monoff;
279
  _sp = 0;
280
}
281
JVMState::JVMState(int stack_size) :
282
  _method(nullptr) {
283
  _bci = InvocationEntryBci;
284
  _reexecute = Reexecute_Undefined;
285
  debug_only(_map = (SafePointNode*)-1);
286
  _caller = nullptr;
287
  _depth  = 1;
288
  _locoff = TypeFunc::Parms;
289
  _stkoff = _locoff;
290
  _monoff = _stkoff + stack_size;
291
  _scloff = _monoff;
292
  _endoff = _monoff;
293
  _sp = 0;
294
}
295

296
//--------------------------------of_depth-------------------------------------
297
JVMState* JVMState::of_depth(int d) const {
298
  const JVMState* jvmp = this;
299
  assert(0 < d && (uint)d <= depth(), "oob");
300
  for (int skip = depth() - d; skip > 0; skip--) {
301
    jvmp = jvmp->caller();
302
  }
303
  assert(jvmp->depth() == (uint)d, "found the right one");
304
  return (JVMState*)jvmp;
305
}
306

307
//-----------------------------same_calls_as-----------------------------------
308
bool JVMState::same_calls_as(const JVMState* that) const {
309
  if (this == that)                    return true;
310
  if (this->depth() != that->depth())  return false;
311
  const JVMState* p = this;
312
  const JVMState* q = that;
313
  for (;;) {
314
    if (p->_method != q->_method)    return false;
315
    if (p->_method == nullptr)       return true;   // bci is irrelevant
316
    if (p->_bci    != q->_bci)       return false;
317
    if (p->_reexecute != q->_reexecute)  return false;
318
    p = p->caller();
319
    q = q->caller();
320
    if (p == q)                      return true;
321
    assert(p != nullptr && q != nullptr, "depth check ensures we don't run off end");
322
  }
323
}
324

325
//------------------------------debug_start------------------------------------
326
uint JVMState::debug_start()  const {
327
  debug_only(JVMState* jvmroot = of_depth(1));
328
  assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
329
  return of_depth(1)->locoff();
330
}
331

332
//-------------------------------debug_end-------------------------------------
333
uint JVMState::debug_end() const {
334
  debug_only(JVMState* jvmroot = of_depth(1));
335
  assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
336
  return endoff();
337
}
338

339
//------------------------------debug_depth------------------------------------
340
uint JVMState::debug_depth() const {
341
  uint total = 0;
342
  for (const JVMState* jvmp = this; jvmp != nullptr; jvmp = jvmp->caller()) {
343
    total += jvmp->debug_size();
344
  }
345
  return total;
346
}
347

348
#ifndef PRODUCT
349

350
//------------------------------format_helper----------------------------------
351
// Given an allocation (a Chaitin object) and a Node decide if the Node carries
352
// any defined value or not.  If it does, print out the register or constant.
353
static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
354
  if (n == nullptr) { st->print(" null"); return; }
355
  if (n->is_SafePointScalarObject()) {
356
    // Scalar replacement.
357
    SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
358
    scobjs->append_if_missing(spobj);
359
    int sco_n = scobjs->find(spobj);
360
    assert(sco_n >= 0, "");
361
    st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
362
    return;
363
  }
364
  if (regalloc->node_regs_max_index() > 0 &&
365
      OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
366
    char buf[50];
367
    regalloc->dump_register(n,buf,sizeof(buf));
368
    st->print(" %s%d]=%s",msg,i,buf);
369
  } else {                      // No register, but might be constant
370
    const Type *t = n->bottom_type();
371
    switch (t->base()) {
372
    case Type::Int:
373
      st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
374
      break;
375
    case Type::AnyPtr:
376
      assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
377
      st->print(" %s%d]=#null",msg,i);
378
      break;
379
    case Type::AryPtr:
380
    case Type::InstPtr:
381
      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
382
      break;
383
    case Type::KlassPtr:
384
    case Type::AryKlassPtr:
385
    case Type::InstKlassPtr:
386
      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->exact_klass()));
387
      break;
388
    case Type::MetadataPtr:
389
      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
390
      break;
391
    case Type::NarrowOop:
392
      st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
393
      break;
394
    case Type::RawPtr:
395
      st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
396
      break;
397
    case Type::DoubleCon:
398
      st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
399
      break;
400
    case Type::FloatCon:
401
      st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
402
      break;
403
    case Type::Long:
404
      st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
405
      break;
406
    case Type::Half:
407
    case Type::Top:
408
      st->print(" %s%d]=_",msg,i);
409
      break;
410
    default: ShouldNotReachHere();
411
    }
412
  }
413
}
414

415
//---------------------print_method_with_lineno--------------------------------
416
void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const {
417
  if (show_name) _method->print_short_name(st);
418

419
  int lineno = _method->line_number_from_bci(_bci);
420
  if (lineno != -1) {
421
    st->print(" @ bci:%d (line %d)", _bci, lineno);
422
  } else {
423
    st->print(" @ bci:%d", _bci);
424
  }
425
}
426

427
//------------------------------format-----------------------------------------
428
void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
429
  st->print("        #");
430
  if (_method) {
431
    print_method_with_lineno(st, true);
432
  } else {
433
    st->print_cr(" runtime stub ");
434
    return;
435
  }
436
  if (n->is_MachSafePoint()) {
437
    GrowableArray<SafePointScalarObjectNode*> scobjs;
438
    MachSafePointNode *mcall = n->as_MachSafePoint();
439
    uint i;
440
    // Print locals
441
    for (i = 0; i < (uint)loc_size(); i++)
442
      format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
443
    // Print stack
444
    for (i = 0; i < (uint)stk_size(); i++) {
445
      if ((uint)(_stkoff + i) >= mcall->len())
446
        st->print(" oob ");
447
      else
448
       format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
449
    }
450
    for (i = 0; (int)i < nof_monitors(); i++) {
451
      Node *box = mcall->monitor_box(this, i);
452
      Node *obj = mcall->monitor_obj(this, i);
453
      if (regalloc->node_regs_max_index() > 0 &&
454
          OptoReg::is_valid(regalloc->get_reg_first(box))) {
455
        box = BoxLockNode::box_node(box);
456
        format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
457
      } else {
458
        OptoReg::Name box_reg = BoxLockNode::reg(box);
459
        st->print(" MON-BOX%d=%s+%d",
460
                   i,
461
                   OptoReg::regname(OptoReg::c_frame_pointer),
462
                   regalloc->reg2offset(box_reg));
463
      }
464
      const char* obj_msg = "MON-OBJ[";
465
      if (EliminateLocks) {
466
        if (BoxLockNode::box_node(box)->is_eliminated())
467
          obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
468
      }
469
      format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
470
    }
471

472
    for (i = 0; i < (uint)scobjs.length(); i++) {
473
      // Scalar replaced objects.
474
      st->cr();
475
      st->print("        # ScObj" INT32_FORMAT " ", i);
476
      SafePointScalarObjectNode* spobj = scobjs.at(i);
477
      ciKlass* cik = spobj->bottom_type()->is_oopptr()->exact_klass();
478
      assert(cik->is_instance_klass() ||
479
             cik->is_array_klass(), "Not supported allocation.");
480
      ciInstanceKlass *iklass = nullptr;
481
      if (cik->is_instance_klass()) {
482
        cik->print_name_on(st);
483
        iklass = cik->as_instance_klass();
484
      } else if (cik->is_type_array_klass()) {
485
        cik->as_array_klass()->base_element_type()->print_name_on(st);
486
        st->print("[%d]", spobj->n_fields());
487
      } else if (cik->is_obj_array_klass()) {
488
        ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
489
        if (cie->is_instance_klass()) {
490
          cie->print_name_on(st);
491
        } else if (cie->is_type_array_klass()) {
492
          cie->as_array_klass()->base_element_type()->print_name_on(st);
493
        } else {
494
          ShouldNotReachHere();
495
        }
496
        st->print("[%d]", spobj->n_fields());
497
        int ndim = cik->as_array_klass()->dimension() - 1;
498
        while (ndim-- > 0) {
499
          st->print("[]");
500
        }
501
      }
502
      st->print("={");
503
      uint nf = spobj->n_fields();
504
      if (nf > 0) {
505
        uint first_ind = spobj->first_index(mcall->jvms());
506
        Node* fld_node = mcall->in(first_ind);
507
        ciField* cifield;
508
        if (iklass != nullptr) {
509
          st->print(" [");
510
          cifield = iklass->nonstatic_field_at(0);
511
          cifield->print_name_on(st);
512
          format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
513
        } else {
514
          format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
515
        }
516
        for (uint j = 1; j < nf; j++) {
517
          fld_node = mcall->in(first_ind+j);
518
          if (iklass != nullptr) {
519
            st->print(", [");
520
            cifield = iklass->nonstatic_field_at(j);
521
            cifield->print_name_on(st);
522
            format_helper(regalloc, st, fld_node, ":", j, &scobjs);
523
          } else {
524
            format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
525
          }
526
        }
527
      }
528
      st->print(" }");
529
    }
530
  }
531
  st->cr();
532
  if (caller() != nullptr) caller()->format(regalloc, n, st);
533
}
534

535

536
void JVMState::dump_spec(outputStream *st) const {
537
  if (_method != nullptr) {
538
    bool printed = false;
539
    if (!Verbose) {
540
      // The JVMS dumps make really, really long lines.
541
      // Take out the most boring parts, which are the package prefixes.
542
      char buf[500];
543
      stringStream namest(buf, sizeof(buf));
544
      _method->print_short_name(&namest);
545
      if (namest.count() < sizeof(buf)) {
546
        const char* name = namest.base();
547
        if (name[0] == ' ')  ++name;
548
        const char* endcn = strchr(name, ':');  // end of class name
549
        if (endcn == nullptr)  endcn = strchr(name, '(');
550
        if (endcn == nullptr)  endcn = name + strlen(name);
551
        while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
552
          --endcn;
553
        st->print(" %s", endcn);
554
        printed = true;
555
      }
556
    }
557
    print_method_with_lineno(st, !printed);
558
    if(_reexecute == Reexecute_True)
559
      st->print(" reexecute");
560
  } else {
561
    st->print(" runtime stub");
562
  }
563
  if (caller() != nullptr)  caller()->dump_spec(st);
564
}
565

566

567
void JVMState::dump_on(outputStream* st) const {
568
  bool print_map = _map && !((uintptr_t)_map & 1) &&
569
                  ((caller() == nullptr) || (caller()->map() != _map));
570
  if (print_map) {
571
    if (_map->len() > _map->req()) {  // _map->has_exceptions()
572
      Node* ex = _map->in(_map->req());  // _map->next_exception()
573
      // skip the first one; it's already being printed
574
      while (ex != nullptr && ex->len() > ex->req()) {
575
        ex = ex->in(ex->req());  // ex->next_exception()
576
        ex->dump(1);
577
      }
578
    }
579
    _map->dump(Verbose ? 2 : 1);
580
  }
581
  if (caller() != nullptr) {
582
    caller()->dump_on(st);
583
  }
584
  st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
585
             depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
586
  if (_method == nullptr) {
587
    st->print_cr("(none)");
588
  } else {
589
    _method->print_name(st);
590
    st->cr();
591
    if (bci() >= 0 && bci() < _method->code_size()) {
592
      st->print("    bc: ");
593
      _method->print_codes_on(bci(), bci()+1, st);
594
    }
595
  }
596
}
597

598
// Extra way to dump a jvms from the debugger,
599
// to avoid a bug with C++ member function calls.
600
void dump_jvms(JVMState* jvms) {
601
  jvms->dump();
602
}
603
#endif
604

605
//--------------------------clone_shallow--------------------------------------
606
JVMState* JVMState::clone_shallow(Compile* C) const {
607
  JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
608
  n->set_bci(_bci);
609
  n->_reexecute = _reexecute;
610
  n->set_locoff(_locoff);
611
  n->set_stkoff(_stkoff);
612
  n->set_monoff(_monoff);
613
  n->set_scloff(_scloff);
614
  n->set_endoff(_endoff);
615
  n->set_sp(_sp);
616
  n->set_map(_map);
617
  return n;
618
}
619

620
//---------------------------clone_deep----------------------------------------
621
JVMState* JVMState::clone_deep(Compile* C) const {
622
  JVMState* n = clone_shallow(C);
623
  for (JVMState* p = n; p->_caller != nullptr; p = p->_caller) {
624
    p->_caller = p->_caller->clone_shallow(C);
625
  }
626
  assert(n->depth() == depth(), "sanity");
627
  assert(n->debug_depth() == debug_depth(), "sanity");
628
  return n;
629
}
630

631
/**
632
 * Reset map for all callers
633
 */
634
void JVMState::set_map_deep(SafePointNode* map) {
635
  for (JVMState* p = this; p != nullptr; p = p->_caller) {
636
    p->set_map(map);
637
  }
638
}
639

640
// unlike set_map(), this is two-way setting.
641
void JVMState::bind_map(SafePointNode* map) {
642
  set_map(map);
643
  _map->set_jvms(this);
644
}
645

646
// Adapt offsets in in-array after adding or removing an edge.
647
// Prerequisite is that the JVMState is used by only one node.
648
void JVMState::adapt_position(int delta) {
649
  for (JVMState* jvms = this; jvms != nullptr; jvms = jvms->caller()) {
650
    jvms->set_locoff(jvms->locoff() + delta);
651
    jvms->set_stkoff(jvms->stkoff() + delta);
652
    jvms->set_monoff(jvms->monoff() + delta);
653
    jvms->set_scloff(jvms->scloff() + delta);
654
    jvms->set_endoff(jvms->endoff() + delta);
655
  }
656
}
657

658
// Mirror the stack size calculation in the deopt code
659
// How much stack space would we need at this point in the program in
660
// case of deoptimization?
661
int JVMState::interpreter_frame_size() const {
662
  const JVMState* jvms = this;
663
  int size = 0;
664
  int callee_parameters = 0;
665
  int callee_locals = 0;
666
  int extra_args = method()->max_stack() - stk_size();
667

668
  while (jvms != nullptr) {
669
    int locks = jvms->nof_monitors();
670
    int temps = jvms->stk_size();
671
    bool is_top_frame = (jvms == this);
672
    ciMethod* method = jvms->method();
673

674
    int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
675
                                                                 temps + callee_parameters,
676
                                                                 extra_args,
677
                                                                 locks,
678
                                                                 callee_parameters,
679
                                                                 callee_locals,
680
                                                                 is_top_frame);
681
    size += frame_size;
682

683
    callee_parameters = method->size_of_parameters();
684
    callee_locals = method->max_locals();
685
    extra_args = 0;
686
    jvms = jvms->caller();
687
  }
688
  return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
689
}
690

691
//=============================================================================
692
bool CallNode::cmp( const Node &n ) const
693
{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
694
#ifndef PRODUCT
695
void CallNode::dump_req(outputStream *st, DumpConfig* dc) const {
696
  // Dump the required inputs, enclosed in '(' and ')'
697
  uint i;                       // Exit value of loop
698
  for (i = 0; i < req(); i++) {    // For all required inputs
699
    if (i == TypeFunc::Parms) st->print("(");
700
    Node* p = in(i);
701
    if (p != nullptr) {
702
      p->dump_idx(false, st, dc);
703
      st->print(" ");
704
    } else {
705
      st->print("_ ");
706
    }
707
  }
708
  st->print(")");
709
}
710

711
void CallNode::dump_spec(outputStream *st) const {
712
  st->print(" ");
713
  if (tf() != nullptr)  tf()->dump_on(st);
714
  if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
715
  if (jvms() != nullptr)  jvms()->dump_spec(st);
716
}
717
#endif
718

719
const Type *CallNode::bottom_type() const { return tf()->range(); }
720
const Type* CallNode::Value(PhaseGVN* phase) const {
721
  if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
722
  return tf()->range();
723
}
724

725
//------------------------------calling_convention-----------------------------
726
void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
727
  // Use the standard compiler calling convention
728
  SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
729
}
730

731

732
//------------------------------match------------------------------------------
733
// Construct projections for control, I/O, memory-fields, ..., and
734
// return result(s) along with their RegMask info
735
Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
736
  switch (proj->_con) {
737
  case TypeFunc::Control:
738
  case TypeFunc::I_O:
739
  case TypeFunc::Memory:
740
    return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
741

742
  case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
743
    assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
744
    // 2nd half of doubles and longs
745
    return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
746

747
  case TypeFunc::Parms: {       // Normal returns
748
    uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
749
    OptoRegPair regs = Opcode() == Op_CallLeafVector
750
      ? match->vector_return_value(ideal_reg)      // Calls into assembly vector routine
751
      : is_CallRuntime()
752
        ? match->c_return_value(ideal_reg)  // Calls into C runtime
753
        : match->  return_value(ideal_reg); // Calls into compiled Java code
754
    RegMask rm = RegMask(regs.first());
755

756
    if (Opcode() == Op_CallLeafVector) {
757
      // If the return is in vector, compute appropriate regmask taking into account the whole range
758
      if(ideal_reg >= Op_VecS && ideal_reg <= Op_VecZ) {
759
        if(OptoReg::is_valid(regs.second())) {
760
          for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
761
            rm.Insert(r);
762
          }
763
        }
764
      }
765
    }
766

767
    if( OptoReg::is_valid(regs.second()) )
768
      rm.Insert( regs.second() );
769
    return new MachProjNode(this,proj->_con,rm,ideal_reg);
770
  }
771

772
  case TypeFunc::ReturnAdr:
773
  case TypeFunc::FramePtr:
774
  default:
775
    ShouldNotReachHere();
776
  }
777
  return nullptr;
778
}
779

780
// Do we Match on this edge index or not?  Match no edges
781
uint CallNode::match_edge(uint idx) const {
782
  return 0;
783
}
784

785
//
786
// Determine whether the call could modify the field of the specified
787
// instance at the specified offset.
788
//
789
bool CallNode::may_modify(const TypeOopPtr* t_oop, PhaseValues* phase) {
790
  assert((t_oop != nullptr), "sanity");
791
  if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
792
    const TypeTuple* args = _tf->domain();
793
    Node* dest = nullptr;
794
    // Stubs that can be called once an ArrayCopyNode is expanded have
795
    // different signatures. Look for the second pointer argument,
796
    // that is the destination of the copy.
797
    for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
798
      if (args->field_at(i)->isa_ptr()) {
799
        j++;
800
        if (j == 2) {
801
          dest = in(i);
802
          break;
803
        }
804
      }
805
    }
806
    guarantee(dest != nullptr, "Call had only one ptr in, broken IR!");
807
    if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
808
      return true;
809
    }
810
    return false;
811
  }
812
  if (t_oop->is_known_instance()) {
813
    // The instance_id is set only for scalar-replaceable allocations which
814
    // are not passed as arguments according to Escape Analysis.
815
    return false;
816
  }
817
  if (t_oop->is_ptr_to_boxed_value()) {
818
    ciKlass* boxing_klass = t_oop->is_instptr()->instance_klass();
819
    if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
820
      // Skip unrelated boxing methods.
821
      Node* proj = proj_out_or_null(TypeFunc::Parms);
822
      if ((proj == nullptr) || (phase->type(proj)->is_instptr()->instance_klass() != boxing_klass)) {
823
        return false;
824
      }
825
    }
826
    if (is_CallJava() && as_CallJava()->method() != nullptr) {
827
      ciMethod* meth = as_CallJava()->method();
828
      if (meth->is_getter()) {
829
        return false;
830
      }
831
      // May modify (by reflection) if an boxing object is passed
832
      // as argument or returned.
833
      Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr;
834
      if (proj != nullptr) {
835
        const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
836
        if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
837
                                   (inst_t->instance_klass() == boxing_klass))) {
838
          return true;
839
        }
840
      }
841
      const TypeTuple* d = tf()->domain();
842
      for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
843
        const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
844
        if ((inst_t != nullptr) && (!inst_t->klass_is_exact() ||
845
                                 (inst_t->instance_klass() == boxing_klass))) {
846
          return true;
847
        }
848
      }
849
      return false;
850
    }
851
  }
852
  return true;
853
}
854

855
// Does this call have a direct reference to n other than debug information?
856
bool CallNode::has_non_debug_use(Node *n) {
857
  const TypeTuple * d = tf()->domain();
858
  for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
859
    Node *arg = in(i);
860
    if (arg == n) {
861
      return true;
862
    }
863
  }
864
  return false;
865
}
866

867
// Returns the unique CheckCastPP of a call
868
// or 'this' if there are several CheckCastPP or unexpected uses
869
// or returns null if there is no one.
870
Node *CallNode::result_cast() {
871
  Node *cast = nullptr;
872

873
  Node *p = proj_out_or_null(TypeFunc::Parms);
874
  if (p == nullptr)
875
    return nullptr;
876

877
  for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
878
    Node *use = p->fast_out(i);
879
    if (use->is_CheckCastPP()) {
880
      if (cast != nullptr) {
881
        return this;  // more than 1 CheckCastPP
882
      }
883
      cast = use;
884
    } else if (!use->is_Initialize() &&
885
               !use->is_AddP() &&
886
               use->Opcode() != Op_MemBarStoreStore) {
887
      // Expected uses are restricted to a CheckCastPP, an Initialize
888
      // node, a MemBarStoreStore (clone) and AddP nodes. If we
889
      // encounter any other use (a Phi node can be seen in rare
890
      // cases) return this to prevent incorrect optimizations.
891
      return this;
892
    }
893
  }
894
  return cast;
895
}
896

897

898
void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) {
899
  projs->fallthrough_proj      = nullptr;
900
  projs->fallthrough_catchproj = nullptr;
901
  projs->fallthrough_ioproj    = nullptr;
902
  projs->catchall_ioproj       = nullptr;
903
  projs->catchall_catchproj    = nullptr;
904
  projs->fallthrough_memproj   = nullptr;
905
  projs->catchall_memproj      = nullptr;
906
  projs->resproj               = nullptr;
907
  projs->exobj                 = nullptr;
908

909
  for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
910
    ProjNode *pn = fast_out(i)->as_Proj();
911
    if (pn->outcnt() == 0) continue;
912
    switch (pn->_con) {
913
    case TypeFunc::Control:
914
      {
915
        // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
916
        projs->fallthrough_proj = pn;
917
        const Node* cn = pn->unique_ctrl_out_or_null();
918
        if (cn != nullptr && cn->is_Catch()) {
919
          ProjNode *cpn = nullptr;
920
          for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
921
            cpn = cn->fast_out(k)->as_Proj();
922
            assert(cpn->is_CatchProj(), "must be a CatchProjNode");
923
            if (cpn->_con == CatchProjNode::fall_through_index)
924
              projs->fallthrough_catchproj = cpn;
925
            else {
926
              assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
927
              projs->catchall_catchproj = cpn;
928
            }
929
          }
930
        }
931
        break;
932
      }
933
    case TypeFunc::I_O:
934
      if (pn->_is_io_use)
935
        projs->catchall_ioproj = pn;
936
      else
937
        projs->fallthrough_ioproj = pn;
938
      for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
939
        Node* e = pn->out(j);
940
        if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
941
          assert(projs->exobj == nullptr, "only one");
942
          projs->exobj = e;
943
        }
944
      }
945
      break;
946
    case TypeFunc::Memory:
947
      if (pn->_is_io_use)
948
        projs->catchall_memproj = pn;
949
      else
950
        projs->fallthrough_memproj = pn;
951
      break;
952
    case TypeFunc::Parms:
953
      projs->resproj = pn;
954
      break;
955
    default:
956
      assert(false, "unexpected projection from allocation node.");
957
    }
958
  }
959

960
  // The resproj may not exist because the result could be ignored
961
  // and the exception object may not exist if an exception handler
962
  // swallows the exception but all the other must exist and be found.
963
  assert(projs->fallthrough_proj      != nullptr, "must be found");
964
  do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
965
  assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found");
966
  assert(!do_asserts || projs->fallthrough_memproj   != nullptr, "must be found");
967
  assert(!do_asserts || projs->fallthrough_ioproj    != nullptr, "must be found");
968
  assert(!do_asserts || projs->catchall_catchproj    != nullptr, "must be found");
969
  if (separate_io_proj) {
970
    assert(!do_asserts || projs->catchall_memproj    != nullptr, "must be found");
971
    assert(!do_asserts || projs->catchall_ioproj     != nullptr, "must be found");
972
  }
973
}
974

975
Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
976
#ifdef ASSERT
977
  // Validate attached generator
978
  CallGenerator* cg = generator();
979
  if (cg != nullptr) {
980
    assert((is_CallStaticJava()  && cg->is_mh_late_inline()) ||
981
           (is_CallDynamicJava() && cg->is_virtual_late_inline()), "mismatch");
982
  }
983
#endif // ASSERT
984
  return SafePointNode::Ideal(phase, can_reshape);
985
}
986

987
bool CallNode::is_call_to_arraycopystub() const {
988
  if (_name != nullptr && strstr(_name, "arraycopy") != nullptr) {
989
    return true;
990
  }
991
  return false;
992
}
993

994
//=============================================================================
995
uint CallJavaNode::size_of() const { return sizeof(*this); }
996
bool CallJavaNode::cmp( const Node &n ) const {
997
  CallJavaNode &call = (CallJavaNode&)n;
998
  return CallNode::cmp(call) && _method == call._method &&
999
         _override_symbolic_info == call._override_symbolic_info;
1000
}
1001

1002
void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
1003
  // Copy debug information and adjust JVMState information
1004
  uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain()->cnt() : (uint)TypeFunc::Parms+1;
1005
  uint new_dbg_start = tf()->domain()->cnt();
1006
  int jvms_adj  = new_dbg_start - old_dbg_start;
1007
  assert (new_dbg_start == req(), "argument count mismatch");
1008
  Compile* C = phase->C;
1009

1010
  // SafePointScalarObject node could be referenced several times in debug info.
1011
  // Use Dict to record cloned nodes.
1012
  Dict* sosn_map = new Dict(cmpkey,hashkey);
1013
  for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1014
    Node* old_in = sfpt->in(i);
1015
    // Clone old SafePointScalarObjectNodes, adjusting their field contents.
1016
    if (old_in != nullptr && old_in->is_SafePointScalarObject()) {
1017
      SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1018
      bool new_node;
1019
      Node* new_in = old_sosn->clone(sosn_map, new_node);
1020
      if (new_node) { // New node?
1021
        new_in->set_req(0, C->root()); // reset control edge
1022
        new_in = phase->transform(new_in); // Register new node.
1023
      }
1024
      old_in = new_in;
1025
    }
1026
    add_req(old_in);
1027
  }
1028

1029
  // JVMS may be shared so clone it before we modify it
1030
  set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr);
1031
  for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1032
    jvms->set_map(this);
1033
    jvms->set_locoff(jvms->locoff()+jvms_adj);
1034
    jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1035
    jvms->set_monoff(jvms->monoff()+jvms_adj);
1036
    jvms->set_scloff(jvms->scloff()+jvms_adj);
1037
    jvms->set_endoff(jvms->endoff()+jvms_adj);
1038
  }
1039
}
1040

1041
#ifdef ASSERT
1042
bool CallJavaNode::validate_symbolic_info() const {
1043
  if (method() == nullptr) {
1044
    return true; // call into runtime or uncommon trap
1045
  }
1046
  ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1047
  ciMethod* callee = method();
1048
  if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1049
    assert(override_symbolic_info(), "should be set");
1050
  }
1051
  assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1052
  return true;
1053
}
1054
#endif
1055

1056
#ifndef PRODUCT
1057
void CallJavaNode::dump_spec(outputStream* st) const {
1058
  if( _method ) _method->print_short_name(st);
1059
  CallNode::dump_spec(st);
1060
}
1061

1062
void CallJavaNode::dump_compact_spec(outputStream* st) const {
1063
  if (_method) {
1064
    _method->print_short_name(st);
1065
  } else {
1066
    st->print("<?>");
1067
  }
1068
}
1069
#endif
1070

1071
//=============================================================================
1072
uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1073
bool CallStaticJavaNode::cmp( const Node &n ) const {
1074
  CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1075
  return CallJavaNode::cmp(call);
1076
}
1077

1078
Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1079
  CallGenerator* cg = generator();
1080
  if (can_reshape && cg != nullptr) {
1081
    assert(IncrementalInlineMH, "required");
1082
    assert(cg->call_node() == this, "mismatch");
1083
    assert(cg->is_mh_late_inline(), "not virtual");
1084

1085
    // Check whether this MH handle call becomes a candidate for inlining.
1086
    ciMethod* callee = cg->method();
1087
    vmIntrinsics::ID iid = callee->intrinsic_id();
1088
    if (iid == vmIntrinsics::_invokeBasic) {
1089
      if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1090
        phase->C->prepend_late_inline(cg);
1091
        set_generator(nullptr);
1092
      }
1093
    } else if (iid == vmIntrinsics::_linkToNative) {
1094
      // never retry
1095
    } else {
1096
      assert(callee->has_member_arg(), "wrong type of call?");
1097
      if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1098
        phase->C->prepend_late_inline(cg);
1099
        set_generator(nullptr);
1100
      }
1101
    }
1102
  }
1103
  return CallNode::Ideal(phase, can_reshape);
1104
}
1105

1106
//----------------------------is_uncommon_trap----------------------------
1107
// Returns true if this is an uncommon trap.
1108
bool CallStaticJavaNode::is_uncommon_trap() const {
1109
  return (_name != nullptr && !strcmp(_name, "uncommon_trap"));
1110
}
1111

1112
//----------------------------uncommon_trap_request----------------------------
1113
// If this is an uncommon trap, return the request code, else zero.
1114
int CallStaticJavaNode::uncommon_trap_request() const {
1115
  return is_uncommon_trap() ? extract_uncommon_trap_request(this) : 0;
1116
}
1117
int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1118
#ifndef PRODUCT
1119
  if (!(call->req() > TypeFunc::Parms &&
1120
        call->in(TypeFunc::Parms) != nullptr &&
1121
        call->in(TypeFunc::Parms)->is_Con() &&
1122
        call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1123
    assert(in_dump() != 0, "OK if dumping");
1124
    tty->print("[bad uncommon trap]");
1125
    return 0;
1126
  }
1127
#endif
1128
  return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1129
}
1130

1131
#ifndef PRODUCT
1132
void CallStaticJavaNode::dump_spec(outputStream *st) const {
1133
  st->print("# Static ");
1134
  if (_name != nullptr) {
1135
    st->print("%s", _name);
1136
    int trap_req = uncommon_trap_request();
1137
    if (trap_req != 0) {
1138
      char buf[100];
1139
      st->print("(%s)",
1140
                 Deoptimization::format_trap_request(buf, sizeof(buf),
1141
                                                     trap_req));
1142
    }
1143
    st->print(" ");
1144
  }
1145
  CallJavaNode::dump_spec(st);
1146
}
1147

1148
void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1149
  if (_method) {
1150
    _method->print_short_name(st);
1151
  } else if (_name) {
1152
    st->print("%s", _name);
1153
  } else {
1154
    st->print("<?>");
1155
  }
1156
}
1157
#endif
1158

1159
//=============================================================================
1160
uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
1161
bool CallDynamicJavaNode::cmp( const Node &n ) const {
1162
  CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1163
  return CallJavaNode::cmp(call);
1164
}
1165

1166
Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1167
  CallGenerator* cg = generator();
1168
  if (can_reshape && cg != nullptr) {
1169
    assert(IncrementalInlineVirtual, "required");
1170
    assert(cg->call_node() == this, "mismatch");
1171
    assert(cg->is_virtual_late_inline(), "not virtual");
1172

1173
    // Recover symbolic info for method resolution.
1174
    ciMethod* caller = jvms()->method();
1175
    ciBytecodeStream iter(caller);
1176
    iter.force_bci(jvms()->bci());
1177

1178
    bool             not_used1;
1179
    ciSignature*     not_used2;
1180
    ciMethod*        orig_callee  = iter.get_method(not_used1, &not_used2);  // callee in the bytecode
1181
    ciKlass*         holder       = iter.get_declared_method_holder();
1182
    if (orig_callee->is_method_handle_intrinsic()) {
1183
      assert(_override_symbolic_info, "required");
1184
      orig_callee = method();
1185
      holder = method()->holder();
1186
    }
1187

1188
    ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1189

1190
    Node* receiver_node = in(TypeFunc::Parms);
1191
    const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr();
1192

1193
    int  not_used3;
1194
    bool call_does_dispatch;
1195
    ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/,
1196
                                                       call_does_dispatch, not_used3);  // out-parameters
1197
    if (!call_does_dispatch) {
1198
      // Register for late inlining.
1199
      cg->set_callee_method(callee);
1200
      phase->C->prepend_late_inline(cg); // MH late inlining prepends to the list, so do the same
1201
      set_generator(nullptr);
1202
    }
1203
  }
1204
  return CallNode::Ideal(phase, can_reshape);
1205
}
1206

1207
#ifndef PRODUCT
1208
void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1209
  st->print("# Dynamic ");
1210
  CallJavaNode::dump_spec(st);
1211
}
1212
#endif
1213

1214
//=============================================================================
1215
uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1216
bool CallRuntimeNode::cmp( const Node &n ) const {
1217
  CallRuntimeNode &call = (CallRuntimeNode&)n;
1218
  return CallNode::cmp(call) && !strcmp(_name,call._name);
1219
}
1220
#ifndef PRODUCT
1221
void CallRuntimeNode::dump_spec(outputStream *st) const {
1222
  st->print("# ");
1223
  st->print("%s", _name);
1224
  CallNode::dump_spec(st);
1225
}
1226
#endif
1227
uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1228
bool CallLeafVectorNode::cmp( const Node &n ) const {
1229
  CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1230
  return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1231
}
1232

1233
//------------------------------calling_convention-----------------------------
1234
void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1235
  SharedRuntime::c_calling_convention(sig_bt, parm_regs, argcnt);
1236
}
1237

1238
void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1239
#ifdef ASSERT
1240
  assert(tf()->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1241
         "return vector size must match");
1242
  const TypeTuple* d = tf()->domain();
1243
  for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1244
    Node* arg = in(i);
1245
    assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1246
           "vector argument size must match");
1247
  }
1248
#endif
1249

1250
  SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1251
}
1252

1253
//=============================================================================
1254
//------------------------------calling_convention-----------------------------
1255

1256

1257
//=============================================================================
1258
#ifndef PRODUCT
1259
void CallLeafNode::dump_spec(outputStream *st) const {
1260
  st->print("# ");
1261
  st->print("%s", _name);
1262
  CallNode::dump_spec(st);
1263
}
1264
#endif
1265

1266
//=============================================================================
1267

1268
void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1269
  assert(verify_jvms(jvms), "jvms must match");
1270
  int loc = jvms->locoff() + idx;
1271
  if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1272
    // If current local idx is top then local idx - 1 could
1273
    // be a long/double that needs to be killed since top could
1274
    // represent the 2nd half of the long/double.
1275
    uint ideal = in(loc -1)->ideal_reg();
1276
    if (ideal == Op_RegD || ideal == Op_RegL) {
1277
      // set other (low index) half to top
1278
      set_req(loc - 1, in(loc));
1279
    }
1280
  }
1281
  set_req(loc, c);
1282
}
1283

1284
uint SafePointNode::size_of() const { return sizeof(*this); }
1285
bool SafePointNode::cmp( const Node &n ) const {
1286
  return (&n == this);          // Always fail except on self
1287
}
1288

1289
//-------------------------set_next_exception----------------------------------
1290
void SafePointNode::set_next_exception(SafePointNode* n) {
1291
  assert(n == nullptr || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1292
  if (len() == req()) {
1293
    if (n != nullptr)  add_prec(n);
1294
  } else {
1295
    set_prec(req(), n);
1296
  }
1297
}
1298

1299

1300
//----------------------------next_exception-----------------------------------
1301
SafePointNode* SafePointNode::next_exception() const {
1302
  if (len() == req()) {
1303
    return nullptr;
1304
  } else {
1305
    Node* n = in(req());
1306
    assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1307
    return (SafePointNode*) n;
1308
  }
1309
}
1310

1311

1312
//------------------------------Ideal------------------------------------------
1313
// Skip over any collapsed Regions
1314
Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1315
  assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1316
  return remove_dead_region(phase, can_reshape) ? this : nullptr;
1317
}
1318

1319
//------------------------------Identity---------------------------------------
1320
// Remove obviously duplicate safepoints
1321
Node* SafePointNode::Identity(PhaseGVN* phase) {
1322

1323
  // If you have back to back safepoints, remove one
1324
  if (in(TypeFunc::Control)->is_SafePoint()) {
1325
    Node* out_c = unique_ctrl_out_or_null();
1326
    // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1327
    // outer loop's safepoint could confuse removal of the outer loop.
1328
    if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) {
1329
      return in(TypeFunc::Control);
1330
    }
1331
  }
1332

1333
  // Transforming long counted loops requires a safepoint node. Do not
1334
  // eliminate a safepoint until loop opts are over.
1335
  if (in(0)->is_Proj() && !phase->C->major_progress()) {
1336
    Node *n0 = in(0)->in(0);
1337
    // Check if he is a call projection (except Leaf Call)
1338
    if( n0->is_Catch() ) {
1339
      n0 = n0->in(0)->in(0);
1340
      assert( n0->is_Call(), "expect a call here" );
1341
    }
1342
    if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1343
      // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
1344
      // If the loop dies, they will be removed together.
1345
      if (has_out_with(Op_OuterStripMinedLoopEnd)) {
1346
        return this;
1347
      }
1348
      // Useless Safepoint, so remove it
1349
      return in(TypeFunc::Control);
1350
    }
1351
  }
1352

1353
  return this;
1354
}
1355

1356
//------------------------------Value------------------------------------------
1357
const Type* SafePointNode::Value(PhaseGVN* phase) const {
1358
  if (phase->type(in(0)) == Type::TOP) {
1359
    return Type::TOP;
1360
  }
1361
  if (in(0) == this) {
1362
    return Type::TOP; // Dead infinite loop
1363
  }
1364
  return Type::CONTROL;
1365
}
1366

1367
#ifndef PRODUCT
1368
void SafePointNode::dump_spec(outputStream *st) const {
1369
  st->print(" SafePoint ");
1370
  _replaced_nodes.dump(st);
1371
}
1372
#endif
1373

1374
const RegMask &SafePointNode::in_RegMask(uint idx) const {
1375
  if( idx < TypeFunc::Parms ) return RegMask::Empty;
1376
  // Values outside the domain represent debug info
1377
  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1378
}
1379
const RegMask &SafePointNode::out_RegMask() const {
1380
  return RegMask::Empty;
1381
}
1382

1383

1384
void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1385
  assert((int)grow_by > 0, "sanity");
1386
  int monoff = jvms->monoff();
1387
  int scloff = jvms->scloff();
1388
  int endoff = jvms->endoff();
1389
  assert(endoff == (int)req(), "no other states or debug info after me");
1390
  Node* top = Compile::current()->top();
1391
  for (uint i = 0; i < grow_by; i++) {
1392
    ins_req(monoff, top);
1393
  }
1394
  jvms->set_monoff(monoff + grow_by);
1395
  jvms->set_scloff(scloff + grow_by);
1396
  jvms->set_endoff(endoff + grow_by);
1397
}
1398

1399
void SafePointNode::push_monitor(const FastLockNode *lock) {
1400
  // Add a LockNode, which points to both the original BoxLockNode (the
1401
  // stack space for the monitor) and the Object being locked.
1402
  const int MonitorEdges = 2;
1403
  assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1404
  assert(req() == jvms()->endoff(), "correct sizing");
1405
  int nextmon = jvms()->scloff();
1406
  if (GenerateSynchronizationCode) {
1407
    ins_req(nextmon,   lock->box_node());
1408
    ins_req(nextmon+1, lock->obj_node());
1409
  } else {
1410
    Node* top = Compile::current()->top();
1411
    ins_req(nextmon, top);
1412
    ins_req(nextmon, top);
1413
  }
1414
  jvms()->set_scloff(nextmon + MonitorEdges);
1415
  jvms()->set_endoff(req());
1416
}
1417

1418
void SafePointNode::pop_monitor() {
1419
  // Delete last monitor from debug info
1420
  debug_only(int num_before_pop = jvms()->nof_monitors());
1421
  const int MonitorEdges = 2;
1422
  assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1423
  int scloff = jvms()->scloff();
1424
  int endoff = jvms()->endoff();
1425
  int new_scloff = scloff - MonitorEdges;
1426
  int new_endoff = endoff - MonitorEdges;
1427
  jvms()->set_scloff(new_scloff);
1428
  jvms()->set_endoff(new_endoff);
1429
  while (scloff > new_scloff)  del_req_ordered(--scloff);
1430
  assert(jvms()->nof_monitors() == num_before_pop-1, "");
1431
}
1432

1433
Node *SafePointNode::peek_monitor_box() const {
1434
  int mon = jvms()->nof_monitors() - 1;
1435
  assert(mon >= 0, "must have a monitor");
1436
  return monitor_box(jvms(), mon);
1437
}
1438

1439
Node *SafePointNode::peek_monitor_obj() const {
1440
  int mon = jvms()->nof_monitors() - 1;
1441
  assert(mon >= 0, "must have a monitor");
1442
  return monitor_obj(jvms(), mon);
1443
}
1444

1445
Node* SafePointNode::peek_operand(uint off) const {
1446
  assert(jvms()->sp() > 0, "must have an operand");
1447
  assert(off < jvms()->sp(), "off is out-of-range");
1448
  return stack(jvms(), jvms()->sp() - off - 1);
1449
}
1450

1451
// Do we Match on this edge index or not?  Match no edges
1452
uint SafePointNode::match_edge(uint idx) const {
1453
  return (TypeFunc::Parms == idx);
1454
}
1455

1456
void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1457
  assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1458
  int nb = igvn->C->root()->find_prec_edge(this);
1459
  if (nb != -1) {
1460
    igvn->delete_precedence_of(igvn->C->root(), nb);
1461
  }
1462
}
1463

1464
//==============  SafePointScalarObjectNode  ==============
1465

1466
SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, Node* alloc, uint first_index, uint depth, uint n_fields) :
1467
  TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1468
  _first_index(first_index),
1469
  _depth(depth),
1470
  _n_fields(n_fields),
1471
  _alloc(alloc)
1472
{
1473
#ifdef ASSERT
1474
  if (!alloc->is_Allocate() && !(alloc->Opcode() == Op_VectorBox)) {
1475
    alloc->dump();
1476
    assert(false, "unexpected call node");
1477
  }
1478
#endif
1479
  init_class_id(Class_SafePointScalarObject);
1480
}
1481

1482
// Do not allow value-numbering for SafePointScalarObject node.
1483
uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1484
bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1485
  return (&n == this); // Always fail except on self
1486
}
1487

1488
uint SafePointScalarObjectNode::ideal_reg() const {
1489
  return 0; // No matching to machine instruction
1490
}
1491

1492
const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1493
  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1494
}
1495

1496
const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1497
  return RegMask::Empty;
1498
}
1499

1500
uint SafePointScalarObjectNode::match_edge(uint idx) const {
1501
  return 0;
1502
}
1503

1504
SafePointScalarObjectNode*
1505
SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const {
1506
  void* cached = (*sosn_map)[(void*)this];
1507
  if (cached != nullptr) {
1508
    new_node = false;
1509
    return (SafePointScalarObjectNode*)cached;
1510
  }
1511
  new_node = true;
1512
  SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1513
  sosn_map->Insert((void*)this, (void*)res);
1514
  return res;
1515
}
1516

1517

1518
#ifndef PRODUCT
1519
void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1520
  st->print(" # fields@[%d..%d]", first_index(), first_index() + n_fields() - 1);
1521
}
1522
#endif
1523

1524
//==============  SafePointScalarMergeNode  ==============
1525

1526
SafePointScalarMergeNode::SafePointScalarMergeNode(const TypeOopPtr* tp, int merge_pointer_idx) :
1527
  TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1528
  _merge_pointer_idx(merge_pointer_idx)
1529
{
1530
  init_class_id(Class_SafePointScalarMerge);
1531
}
1532

1533
// Do not allow value-numbering for SafePointScalarMerge node.
1534
uint SafePointScalarMergeNode::hash() const { return NO_HASH; }
1535
bool SafePointScalarMergeNode::cmp( const Node &n ) const {
1536
  return (&n == this); // Always fail except on self
1537
}
1538

1539
uint SafePointScalarMergeNode::ideal_reg() const {
1540
  return 0; // No matching to machine instruction
1541
}
1542

1543
const RegMask &SafePointScalarMergeNode::in_RegMask(uint idx) const {
1544
  return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1545
}
1546

1547
const RegMask &SafePointScalarMergeNode::out_RegMask() const {
1548
  return RegMask::Empty;
1549
}
1550

1551
uint SafePointScalarMergeNode::match_edge(uint idx) const {
1552
  return 0;
1553
}
1554

1555
SafePointScalarMergeNode*
1556
SafePointScalarMergeNode::clone(Dict* sosn_map, bool& new_node) const {
1557
  void* cached = (*sosn_map)[(void*)this];
1558
  if (cached != nullptr) {
1559
    new_node = false;
1560
    return (SafePointScalarMergeNode*)cached;
1561
  }
1562
  new_node = true;
1563
  SafePointScalarMergeNode* res = (SafePointScalarMergeNode*)Node::clone();
1564
  sosn_map->Insert((void*)this, (void*)res);
1565
  return res;
1566
}
1567

1568
#ifndef PRODUCT
1569
void SafePointScalarMergeNode::dump_spec(outputStream *st) const {
1570
  st->print(" # merge_pointer_idx=%d, scalarized_objects=%d", _merge_pointer_idx, req()-1);
1571
}
1572
#endif
1573

1574
//=============================================================================
1575
uint AllocateNode::size_of() const { return sizeof(*this); }
1576

1577
AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1578
                           Node *ctrl, Node *mem, Node *abio,
1579
                           Node *size, Node *klass_node, Node *initial_test)
1580
  : CallNode(atype, nullptr, TypeRawPtr::BOTTOM)
1581
{
1582
  init_class_id(Class_Allocate);
1583
  init_flags(Flag_is_macro);
1584
  _is_scalar_replaceable = false;
1585
  _is_non_escaping = false;
1586
  _is_allocation_MemBar_redundant = false;
1587
  Node *topnode = C->top();
1588

1589
  init_req( TypeFunc::Control  , ctrl );
1590
  init_req( TypeFunc::I_O      , abio );
1591
  init_req( TypeFunc::Memory   , mem );
1592
  init_req( TypeFunc::ReturnAdr, topnode );
1593
  init_req( TypeFunc::FramePtr , topnode );
1594
  init_req( AllocSize          , size);
1595
  init_req( KlassNode          , klass_node);
1596
  init_req( InitialTest        , initial_test);
1597
  init_req( ALength            , topnode);
1598
  init_req( ValidLengthTest    , topnode);
1599
  C->add_macro_node(this);
1600
}
1601

1602
void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1603
{
1604
  assert(initializer != nullptr && initializer->is_object_initializer(),
1605
         "unexpected initializer method");
1606
  BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1607
  if (analyzer == nullptr) {
1608
    return;
1609
  }
1610

1611
  // Allocation node is first parameter in its initializer
1612
  if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1613
    _is_allocation_MemBar_redundant = true;
1614
  }
1615
}
1616
Node *AllocateNode::make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem) {
1617
  Node* mark_node = nullptr;
1618
  // For now only enable fast locking for non-array types
1619
  mark_node = phase->MakeConX(markWord::prototype().value());
1620
  return mark_node;
1621
}
1622

1623
// Retrieve the length from the AllocateArrayNode. Narrow the type with a
1624
// CastII, if appropriate.  If we are not allowed to create new nodes, and
1625
// a CastII is appropriate, return null.
1626
Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseValues* phase, bool allow_new_nodes) {
1627
  Node *length = in(AllocateNode::ALength);
1628
  assert(length != nullptr, "length is not null");
1629

1630
  const TypeInt* length_type = phase->find_int_type(length);
1631
  const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1632

1633
  if (ary_type != nullptr && length_type != nullptr) {
1634
    const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1635
    if (narrow_length_type != length_type) {
1636
      // Assert one of:
1637
      //   - the narrow_length is 0
1638
      //   - the narrow_length is not wider than length
1639
      assert(narrow_length_type == TypeInt::ZERO ||
1640
             (length_type->is_con() && narrow_length_type->is_con() &&
1641
              (narrow_length_type->_hi <= length_type->_lo)) ||
1642
             (narrow_length_type->_hi <= length_type->_hi &&
1643
              narrow_length_type->_lo >= length_type->_lo),
1644
             "narrow type must be narrower than length type");
1645

1646
      // Return null if new nodes are not allowed
1647
      if (!allow_new_nodes) {
1648
        return nullptr;
1649
      }
1650
      // Create a cast which is control dependent on the initialization to
1651
      // propagate the fact that the array length must be positive.
1652
      InitializeNode* init = initialization();
1653
      if (init != nullptr) {
1654
        length = new CastIINode(init->proj_out_or_null(TypeFunc::Control), length, narrow_length_type);
1655
      }
1656
    }
1657
  }
1658

1659
  return length;
1660
}
1661

1662
//=============================================================================
1663
uint LockNode::size_of() const { return sizeof(*this); }
1664

1665
// Redundant lock elimination
1666
//
1667
// There are various patterns of locking where we release and
1668
// immediately reacquire a lock in a piece of code where no operations
1669
// occur in between that would be observable.  In those cases we can
1670
// skip releasing and reacquiring the lock without violating any
1671
// fairness requirements.  Doing this around a loop could cause a lock
1672
// to be held for a very long time so we concentrate on non-looping
1673
// control flow.  We also require that the operations are fully
1674
// redundant meaning that we don't introduce new lock operations on
1675
// some paths so to be able to eliminate it on others ala PRE.  This
1676
// would probably require some more extensive graph manipulation to
1677
// guarantee that the memory edges were all handled correctly.
1678
//
1679
// Assuming p is a simple predicate which can't trap in any way and s
1680
// is a synchronized method consider this code:
1681
//
1682
//   s();
1683
//   if (p)
1684
//     s();
1685
//   else
1686
//     s();
1687
//   s();
1688
//
1689
// 1. The unlocks of the first call to s can be eliminated if the
1690
// locks inside the then and else branches are eliminated.
1691
//
1692
// 2. The unlocks of the then and else branches can be eliminated if
1693
// the lock of the final call to s is eliminated.
1694
//
1695
// Either of these cases subsumes the simple case of sequential control flow
1696
//
1697
// Additionally we can eliminate versions without the else case:
1698
//
1699
//   s();
1700
//   if (p)
1701
//     s();
1702
//   s();
1703
//
1704
// 3. In this case we eliminate the unlock of the first s, the lock
1705
// and unlock in the then case and the lock in the final s.
1706
//
1707
// Note also that in all these cases the then/else pieces don't have
1708
// to be trivial as long as they begin and end with synchronization
1709
// operations.
1710
//
1711
//   s();
1712
//   if (p)
1713
//     s();
1714
//     f();
1715
//     s();
1716
//   s();
1717
//
1718
// The code will work properly for this case, leaving in the unlock
1719
// before the call to f and the relock after it.
1720
//
1721
// A potentially interesting case which isn't handled here is when the
1722
// locking is partially redundant.
1723
//
1724
//   s();
1725
//   if (p)
1726
//     s();
1727
//
1728
// This could be eliminated putting unlocking on the else case and
1729
// eliminating the first unlock and the lock in the then side.
1730
// Alternatively the unlock could be moved out of the then side so it
1731
// was after the merge and the first unlock and second lock
1732
// eliminated.  This might require less manipulation of the memory
1733
// state to get correct.
1734
//
1735
// Additionally we might allow work between a unlock and lock before
1736
// giving up eliminating the locks.  The current code disallows any
1737
// conditional control flow between these operations.  A formulation
1738
// similar to partial redundancy elimination computing the
1739
// availability of unlocking and the anticipatability of locking at a
1740
// program point would allow detection of fully redundant locking with
1741
// some amount of work in between.  I'm not sure how often I really
1742
// think that would occur though.  Most of the cases I've seen
1743
// indicate it's likely non-trivial work would occur in between.
1744
// There may be other more complicated constructs where we could
1745
// eliminate locking but I haven't seen any others appear as hot or
1746
// interesting.
1747
//
1748
// Locking and unlocking have a canonical form in ideal that looks
1749
// roughly like this:
1750
//
1751
//              <obj>
1752
//                | \\------+
1753
//                |  \       \
1754
//                | BoxLock   \
1755
//                |  |   |     \
1756
//                |  |    \     \
1757
//                |  |   FastLock
1758
//                |  |   /
1759
//                |  |  /
1760
//                |  |  |
1761
//
1762
//               Lock
1763
//                |
1764
//            Proj #0
1765
//                |
1766
//            MembarAcquire
1767
//                |
1768
//            Proj #0
1769
//
1770
//            MembarRelease
1771
//                |
1772
//            Proj #0
1773
//                |
1774
//              Unlock
1775
//                |
1776
//            Proj #0
1777
//
1778
//
1779
// This code proceeds by processing Lock nodes during PhaseIterGVN
1780
// and searching back through its control for the proper code
1781
// patterns.  Once it finds a set of lock and unlock operations to
1782
// eliminate they are marked as eliminatable which causes the
1783
// expansion of the Lock and Unlock macro nodes to make the operation a NOP
1784
//
1785
//=============================================================================
1786

1787
//
1788
// Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1789
//   - copy regions.  (These may not have been optimized away yet.)
1790
//   - eliminated locking nodes
1791
//
1792
static Node *next_control(Node *ctrl) {
1793
  if (ctrl == nullptr)
1794
    return nullptr;
1795
  while (1) {
1796
    if (ctrl->is_Region()) {
1797
      RegionNode *r = ctrl->as_Region();
1798
      Node *n = r->is_copy();
1799
      if (n == nullptr)
1800
        break;  // hit a region, return it
1801
      else
1802
        ctrl = n;
1803
    } else if (ctrl->is_Proj()) {
1804
      Node *in0 = ctrl->in(0);
1805
      if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1806
        ctrl = in0->in(0);
1807
      } else {
1808
        break;
1809
      }
1810
    } else {
1811
      break; // found an interesting control
1812
    }
1813
  }
1814
  return ctrl;
1815
}
1816
//
1817
// Given a control, see if it's the control projection of an Unlock which
1818
// operating on the same object as lock.
1819
//
1820
bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1821
                                            GrowableArray<AbstractLockNode*> &lock_ops) {
1822
  ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : nullptr;
1823
  if (ctrl_proj != nullptr && ctrl_proj->_con == TypeFunc::Control) {
1824
    Node *n = ctrl_proj->in(0);
1825
    if (n != nullptr && n->is_Unlock()) {
1826
      UnlockNode *unlock = n->as_Unlock();
1827
      BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1828
      Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
1829
      Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
1830
      if (lock_obj->eqv_uncast(unlock_obj) &&
1831
          BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1832
          !unlock->is_eliminated()) {
1833
        lock_ops.append(unlock);
1834
        return true;
1835
      }
1836
    }
1837
  }
1838
  return false;
1839
}
1840

1841
//
1842
// Find the lock matching an unlock.  Returns null if a safepoint
1843
// or complicated control is encountered first.
1844
LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1845
  LockNode *lock_result = nullptr;
1846
  // find the matching lock, or an intervening safepoint
1847
  Node *ctrl = next_control(unlock->in(0));
1848
  while (1) {
1849
    assert(ctrl != nullptr, "invalid control graph");
1850
    assert(!ctrl->is_Start(), "missing lock for unlock");
1851
    if (ctrl->is_top()) break;  // dead control path
1852
    if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1853
    if (ctrl->is_SafePoint()) {
1854
        break;  // found a safepoint (may be the lock we are searching for)
1855
    } else if (ctrl->is_Region()) {
1856
      // Check for a simple diamond pattern.  Punt on anything more complicated
1857
      if (ctrl->req() == 3 && ctrl->in(1) != nullptr && ctrl->in(2) != nullptr) {
1858
        Node *in1 = next_control(ctrl->in(1));
1859
        Node *in2 = next_control(ctrl->in(2));
1860
        if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1861
             (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1862
          ctrl = next_control(in1->in(0)->in(0));
1863
        } else {
1864
          break;
1865
        }
1866
      } else {
1867
        break;
1868
      }
1869
    } else {
1870
      ctrl = next_control(ctrl->in(0));  // keep searching
1871
    }
1872
  }
1873
  if (ctrl->is_Lock()) {
1874
    LockNode *lock = ctrl->as_Lock();
1875
    BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1876
    Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
1877
    Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
1878
    if (lock_obj->eqv_uncast(unlock_obj) &&
1879
        BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1880
      lock_result = lock;
1881
    }
1882
  }
1883
  return lock_result;
1884
}
1885

1886
// This code corresponds to case 3 above.
1887

1888
bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1889
                                                       GrowableArray<AbstractLockNode*> &lock_ops) {
1890
  Node* if_node = node->in(0);
1891
  bool  if_true = node->is_IfTrue();
1892

1893
  if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1894
    Node *lock_ctrl = next_control(if_node->in(0));
1895
    if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1896
      Node* lock1_node = nullptr;
1897
      ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1898
      if (if_true) {
1899
        if (proj->is_IfFalse() && proj->outcnt() == 1) {
1900
          lock1_node = proj->unique_out();
1901
        }
1902
      } else {
1903
        if (proj->is_IfTrue() && proj->outcnt() == 1) {
1904
          lock1_node = proj->unique_out();
1905
        }
1906
      }
1907
      if (lock1_node != nullptr && lock1_node->is_Lock()) {
1908
        LockNode *lock1 = lock1_node->as_Lock();
1909
        BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1910
        Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
1911
        Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
1912
        if (lock_obj->eqv_uncast(lock1_obj) &&
1913
            BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1914
            !lock1->is_eliminated()) {
1915
          lock_ops.append(lock1);
1916
          return true;
1917
        }
1918
      }
1919
    }
1920
  }
1921

1922
  lock_ops.trunc_to(0);
1923
  return false;
1924
}
1925

1926
bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1927
                               GrowableArray<AbstractLockNode*> &lock_ops) {
1928
  // check each control merging at this point for a matching unlock.
1929
  // in(0) should be self edge so skip it.
1930
  for (int i = 1; i < (int)region->req(); i++) {
1931
    Node *in_node = next_control(region->in(i));
1932
    if (in_node != nullptr) {
1933
      if (find_matching_unlock(in_node, lock, lock_ops)) {
1934
        // found a match so keep on checking.
1935
        continue;
1936
      } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1937
        continue;
1938
      }
1939

1940
      // If we fall through to here then it was some kind of node we
1941
      // don't understand or there wasn't a matching unlock, so give
1942
      // up trying to merge locks.
1943
      lock_ops.trunc_to(0);
1944
      return false;
1945
    }
1946
  }
1947
  return true;
1948

1949
}
1950

1951
// Check that all locks/unlocks associated with object come from balanced regions.
1952
bool AbstractLockNode::is_balanced() {
1953
  Node* obj = obj_node();
1954
  for (uint j = 0; j < obj->outcnt(); j++) {
1955
    Node* n = obj->raw_out(j);
1956
    if (n->is_AbstractLock() &&
1957
        n->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
1958
      BoxLockNode* n_box = n->as_AbstractLock()->box_node()->as_BoxLock();
1959
      if (n_box->is_unbalanced()) {
1960
        return false;
1961
      }
1962
    }
1963
  }
1964
  return true;
1965
}
1966

1967
const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
1968

1969
const char * AbstractLockNode::kind_as_string() const {
1970
  return _kind_names[_kind];
1971
}
1972

1973
#ifndef PRODUCT
1974
//
1975
// Create a counter which counts the number of times this lock is acquired
1976
//
1977
void AbstractLockNode::create_lock_counter(JVMState* state) {
1978
  _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1979
}
1980

1981
void AbstractLockNode::set_eliminated_lock_counter() {
1982
  if (_counter) {
1983
    // Update the counter to indicate that this lock was eliminated.
1984
    // The counter update code will stay around even though the
1985
    // optimizer will eliminate the lock operation itself.
1986
    _counter->set_tag(NamedCounter::EliminatedLockCounter);
1987
  }
1988
}
1989

1990
void AbstractLockNode::dump_spec(outputStream* st) const {
1991
  st->print("%s ", _kind_names[_kind]);
1992
  CallNode::dump_spec(st);
1993
}
1994

1995
void AbstractLockNode::dump_compact_spec(outputStream* st) const {
1996
  st->print("%s", _kind_names[_kind]);
1997
}
1998
#endif
1999

2000
//=============================================================================
2001
Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2002

2003
  // perform any generic optimizations first (returns 'this' or null)
2004
  Node *result = SafePointNode::Ideal(phase, can_reshape);
2005
  if (result != nullptr)  return result;
2006
  // Don't bother trying to transform a dead node
2007
  if (in(0) && in(0)->is_top())  return nullptr;
2008

2009
  // Now see if we can optimize away this lock.  We don't actually
2010
  // remove the locking here, we simply set the _eliminate flag which
2011
  // prevents macro expansion from expanding the lock.  Since we don't
2012
  // modify the graph, the value returned from this function is the
2013
  // one computed above.
2014
  if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
2015
    //
2016
    // If we are locking an non-escaped object, the lock/unlock is unnecessary
2017
    //
2018
    ConnectionGraph *cgr = phase->C->congraph();
2019
    if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2020
      assert(!is_eliminated() || is_coarsened(), "sanity");
2021
      // The lock could be marked eliminated by lock coarsening
2022
      // code during first IGVN before EA. Replace coarsened flag
2023
      // to eliminate all associated locks/unlocks.
2024
#ifdef ASSERT
2025
      this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2026
#endif
2027
      this->set_non_esc_obj();
2028
      return result;
2029
    }
2030

2031
    if (!phase->C->do_locks_coarsening()) {
2032
      return result; // Compiling without locks coarsening
2033
    }
2034
    //
2035
    // Try lock coarsening
2036
    //
2037
    PhaseIterGVN* iter = phase->is_IterGVN();
2038
    if (iter != nullptr && !is_eliminated()) {
2039

2040
      GrowableArray<AbstractLockNode*>   lock_ops;
2041

2042
      Node *ctrl = next_control(in(0));
2043

2044
      // now search back for a matching Unlock
2045
      if (find_matching_unlock(ctrl, this, lock_ops)) {
2046
        // found an unlock directly preceding this lock.  This is the
2047
        // case of single unlock directly control dependent on a
2048
        // single lock which is the trivial version of case 1 or 2.
2049
      } else if (ctrl->is_Region() ) {
2050
        if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
2051
        // found lock preceded by multiple unlocks along all paths
2052
        // joining at this point which is case 3 in description above.
2053
        }
2054
      } else {
2055
        // see if this lock comes from either half of an if and the
2056
        // predecessors merges unlocks and the other half of the if
2057
        // performs a lock.
2058
        if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
2059
          // found unlock splitting to an if with locks on both branches.
2060
        }
2061
      }
2062

2063
      if (lock_ops.length() > 0) {
2064
        // add ourselves to the list of locks to be eliminated.
2065
        lock_ops.append(this);
2066

2067
  #ifndef PRODUCT
2068
        if (PrintEliminateLocks) {
2069
          int locks = 0;
2070
          int unlocks = 0;
2071
          if (Verbose) {
2072
            tty->print_cr("=== Locks coarsening ===");
2073
            tty->print("Obj: ");
2074
            obj_node()->dump();
2075
          }
2076
          for (int i = 0; i < lock_ops.length(); i++) {
2077
            AbstractLockNode* lock = lock_ops.at(i);
2078
            if (lock->Opcode() == Op_Lock)
2079
              locks++;
2080
            else
2081
              unlocks++;
2082
            if (Verbose) {
2083
              tty->print("Box %d: ", i);
2084
              box_node()->dump();
2085
              tty->print(" %d: ", i);
2086
              lock->dump();
2087
            }
2088
          }
2089
          tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks);
2090
        }
2091
  #endif
2092

2093
        // for each of the identified locks, mark them
2094
        // as eliminatable
2095
        for (int i = 0; i < lock_ops.length(); i++) {
2096
          AbstractLockNode* lock = lock_ops.at(i);
2097

2098
          // Mark it eliminated by coarsening and update any counters
2099
#ifdef ASSERT
2100
          lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
2101
#endif
2102
          lock->set_coarsened();
2103
        }
2104
        // Record this coarsened group.
2105
        phase->C->add_coarsened_locks(lock_ops);
2106
      } else if (ctrl->is_Region() &&
2107
                 iter->_worklist.member(ctrl)) {
2108
        // We weren't able to find any opportunities but the region this
2109
        // lock is control dependent on hasn't been processed yet so put
2110
        // this lock back on the worklist so we can check again once any
2111
        // region simplification has occurred.
2112
        iter->_worklist.push(this);
2113
      }
2114
    }
2115
  }
2116

2117
  return result;
2118
}
2119

2120
//=============================================================================
2121
bool LockNode::is_nested_lock_region() {
2122
  return is_nested_lock_region(nullptr);
2123
}
2124

2125
// p is used for access to compilation log; no logging if null
2126
bool LockNode::is_nested_lock_region(Compile * c) {
2127
  BoxLockNode* box = box_node()->as_BoxLock();
2128
  int stk_slot = box->stack_slot();
2129
  if (stk_slot <= 0) {
2130
#ifdef ASSERT
2131
    this->log_lock_optimization(c, "eliminate_lock_INLR_1");
2132
#endif
2133
    return false; // External lock or it is not Box (Phi node).
2134
  }
2135

2136
  // Ignore complex cases: merged locks or multiple locks.
2137
  Node* obj = obj_node();
2138
  LockNode* unique_lock = nullptr;
2139
  Node* bad_lock = nullptr;
2140
  if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) {
2141
#ifdef ASSERT
2142
    this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock);
2143
#endif
2144
    return false;
2145
  }
2146
  if (unique_lock != this) {
2147
#ifdef ASSERT
2148
    this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != nullptr ? unique_lock : bad_lock));
2149
    if (PrintEliminateLocks && Verbose) {
2150
      tty->print_cr("=============== unique_lock != this ============");
2151
      tty->print(" this: ");
2152
      this->dump();
2153
      tty->print(" box: ");
2154
      box->dump();
2155
      tty->print(" obj: ");
2156
      obj->dump();
2157
      if (unique_lock != nullptr) {
2158
        tty->print(" unique_lock: ");
2159
        unique_lock->dump();
2160
      }
2161
      if (bad_lock != nullptr) {
2162
        tty->print(" bad_lock: ");
2163
        bad_lock->dump();
2164
      }
2165
      tty->print_cr("===============");
2166
    }
2167
#endif
2168
    return false;
2169
  }
2170

2171
  BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2172
  obj = bs->step_over_gc_barrier(obj);
2173
  // Look for external lock for the same object.
2174
  SafePointNode* sfn = this->as_SafePoint();
2175
  JVMState* youngest_jvms = sfn->jvms();
2176
  int max_depth = youngest_jvms->depth();
2177
  for (int depth = 1; depth <= max_depth; depth++) {
2178
    JVMState* jvms = youngest_jvms->of_depth(depth);
2179
    int num_mon  = jvms->nof_monitors();
2180
    // Loop over monitors
2181
    for (int idx = 0; idx < num_mon; idx++) {
2182
      Node* obj_node = sfn->monitor_obj(jvms, idx);
2183
      obj_node = bs->step_over_gc_barrier(obj_node);
2184
      BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
2185
      if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
2186
        box->set_nested();
2187
        return true;
2188
      }
2189
    }
2190
  }
2191
#ifdef ASSERT
2192
  this->log_lock_optimization(c, "eliminate_lock_INLR_3");
2193
#endif
2194
  return false;
2195
}
2196

2197
//=============================================================================
2198
uint UnlockNode::size_of() const { return sizeof(*this); }
2199

2200
//=============================================================================
2201
Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2202

2203
  // perform any generic optimizations first (returns 'this' or null)
2204
  Node *result = SafePointNode::Ideal(phase, can_reshape);
2205
  if (result != nullptr)  return result;
2206
  // Don't bother trying to transform a dead node
2207
  if (in(0) && in(0)->is_top())  return nullptr;
2208

2209
  // Now see if we can optimize away this unlock.  We don't actually
2210
  // remove the unlocking here, we simply set the _eliminate flag which
2211
  // prevents macro expansion from expanding the unlock.  Since we don't
2212
  // modify the graph, the value returned from this function is the
2213
  // one computed above.
2214
  // Escape state is defined after Parse phase.
2215
  if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
2216
    //
2217
    // If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2218
    //
2219
    ConnectionGraph *cgr = phase->C->congraph();
2220
    if (cgr != nullptr && cgr->can_eliminate_lock(this)) {
2221
      assert(!is_eliminated() || is_coarsened(), "sanity");
2222
      // The lock could be marked eliminated by lock coarsening
2223
      // code during first IGVN before EA. Replace coarsened flag
2224
      // to eliminate all associated locks/unlocks.
2225
#ifdef ASSERT
2226
      this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2227
#endif
2228
      this->set_non_esc_obj();
2229
    }
2230
  }
2231
  return result;
2232
}
2233

2234
void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock)  const {
2235
  if (C == nullptr) {
2236
    return;
2237
  }
2238
  CompileLog* log = C->log();
2239
  if (log != nullptr) {
2240
    Node* box = box_node();
2241
    Node* obj = obj_node();
2242
    int box_id = box != nullptr ? box->_idx : -1;
2243
    int obj_id = obj != nullptr ? obj->_idx : -1;
2244

2245
    log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'",
2246
          tag, C->compile_id(), this->_idx,
2247
          is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
2248
          kind_as_string(), box_id, obj_id, (bad_lock != nullptr ? bad_lock->_idx : -1));
2249
    log->stamp();
2250
    log->end_head();
2251
    JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
2252
    while (p != nullptr) {
2253
      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2254
      p = p->caller();
2255
    }
2256
    log->tail(tag);
2257
  }
2258
}
2259

2260
bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr* t_oop, PhaseValues* phase) {
2261
  if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
2262
    return dest_t->instance_id() == t_oop->instance_id();
2263
  }
2264

2265
  if (dest_t->isa_instptr() && !dest_t->is_instptr()->instance_klass()->equals(phase->C->env()->Object_klass())) {
2266
    // clone
2267
    if (t_oop->isa_aryptr()) {
2268
      return false;
2269
    }
2270
    if (!t_oop->isa_instptr()) {
2271
      return true;
2272
    }
2273
    if (dest_t->maybe_java_subtype_of(t_oop) || t_oop->maybe_java_subtype_of(dest_t)) {
2274
      return true;
2275
    }
2276
    // unrelated
2277
    return false;
2278
  }
2279

2280
  if (dest_t->isa_aryptr()) {
2281
    // arraycopy or array clone
2282
    if (t_oop->isa_instptr()) {
2283
      return false;
2284
    }
2285
    if (!t_oop->isa_aryptr()) {
2286
      return true;
2287
    }
2288

2289
    const Type* elem = dest_t->is_aryptr()->elem();
2290
    if (elem == Type::BOTTOM) {
2291
      // An array but we don't know what elements are
2292
      return true;
2293
    }
2294

2295
    dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();
2296
    uint dest_alias = phase->C->get_alias_index(dest_t);
2297
    uint t_oop_alias = phase->C->get_alias_index(t_oop);
2298

2299
    return dest_alias == t_oop_alias;
2300
  }
2301

2302
  return true;
2303
}
2304

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.