jdk

Форк
0
/
jvmciRuntime.cpp 
2270 строк · 87.7 Кб
1
/*
2
 * Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved.
3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
 *
5
 * This code is free software; you can redistribute it and/or modify it
6
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.
8
 *
9
 * This code is distributed in the hope that it will be useful, but WITHOUT
10
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12
 * version 2 for more details (a copy is included in the LICENSE file that
13
 * accompanied this code).
14
 *
15
 * You should have received a copy of the GNU General Public License version
16
 * 2 along with this work; if not, write to the Free Software Foundation,
17
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
 *
19
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
 * or visit www.oracle.com if you need additional information or have any
21
 * questions.
22
 */
23

24
#include "precompiled.hpp"
25
#include "classfile/javaClasses.inline.hpp"
26
#include "classfile/symbolTable.hpp"
27
#include "classfile/systemDictionary.hpp"
28
#include "classfile/vmClasses.hpp"
29
#include "compiler/compileBroker.hpp"
30
#include "gc/shared/collectedHeap.hpp"
31
#include "gc/shared/memAllocator.hpp"
32
#include "gc/shared/oopStorage.inline.hpp"
33
#include "jvmci/jniAccessMark.inline.hpp"
34
#include "jvmci/jvmciCompilerToVM.hpp"
35
#include "jvmci/jvmciCodeInstaller.hpp"
36
#include "jvmci/jvmciRuntime.hpp"
37
#include "jvmci/metadataHandles.hpp"
38
#include "logging/log.hpp"
39
#include "logging/logStream.hpp"
40
#include "memory/oopFactory.hpp"
41
#include "memory/universe.hpp"
42
#include "oops/constantPool.inline.hpp"
43
#include "oops/klass.inline.hpp"
44
#include "oops/method.inline.hpp"
45
#include "oops/objArrayKlass.hpp"
46
#include "oops/oop.inline.hpp"
47
#include "oops/typeArrayOop.inline.hpp"
48
#include "prims/jvmtiExport.hpp"
49
#include "prims/methodHandles.hpp"
50
#include "runtime/arguments.hpp"
51
#include "runtime/atomic.hpp"
52
#include "runtime/deoptimization.hpp"
53
#include "runtime/fieldDescriptor.inline.hpp"
54
#include "runtime/frame.inline.hpp"
55
#include "runtime/java.hpp"
56
#include "runtime/jniHandles.inline.hpp"
57
#include "runtime/mutex.hpp"
58
#include "runtime/reflection.hpp"
59
#include "runtime/sharedRuntime.hpp"
60
#include "runtime/synchronizer.hpp"
61
#if INCLUDE_G1GC
62
#include "gc/g1/g1BarrierSetRuntime.hpp"
63
#endif // INCLUDE_G1GC
64

65
// Simple helper to see if the caller of a runtime stub which
66
// entered the VM has been deoptimized
67

68
static bool caller_is_deopted() {
69
  JavaThread* thread = JavaThread::current();
70
  RegisterMap reg_map(thread,
71
                      RegisterMap::UpdateMap::skip,
72
                      RegisterMap::ProcessFrames::include,
73
                      RegisterMap::WalkContinuation::skip);
74
  frame runtime_frame = thread->last_frame();
75
  frame caller_frame = runtime_frame.sender(&reg_map);
76
  assert(caller_frame.is_compiled_frame(), "must be compiled");
77
  return caller_frame.is_deoptimized_frame();
78
}
79

80
// Stress deoptimization
81
static void deopt_caller() {
82
  if ( !caller_is_deopted()) {
83
    JavaThread* thread = JavaThread::current();
84
    RegisterMap reg_map(thread,
85
                        RegisterMap::UpdateMap::skip,
86
                        RegisterMap::ProcessFrames::include,
87
                        RegisterMap::WalkContinuation::skip);
88
    frame runtime_frame = thread->last_frame();
89
    frame caller_frame = runtime_frame.sender(&reg_map);
90
    Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint);
91
    assert(caller_is_deopted(), "Must be deoptimized");
92
  }
93
}
94

95
// Manages a scope for a JVMCI runtime call that attempts a heap allocation.
96
// If there is a pending OutOfMemoryError upon closing the scope and the runtime
97
// call is of the variety where allocation failure returns null without an
98
// exception, the following action is taken:
99
//   1. The pending OutOfMemoryError is cleared
100
//   2. null is written to JavaThread::_vm_result
101
class RetryableAllocationMark {
102
 private:
103
   InternalOOMEMark _iom;
104
 public:
105
  RetryableAllocationMark(JavaThread* thread) : _iom(thread) {}
106
  ~RetryableAllocationMark() {
107
    JavaThread* THREAD = _iom.thread(); // For exception macros.
108
    if (THREAD != nullptr) {
109
      if (HAS_PENDING_EXCEPTION) {
110
        oop ex = PENDING_EXCEPTION;
111
        THREAD->set_vm_result(nullptr);
112
        if (ex->is_a(vmClasses::OutOfMemoryError_klass())) {
113
          CLEAR_PENDING_EXCEPTION;
114
        }
115
      }
116
    }
117
  }
118
};
119

120
JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_or_null(JavaThread* current, Klass* klass))
121
  JRT_BLOCK;
122
  assert(klass->is_klass(), "not a class");
123
  Handle holder(current, klass->klass_holder()); // keep the klass alive
124
  InstanceKlass* h = InstanceKlass::cast(klass);
125
  {
126
    RetryableAllocationMark ram(current);
127
    h->check_valid_for_instantiation(true, CHECK);
128
    if (!h->is_initialized()) {
129
      // Cannot re-execute class initialization without side effects
130
      // so return without attempting the initialization
131
      current->set_vm_result(nullptr);
132
      return;
133
    }
134
    // allocate instance and return via TLS
135
    oop obj = h->allocate_instance(CHECK);
136
    current->set_vm_result(obj);
137
  }
138
  JRT_BLOCK_END;
139
  SharedRuntime::on_slowpath_allocation_exit(current);
140
JRT_END
141

142
JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_or_null(JavaThread* current, Klass* array_klass, jint length))
143
  JRT_BLOCK;
144
  // Note: no handle for klass needed since they are not used
145
  //       anymore after new_objArray() and no GC can happen before.
146
  //       (This may have to change if this code changes!)
147
  assert(array_klass->is_klass(), "not a class");
148
  oop obj;
149
  if (array_klass->is_typeArray_klass()) {
150
    BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type();
151
    RetryableAllocationMark ram(current);
152
    obj = oopFactory::new_typeArray(elt_type, length, CHECK);
153
  } else {
154
    Handle holder(current, array_klass->klass_holder()); // keep the klass alive
155
    Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
156
    RetryableAllocationMark ram(current);
157
    obj = oopFactory::new_objArray(elem_klass, length, CHECK);
158
  }
159
  // This is pretty rare but this runtime patch is stressful to deoptimization
160
  // if we deoptimize here so force a deopt to stress the path.
161
  if (DeoptimizeALot) {
162
    static int deopts = 0;
163
    if (deopts++ % 2 == 0) {
164
      // Drop the allocation
165
      obj = nullptr;
166
    } else {
167
      deopt_caller();
168
    }
169
  }
170
  current->set_vm_result(obj);
171
  JRT_BLOCK_END;
172
  SharedRuntime::on_slowpath_allocation_exit(current);
173
JRT_END
174

175
JRT_ENTRY(void, JVMCIRuntime::new_multi_array_or_null(JavaThread* current, Klass* klass, int rank, jint* dims))
176
  assert(klass->is_klass(), "not a class");
177
  assert(rank >= 1, "rank must be nonzero");
178
  Handle holder(current, klass->klass_holder()); // keep the klass alive
179
  RetryableAllocationMark ram(current);
180
  oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
181
  current->set_vm_result(obj);
182
JRT_END
183

184
JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_or_null(JavaThread* current, oopDesc* element_mirror, jint length))
185
  RetryableAllocationMark ram(current);
186
  oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK);
187
  current->set_vm_result(obj);
188
JRT_END
189

190
JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_or_null(JavaThread* current, oopDesc* type_mirror))
191
  InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror));
192

193
  if (klass == nullptr) {
194
    ResourceMark rm(current);
195
    THROW(vmSymbols::java_lang_InstantiationException());
196
  }
197
  RetryableAllocationMark ram(current);
198

199
  // Create new instance (the receiver)
200
  klass->check_valid_for_instantiation(false, CHECK);
201

202
  if (!klass->is_initialized()) {
203
    // Cannot re-execute class initialization without side effects
204
    // so return without attempting the initialization
205
    current->set_vm_result(nullptr);
206
    return;
207
  }
208

209
  oop obj = klass->allocate_instance(CHECK);
210
  current->set_vm_result(obj);
211
JRT_END
212

213
extern void vm_exit(int code);
214

215
// Enter this method from compiled code handler below. This is where we transition
216
// to VM mode. This is done as a helper routine so that the method called directly
217
// from compiled code does not have to transition to VM. This allows the entry
218
// method to see if the nmethod that we have just looked up a handler for has
219
// been deoptimized while we were in the vm. This simplifies the assembly code
220
// cpu directories.
221
//
222
// We are entering here from exception stub (via the entry method below)
223
// If there is a compiled exception handler in this method, we will continue there;
224
// otherwise we will unwind the stack and continue at the caller of top frame method
225
// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
226
// control the area where we can allow a safepoint. After we exit the safepoint area we can
227
// check to see if the handler we are going to return is now in a nmethod that has
228
// been deoptimized. If that is the case we return the deopt blob
229
// unpack_with_exception entry instead. This makes life for the exception blob easier
230
// because making that same check and diverting is painful from assembly language.
231
JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
232
  // Reset method handle flag.
233
  current->set_is_method_handle_return(false);
234

235
  Handle exception(current, ex);
236

237
  // The frame we rethrow the exception to might not have been processed by the GC yet.
238
  // The stack watermark barrier takes care of detecting that and ensuring the frame
239
  // has updated oops.
240
  StackWatermarkSet::after_unwind(current);
241

242
  nm = CodeCache::find_nmethod(pc);
243
  assert(nm != nullptr, "did not find nmethod");
244
  // Adjust the pc as needed/
245
  if (nm->is_deopt_pc(pc)) {
246
    RegisterMap map(current,
247
                    RegisterMap::UpdateMap::skip,
248
                    RegisterMap::ProcessFrames::include,
249
                    RegisterMap::WalkContinuation::skip);
250
    frame exception_frame = current->last_frame().sender(&map);
251
    // if the frame isn't deopted then pc must not correspond to the caller of last_frame
252
    assert(exception_frame.is_deoptimized_frame(), "must be deopted");
253
    pc = exception_frame.pc();
254
  }
255
  assert(exception.not_null(), "null exceptions should be handled by throw_exception");
256
  assert(oopDesc::is_oop(exception()), "just checking");
257
  // Check that exception is a subclass of Throwable
258
  assert(exception->is_a(vmClasses::Throwable_klass()),
259
         "Exception not subclass of Throwable");
260

261
  // debugging support
262
  // tracing
263
  if (log_is_enabled(Info, exceptions)) {
264
    ResourceMark rm;
265
    stringStream tempst;
266
    assert(nm->method() != nullptr, "Unexpected null method()");
267
    tempst.print("JVMCI compiled method <%s>\n"
268
                 " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
269
                 nm->method()->print_value_string(), p2i(pc), p2i(current));
270
    Exceptions::log_exception(exception, tempst.as_string());
271
  }
272
  // for AbortVMOnException flag
273
  Exceptions::debug_check_abort(exception);
274

275
  // Check the stack guard pages and re-enable them if necessary and there is
276
  // enough space on the stack to do so.  Use fast exceptions only if the guard
277
  // pages are enabled.
278
  bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
279

280
  if (JvmtiExport::can_post_on_exceptions()) {
281
    // To ensure correct notification of exception catches and throws
282
    // we have to deoptimize here.  If we attempted to notify the
283
    // catches and throws during this exception lookup it's possible
284
    // we could deoptimize on the way out of the VM and end back in
285
    // the interpreter at the throw site.  This would result in double
286
    // notifications since the interpreter would also notify about
287
    // these same catches and throws as it unwound the frame.
288

289
    RegisterMap reg_map(current,
290
                        RegisterMap::UpdateMap::include,
291
                        RegisterMap::ProcessFrames::include,
292
                        RegisterMap::WalkContinuation::skip);
293
    frame stub_frame = current->last_frame();
294
    frame caller_frame = stub_frame.sender(&reg_map);
295

296
    // We don't really want to deoptimize the nmethod itself since we
297
    // can actually continue in the exception handler ourselves but I
298
    // don't see an easy way to have the desired effect.
299
    Deoptimization::deoptimize_frame(current, caller_frame.id(), Deoptimization::Reason_constraint);
300
    assert(caller_is_deopted(), "Must be deoptimized");
301

302
    return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
303
  }
304

305
  // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
306
  if (guard_pages_enabled) {
307
    address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
308
    if (fast_continuation != nullptr) {
309
      // Set flag if return address is a method handle call site.
310
      current->set_is_method_handle_return(nm->is_method_handle_return(pc));
311
      return fast_continuation;
312
    }
313
  }
314

315
  // If the stack guard pages are enabled, check whether there is a handler in
316
  // the current method.  Otherwise (guard pages disabled), force an unwind and
317
  // skip the exception cache update (i.e., just leave continuation==nullptr).
318
  address continuation = nullptr;
319
  if (guard_pages_enabled) {
320

321
    // New exception handling mechanism can support inlined methods
322
    // with exception handlers since the mappings are from PC to PC
323

324
    // Clear out the exception oop and pc since looking up an
325
    // exception handler can cause class loading, which might throw an
326
    // exception and those fields are expected to be clear during
327
    // normal bytecode execution.
328
    current->clear_exception_oop_and_pc();
329

330
    bool recursive_exception = false;
331
    continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
332
    // If an exception was thrown during exception dispatch, the exception oop may have changed
333
    current->set_exception_oop(exception());
334
    current->set_exception_pc(pc);
335

336
    // The exception cache is used only for non-implicit exceptions
337
    // Update the exception cache only when another exception did
338
    // occur during the computation of the compiled exception handler
339
    // (e.g., when loading the class of the catch type).
340
    // Checking for exception oop equality is not
341
    // sufficient because some exceptions are pre-allocated and reused.
342
    if (continuation != nullptr && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) {
343
      nm->add_handler_for_exception_and_pc(exception, pc, continuation);
344
    }
345
  }
346

347
  // Set flag if return address is a method handle call site.
348
  current->set_is_method_handle_return(nm->is_method_handle_return(pc));
349

350
  if (log_is_enabled(Info, exceptions)) {
351
    ResourceMark rm;
352
    log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
353
                         " for exception thrown at PC " PTR_FORMAT,
354
                         p2i(current), p2i(continuation), p2i(pc));
355
  }
356

357
  return continuation;
358
JRT_END
359

360
// Enter this method from compiled code only if there is a Java exception handler
361
// in the method handling the exception.
362
// We are entering here from exception stub. We don't do a normal VM transition here.
363
// We do it in a helper. This is so we can check to see if the nmethod we have just
364
// searched for an exception handler has been deoptimized in the meantime.
365
address JVMCIRuntime::exception_handler_for_pc(JavaThread* current) {
366
  oop exception = current->exception_oop();
367
  address pc = current->exception_pc();
368
  // Still in Java mode
369
  DEBUG_ONLY(NoHandleMark nhm);
370
  nmethod* nm = nullptr;
371
  address continuation = nullptr;
372
  {
373
    // Enter VM mode by calling the helper
374
    ResetNoHandleMark rnhm;
375
    continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
376
  }
377
  // Back in JAVA, use no oops DON'T safepoint
378

379
  // Now check to see if the compiled method we were called from is now deoptimized.
380
  // If so we must return to the deopt blob and deoptimize the nmethod
381
  if (nm != nullptr && caller_is_deopted()) {
382
    continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
383
  }
384

385
  assert(continuation != nullptr, "no handler found");
386
  return continuation;
387
}
388

389
JRT_BLOCK_ENTRY(void, JVMCIRuntime::monitorenter(JavaThread* current, oopDesc* obj, BasicLock* lock))
390
  SharedRuntime::monitor_enter_helper(obj, lock, current);
391
JRT_END
392

393
JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* current, oopDesc* obj, BasicLock* lock))
394
  assert(current == JavaThread::current(), "pre-condition");
395
  assert(current->last_Java_sp(), "last_Java_sp must be set");
396
  assert(oopDesc::is_oop(obj), "invalid lock object pointer dected");
397
  SharedRuntime::monitor_exit_helper(obj, lock, current);
398
JRT_END
399

400
// Object.notify() fast path, caller does slow path
401
JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread* current, oopDesc* obj))
402
  assert(current == JavaThread::current(), "pre-condition");
403

404
  // Very few notify/notifyAll operations find any threads on the waitset, so
405
  // the dominant fast-path is to simply return.
406
  // Relatedly, it's critical that notify/notifyAll be fast in order to
407
  // reduce lock hold times.
408
  if (!SafepointSynchronize::is_synchronizing()) {
409
    if (ObjectSynchronizer::quick_notify(obj, current, false)) {
410
      return true;
411
    }
412
  }
413
  return false; // caller must perform slow path
414

415
JRT_END
416

417
// Object.notifyAll() fast path, caller does slow path
418
JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread* current, oopDesc* obj))
419
  assert(current == JavaThread::current(), "pre-condition");
420

421
  if (!SafepointSynchronize::is_synchronizing() ) {
422
    if (ObjectSynchronizer::quick_notify(obj, current, true)) {
423
      return true;
424
    }
425
  }
426
  return false; // caller must perform slow path
427

428
JRT_END
429

430
JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* current, const char* exception, const char* message))
431
  JRT_BLOCK;
432
  TempNewSymbol symbol = SymbolTable::new_symbol(exception);
433
  SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message);
434
  JRT_BLOCK_END;
435
  return caller_is_deopted();
436
JRT_END
437

438
JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* current, const char* exception, Klass* klass))
439
  JRT_BLOCK;
440
  ResourceMark rm(current);
441
  TempNewSymbol symbol = SymbolTable::new_symbol(exception);
442
  SharedRuntime::throw_and_post_jvmti_exception(current, symbol, klass->external_name());
443
  JRT_BLOCK_END;
444
  return caller_is_deopted();
445
JRT_END
446

447
JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_class_cast_exception(JavaThread* current, const char* exception, Klass* caster_klass, Klass* target_klass))
448
  JRT_BLOCK;
449
  ResourceMark rm(current);
450
  const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass);
451
  TempNewSymbol symbol = SymbolTable::new_symbol(exception);
452
  SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message);
453
  JRT_BLOCK_END;
454
  return caller_is_deopted();
455
JRT_END
456

457
class ArgumentPusher : public SignatureIterator {
458
 protected:
459
  JavaCallArguments*  _jca;
460
  jlong _argument;
461
  bool _pushed;
462

463
  jlong next_arg() {
464
    guarantee(!_pushed, "one argument");
465
    _pushed = true;
466
    return _argument;
467
  }
468

469
  float next_float() {
470
    guarantee(!_pushed, "one argument");
471
    _pushed = true;
472
    jvalue v;
473
    v.i = (jint) _argument;
474
    return v.f;
475
  }
476

477
  double next_double() {
478
    guarantee(!_pushed, "one argument");
479
    _pushed = true;
480
    jvalue v;
481
    v.j = _argument;
482
    return v.d;
483
  }
484

485
  Handle next_object() {
486
    guarantee(!_pushed, "one argument");
487
    _pushed = true;
488
    return Handle(Thread::current(), cast_to_oop(_argument));
489
  }
490

491
 public:
492
  ArgumentPusher(Symbol* signature, JavaCallArguments*  jca, jlong argument) : SignatureIterator(signature) {
493
    this->_return_type = T_ILLEGAL;
494
    _jca = jca;
495
    _argument = argument;
496
    _pushed = false;
497
    do_parameters_on(this);
498
  }
499

500
  void do_type(BasicType type) {
501
    switch (type) {
502
      case T_OBJECT:
503
      case T_ARRAY:   _jca->push_oop(next_object());         break;
504
      case T_BOOLEAN: _jca->push_int((jboolean) next_arg()); break;
505
      case T_CHAR:    _jca->push_int((jchar) next_arg());    break;
506
      case T_SHORT:   _jca->push_int((jint)  next_arg());    break;
507
      case T_BYTE:    _jca->push_int((jbyte) next_arg());    break;
508
      case T_INT:     _jca->push_int((jint)  next_arg());    break;
509
      case T_LONG:    _jca->push_long((jlong) next_arg());   break;
510
      case T_FLOAT:   _jca->push_float(next_float());        break;
511
      case T_DOUBLE:  _jca->push_double(next_double());      break;
512
      default:        fatal("Unexpected type %s", type2name(type));
513
    }
514
  }
515
};
516

517

518
JRT_ENTRY(jlong, JVMCIRuntime::invoke_static_method_one_arg(JavaThread* current, Method* method, jlong argument))
519
  ResourceMark rm;
520
  HandleMark hm(current);
521

522
  methodHandle mh(current, method);
523
  if (mh->size_of_parameters() > 1 && !mh->is_static()) {
524
    THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Invoked method must be static and take at most one argument");
525
  }
526

527
  Symbol* signature = mh->signature();
528
  JavaCallArguments jca(mh->size_of_parameters());
529
  ArgumentPusher jap(signature, &jca, argument);
530
  BasicType return_type = jap.return_type();
531
  JavaValue result(return_type);
532
  JavaCalls::call(&result, mh, &jca, CHECK_0);
533

534
  if (return_type == T_VOID) {
535
    return 0;
536
  } else if (return_type == T_OBJECT || return_type == T_ARRAY) {
537
    current->set_vm_result(result.get_oop());
538
    return 0;
539
  } else {
540
    jvalue *value = (jvalue *) result.get_value_addr();
541
    // Narrow the value down if required (Important on big endian machines)
542
    switch (return_type) {
543
      case T_BOOLEAN:
544
        return (jboolean) value->i;
545
      case T_BYTE:
546
        return (jbyte) value->i;
547
      case T_CHAR:
548
        return (jchar) value->i;
549
      case T_SHORT:
550
        return (jshort) value->i;
551
      case T_INT:
552
      case T_FLOAT:
553
        return value->i;
554
      case T_LONG:
555
      case T_DOUBLE:
556
        return value->j;
557
      default:
558
        fatal("Unexpected type %s", type2name(return_type));
559
        return 0;
560
    }
561
  }
562
JRT_END
563

564
JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline))
565
  ttyLocker ttyl;
566

567
  if (obj == nullptr) {
568
    tty->print("null");
569
  } else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) {
570
    if (oopDesc::is_oop_or_null(obj, true)) {
571
      char buf[O_BUFLEN];
572
      tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj));
573
    } else {
574
      tty->print(INTPTR_FORMAT, p2i(obj));
575
    }
576
  } else {
577
    ResourceMark rm;
578
    assert(obj != nullptr && java_lang_String::is_instance(obj), "must be");
579
    char *buf = java_lang_String::as_utf8_string(obj);
580
    tty->print_raw(buf);
581
  }
582
  if (newline) {
583
    tty->cr();
584
  }
585
JRT_END
586

587
#if INCLUDE_G1GC
588

589
void JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj) {
590
  G1BarrierSetRuntime::write_ref_field_pre_entry(obj, thread);
591
}
592

593
void JVMCIRuntime::write_barrier_post(JavaThread* thread, volatile CardValue* card_addr) {
594
  G1BarrierSetRuntime::write_ref_field_post_entry(card_addr, thread);
595
}
596

597
#endif // INCLUDE_G1GC
598

599
JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child))
600
  bool ret = true;
601
  if(!Universe::heap()->is_in(parent)) {
602
    tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent));
603
    parent->print();
604
    ret=false;
605
  }
606
  if(!Universe::heap()->is_in(child)) {
607
    tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child));
608
    child->print();
609
    ret=false;
610
  }
611
  return (jint)ret;
612
JRT_END
613

614
JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* current, jlong where, jlong format, jlong value))
615
  ResourceMark rm(current);
616
  const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where;
617
  char *detail_msg = nullptr;
618
  if (format != 0L) {
619
    const char* buf = (char*) (address) format;
620
    size_t detail_msg_length = strlen(buf) * 2;
621
    detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length);
622
    jio_snprintf(detail_msg, detail_msg_length, buf, value);
623
  }
624
  report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg);
625
JRT_END
626

627
JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread))
628
  oop exception = thread->exception_oop();
629
  assert(exception != nullptr, "npe");
630
  thread->set_exception_oop(nullptr);
631
  thread->set_exception_pc(0);
632
  return exception;
633
JRT_END
634

635
PRAGMA_DIAG_PUSH
636
PRAGMA_FORMAT_NONLITERAL_IGNORED
637
JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3))
638
  ResourceMark rm;
639
  tty->print(format, v1, v2, v3);
640
JRT_END
641
PRAGMA_DIAG_POP
642

643
static void decipher(jlong v, bool ignoreZero) {
644
  if (v != 0 || !ignoreZero) {
645
    void* p = (void *)(address) v;
646
    CodeBlob* cb = CodeCache::find_blob(p);
647
    if (cb) {
648
      if (cb->is_nmethod()) {
649
        char buf[O_BUFLEN];
650
        tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin()));
651
        return;
652
      }
653
      cb->print_value_on(tty);
654
      return;
655
    }
656
    if (Universe::heap()->is_in(p)) {
657
      oop obj = cast_to_oop(p);
658
      obj->print_value_on(tty);
659
      return;
660
    }
661
    tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v);
662
  }
663
}
664

665
PRAGMA_DIAG_PUSH
666
PRAGMA_FORMAT_NONLITERAL_IGNORED
667
JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3))
668
  ResourceMark rm;
669
  const char *buf = (const char*) (address) format;
670
  if (vmError) {
671
    if (buf != nullptr) {
672
      fatal(buf, v1, v2, v3);
673
    } else {
674
      fatal("<anonymous error>");
675
    }
676
  } else if (buf != nullptr) {
677
    tty->print(buf, v1, v2, v3);
678
  } else {
679
    assert(v2 == 0, "v2 != 0");
680
    assert(v3 == 0, "v3 != 0");
681
    decipher(v1, false);
682
  }
683
JRT_END
684
PRAGMA_DIAG_POP
685

686
JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline))
687
  union {
688
      jlong l;
689
      jdouble d;
690
      jfloat f;
691
  } uu;
692
  uu.l = value;
693
  switch (typeChar) {
694
    case 'Z': tty->print(value == 0 ? "false" : "true"); break;
695
    case 'B': tty->print("%d", (jbyte) value); break;
696
    case 'C': tty->print("%c", (jchar) value); break;
697
    case 'S': tty->print("%d", (jshort) value); break;
698
    case 'I': tty->print("%d", (jint) value); break;
699
    case 'F': tty->print("%f", uu.f); break;
700
    case 'J': tty->print(JLONG_FORMAT, value); break;
701
    case 'D': tty->print("%lf", uu.d); break;
702
    default: assert(false, "unknown typeChar"); break;
703
  }
704
  if (newline) {
705
    tty->cr();
706
  }
707
JRT_END
708

709
JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* current, oopDesc* obj))
710
  return (jint) obj->identity_hash();
711
JRT_END
712

713
JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* current, int value))
714
  deopt_caller();
715
  return (jint) value;
716
JRT_END
717

718

719
// Implementation of JVMCI.initializeRuntime()
720
// When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV.
721
JVM_ENTRY_NO_ENV(jobject, JVM_GetJVMCIRuntime(JNIEnv *libjvmciOrHotspotEnv, jclass c))
722
  JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv);
723
  if (!EnableJVMCI) {
724
    JVMCI_THROW_MSG_NULL(InternalError, "JVMCI is not enabled");
725
  }
726
  JVMCIENV->runtime()->initialize_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL);
727
  JVMCIObject runtime = JVMCIENV->runtime()->get_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL);
728
  return JVMCIENV->get_jobject(runtime);
729
JVM_END
730

731
// Implementation of Services.readSystemPropertiesInfo(int[] offsets)
732
// When called from libjvmci, `env` is a libjvmci env so use JVM_ENTRY_NO_ENV.
733
JVM_ENTRY_NO_ENV(jlong, JVM_ReadSystemPropertiesInfo(JNIEnv *env, jclass c, jintArray offsets_handle))
734
  JVMCIENV_FROM_JNI(thread, env);
735
  if (!EnableJVMCI) {
736
    JVMCI_THROW_MSG_0(InternalError, "JVMCI is not enabled");
737
  }
738
  JVMCIPrimitiveArray offsets = JVMCIENV->wrap(offsets_handle);
739
  JVMCIENV->put_int_at(offsets, 0, SystemProperty::next_offset_in_bytes());
740
  JVMCIENV->put_int_at(offsets, 1, SystemProperty::key_offset_in_bytes());
741
  JVMCIENV->put_int_at(offsets, 2, PathString::value_offset_in_bytes());
742

743
  return (jlong) Arguments::system_properties();
744
JVM_END
745

746

747
void JVMCIRuntime::call_getCompiler(TRAPS) {
748
  JVMCIENV_FROM_THREAD(THREAD);
749
  JVMCIENV->check_init(CHECK);
750
  JVMCIObject jvmciRuntime = JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_CHECK);
751
  initialize(JVMCI_CHECK);
752
  JVMCIENV->call_HotSpotJVMCIRuntime_getCompiler(jvmciRuntime, JVMCI_CHECK);
753
}
754

755
void JVMCINMethodData::initialize(int nmethod_mirror_index,
756
                                  int nmethod_entry_patch_offset,
757
                                  const char* nmethod_mirror_name,
758
                                  FailedSpeculation** failed_speculations)
759
{
760
  _failed_speculations = failed_speculations;
761
  _nmethod_mirror_index = nmethod_mirror_index;
762
  guarantee(nmethod_entry_patch_offset != -1, "missing entry barrier");
763
  _nmethod_entry_patch_offset = nmethod_entry_patch_offset;
764
  if (nmethod_mirror_name != nullptr) {
765
    _has_name = true;
766
    char* dest = (char*) name();
767
    strcpy(dest, nmethod_mirror_name);
768
  } else {
769
    _has_name = false;
770
  }
771
}
772

773
void JVMCINMethodData::copy(JVMCINMethodData* data) {
774
  initialize(data->_nmethod_mirror_index, data->_nmethod_entry_patch_offset, data->name(), data->_failed_speculations);
775
}
776

777
void JVMCINMethodData::add_failed_speculation(nmethod* nm, jlong speculation) {
778
  jlong index = speculation >> JVMCINMethodData::SPECULATION_LENGTH_BITS;
779
  guarantee(index >= 0 && index <= max_jint, "Encoded JVMCI speculation index is not a positive Java int: " INTPTR_FORMAT, index);
780
  int length = speculation & JVMCINMethodData::SPECULATION_LENGTH_MASK;
781
  if (index + length > (uint) nm->speculations_size()) {
782
    fatal(INTPTR_FORMAT "[index: " JLONG_FORMAT ", length: %d out of bounds wrt encoded speculations of length %u", speculation, index, length, nm->speculations_size());
783
  }
784
  address data = nm->speculations_begin() + index;
785
  FailedSpeculation::add_failed_speculation(nm, _failed_speculations, data, length);
786
}
787

788
oop JVMCINMethodData::get_nmethod_mirror(nmethod* nm, bool phantom_ref) {
789
  if (_nmethod_mirror_index == -1) {
790
    return nullptr;
791
  }
792
  if (phantom_ref) {
793
    return nm->oop_at_phantom(_nmethod_mirror_index);
794
  } else {
795
    return nm->oop_at(_nmethod_mirror_index);
796
  }
797
}
798

799
void JVMCINMethodData::set_nmethod_mirror(nmethod* nm, oop new_mirror) {
800
  guarantee(_nmethod_mirror_index != -1, "cannot set JVMCI mirror for nmethod");
801
  oop* addr = nm->oop_addr_at(_nmethod_mirror_index);
802
  guarantee(new_mirror != nullptr, "use clear_nmethod_mirror to clear the mirror");
803
  guarantee(*addr == nullptr, "cannot overwrite non-null mirror");
804

805
  *addr = new_mirror;
806

807
  // Since we've patched some oops in the nmethod,
808
  // (re)register it with the heap.
809
  MutexLocker ml(CodeCache_lock, Mutex::_no_safepoint_check_flag);
810
  Universe::heap()->register_nmethod(nm);
811
}
812

813
void JVMCINMethodData::invalidate_nmethod_mirror(nmethod* nm) {
814
  oop nmethod_mirror = get_nmethod_mirror(nm, /* phantom_ref */ false);
815
  if (nmethod_mirror == nullptr) {
816
    return;
817
  }
818

819
  // Update the values in the mirror if it still refers to nm.
820
  // We cannot use JVMCIObject to wrap the mirror as this is called
821
  // during GC, forbidding the creation of JNIHandles.
822
  JVMCIEnv* jvmciEnv = nullptr;
823
  nmethod* current = (nmethod*) HotSpotJVMCI::InstalledCode::address(jvmciEnv, nmethod_mirror);
824
  if (nm == current) {
825
    if (nm->is_unloading()) {
826
      // Break the link from the mirror to nm such that
827
      // future invocations via the mirror will result in
828
      // an InvalidInstalledCodeException.
829
      HotSpotJVMCI::InstalledCode::set_address(jvmciEnv, nmethod_mirror, 0);
830
      HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0);
831
      HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0);
832
    } else if (nm->is_not_entrant()) {
833
      // Zero the entry point so any new invocation will fail but keep
834
      // the address link around that so that existing activations can
835
      // be deoptimized via the mirror (i.e. JVMCIEnv::invalidate_installed_code).
836
      HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0);
837
      HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0);
838
    }
839
  }
840

841
  if (_nmethod_mirror_index != -1 && nm->is_unloading()) {
842
    // Drop the reference to the nmethod mirror object but don't clear the actual oop reference.  Otherwise
843
    // it would appear that the nmethod didn't need to be unloaded in the first place.
844
    _nmethod_mirror_index = -1;
845
  }
846
}
847

848
// Handles to objects in the Hotspot heap.
849
static OopStorage* object_handles() {
850
  return Universe::vm_global();
851
}
852

853
jlong JVMCIRuntime::make_oop_handle(const Handle& obj) {
854
  assert(!Universe::heap()->is_stw_gc_active(), "can't extend the root set during GC pause");
855
  assert(oopDesc::is_oop(obj()), "not an oop");
856

857
  oop* ptr = OopHandle(object_handles(), obj()).ptr_raw();
858
  MutexLocker ml(_lock);
859
  _oop_handles.append(ptr);
860
  return reinterpret_cast<jlong>(ptr);
861
}
862

863
#ifdef ASSERT
864
bool JVMCIRuntime::is_oop_handle(jlong handle) {
865
  const oop* ptr = (oop*) handle;
866
  return object_handles()->allocation_status(ptr) == OopStorage::ALLOCATED_ENTRY;
867
}
868
#endif
869

870
int JVMCIRuntime::release_and_clear_oop_handles() {
871
  guarantee(_num_attached_threads == cannot_be_attached, "only call during JVMCI runtime shutdown");
872
  int released = release_cleared_oop_handles();
873
  if (_oop_handles.length() != 0) {
874
    for (int i = 0; i < _oop_handles.length(); i++) {
875
      oop* oop_ptr = _oop_handles.at(i);
876
      guarantee(oop_ptr != nullptr, "release_cleared_oop_handles left null entry in _oop_handles");
877
      guarantee(NativeAccess<>::oop_load(oop_ptr) != nullptr, "unexpected cleared handle");
878
      // Satisfy OopHandles::release precondition that all
879
      // handles being released are null.
880
      NativeAccess<>::oop_store(oop_ptr, (oop) nullptr);
881
    }
882

883
    // Do the bulk release
884
    object_handles()->release(_oop_handles.adr_at(0), _oop_handles.length());
885
    released += _oop_handles.length();
886
  }
887
  _oop_handles.clear();
888
  return released;
889
}
890

891
static bool is_referent_non_null(oop* handle) {
892
  return handle != nullptr && NativeAccess<>::oop_load(handle) != nullptr;
893
}
894

895
// Swaps the elements in `array` at index `a` and index `b`
896
static void swap(GrowableArray<oop*>* array, int a, int b) {
897
  oop* tmp = array->at(a);
898
  array->at_put(a, array->at(b));
899
  array->at_put(b, tmp);
900
}
901

902
int JVMCIRuntime::release_cleared_oop_handles() {
903
  // Despite this lock, it's possible for another thread
904
  // to clear a handle's referent concurrently (e.g., a thread
905
  // executing IndirectHotSpotObjectConstantImpl.clear()).
906
  // This is benign - it means there can still be cleared
907
  // handles in _oop_handles when this method returns.
908
  MutexLocker ml(_lock);
909

910
  int next = 0;
911
  if (_oop_handles.length() != 0) {
912
    // Key for _oop_handles contents in example below:
913
    //   H: handle with non-null referent
914
    //   h: handle with clear (i.e., null) referent
915
    //   -: null entry
916

917
    // Shuffle all handles with non-null referents to the front of the list
918
    // Example: Before: 0HHh-Hh-
919
    //           After: HHHh--h-
920
    for (int i = 0; i < _oop_handles.length(); i++) {
921
      oop* handle = _oop_handles.at(i);
922
      if (is_referent_non_null(handle)) {
923
        if (i != next && !is_referent_non_null(_oop_handles.at(next))) {
924
          // Swap elements at index `next` and `i`
925
          swap(&_oop_handles, next, i);
926
        }
927
        next++;
928
      }
929
    }
930

931
    // `next` is now the index of the first null handle or handle with a null referent
932
    int num_alive = next;
933

934
    // Shuffle all null handles to the end of the list
935
    // Example: Before: HHHh--h-
936
    //           After: HHHhh---
937
    //       num_alive: 3
938
    for (int i = next; i < _oop_handles.length(); i++) {
939
      oop* handle = _oop_handles.at(i);
940
      if (handle != nullptr) {
941
        if (i != next && _oop_handles.at(next) == nullptr) {
942
          // Swap elements at index `next` and `i`
943
          swap(&_oop_handles, next, i);
944
        }
945
        next++;
946
      }
947
    }
948
    if (next != num_alive) {
949
      int to_release = next - num_alive;
950

951
      // `next` is now the index of the first null handle
952
      // Example: to_release: 2
953

954
      // Bulk release the handles with a null referent
955
      object_handles()->release(_oop_handles.adr_at(num_alive), to_release);
956

957
      // Truncate oop handles to only those with a non-null referent
958
      JVMCI_event_2("compacted oop handles in JVMCI runtime %d from %d to %d", _id, _oop_handles.length(), num_alive);
959
      _oop_handles.trunc_to(num_alive);
960
      // Example: HHH
961

962
      return to_release;
963
    }
964
  }
965
  return 0;
966
}
967

968
jmetadata JVMCIRuntime::allocate_handle(const methodHandle& handle) {
969
  MutexLocker ml(_lock);
970
  return _metadata_handles->allocate_handle(handle);
971
}
972

973
jmetadata JVMCIRuntime::allocate_handle(const constantPoolHandle& handle) {
974
  MutexLocker ml(_lock);
975
  return _metadata_handles->allocate_handle(handle);
976
}
977

978
void JVMCIRuntime::release_handle(jmetadata handle) {
979
  MutexLocker ml(_lock);
980
  _metadata_handles->chain_free_list(handle);
981
}
982

983
// Function for redirecting shared library JavaVM output to tty
984
static void _log(const char* buf, size_t count) {
985
  tty->write((char*) buf, count);
986
}
987

988
// Function for redirecting shared library JavaVM fatal error data to a log file.
989
// The log file is opened on first call to this function.
990
static void _fatal_log(const char* buf, size_t count) {
991
  JVMCI::fatal_log(buf, count);
992
}
993

994
// Function for shared library JavaVM to flush tty
995
static void _flush_log() {
996
  tty->flush();
997
}
998

999
// Function for shared library JavaVM to exit HotSpot on a fatal error
1000
static void _fatal() {
1001
  Thread* thread = Thread::current_or_null_safe();
1002
  if (thread != nullptr && thread->is_Java_thread()) {
1003
    JavaThread* jthread = JavaThread::cast(thread);
1004
    JVMCIRuntime* runtime = jthread->libjvmci_runtime();
1005
    if (runtime != nullptr) {
1006
      int javaVM_id = runtime->get_shared_library_javavm_id();
1007
      fatal("Fatal error in JVMCI shared library JavaVM[%d] owned by JVMCI runtime %d", javaVM_id, runtime->id());
1008
    }
1009
  }
1010
  intx current_thread_id = os::current_thread_id();
1011
  fatal("thread " INTX_FORMAT ": Fatal error in JVMCI shared library", current_thread_id);
1012
}
1013

1014
JVMCIRuntime::JVMCIRuntime(JVMCIRuntime* next, int id, bool for_compile_broker) :
1015
  _init_state(uninitialized),
1016
  _shared_library_javavm(nullptr),
1017
  _shared_library_javavm_id(0),
1018
  _id(id),
1019
  _next(next),
1020
  _metadata_handles(new MetadataHandles()),
1021
  _oop_handles(100, mtJVMCI),
1022
  _num_attached_threads(0),
1023
  _for_compile_broker(for_compile_broker)
1024
{
1025
  if (id == -1) {
1026
    _lock = JVMCIRuntime_lock;
1027
  } else {
1028
    stringStream lock_name;
1029
    lock_name.print("%s@%d", JVMCIRuntime_lock->name(), id);
1030
    Mutex::Rank lock_rank = DEBUG_ONLY(JVMCIRuntime_lock->rank()) NOT_DEBUG(Mutex::safepoint);
1031
    _lock = new PaddedMonitor(lock_rank, lock_name.as_string(/*c_heap*/true));
1032
  }
1033
  JVMCI_event_1("created new %s JVMCI runtime %d (" PTR_FORMAT ")",
1034
      id == -1 ? "Java" : for_compile_broker ? "CompileBroker" : "Compiler", id, p2i(this));
1035
}
1036

1037
JVMCIRuntime* JVMCIRuntime::select_runtime_in_shutdown(JavaThread* thread) {
1038
  assert(JVMCI_lock->owner() == thread, "must be");
1039
  // When shutting down, use the first available runtime.
1040
  for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1041
    if (runtime->_num_attached_threads != cannot_be_attached) {
1042
      runtime->pre_attach_thread(thread);
1043
      JVMCI_event_1("using pre-existing JVMCI runtime %d in shutdown", runtime->id());
1044
      return runtime;
1045
    }
1046
  }
1047
  // Lazily initialize JVMCI::_shutdown_compiler_runtime. Safe to
1048
  // do here since JVMCI_lock is locked.
1049
  if (JVMCI::_shutdown_compiler_runtime == nullptr) {
1050
    JVMCI::_shutdown_compiler_runtime = new JVMCIRuntime(nullptr, -2, true);
1051
  }
1052
  JVMCIRuntime* runtime = JVMCI::_shutdown_compiler_runtime;
1053
  JVMCI_event_1("using reserved shutdown JVMCI runtime %d", runtime->id());
1054
  return runtime;
1055
}
1056

1057
JVMCIRuntime* JVMCIRuntime::select_runtime(JavaThread* thread, JVMCIRuntime* skip, int* count) {
1058
  assert(JVMCI_lock->owner() == thread, "must be");
1059
  bool for_compile_broker = thread->is_Compiler_thread();
1060
  for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1061
    if (count != nullptr) {
1062
      (*count)++;
1063
    }
1064
    if (for_compile_broker == runtime->_for_compile_broker) {
1065
      int count = runtime->_num_attached_threads;
1066
      if (count == cannot_be_attached || runtime == skip) {
1067
        // Cannot attach to rt
1068
        continue;
1069
      }
1070
      // If selecting for repacking, ignore a runtime without an existing JavaVM
1071
      if (skip != nullptr && !runtime->has_shared_library_javavm()) {
1072
        continue;
1073
      }
1074

1075
      // Select first runtime with sufficient capacity
1076
      if (count < (int) JVMCIThreadsPerNativeLibraryRuntime) {
1077
        runtime->pre_attach_thread(thread);
1078
        return runtime;
1079
      }
1080
    }
1081
  }
1082
  return nullptr;
1083
}
1084

1085
JVMCIRuntime* JVMCIRuntime::select_or_create_runtime(JavaThread* thread) {
1086
  assert(JVMCI_lock->owner() == thread, "must be");
1087
  int id = 0;
1088
  JVMCIRuntime* runtime;
1089
  if (JVMCI::using_singleton_shared_library_runtime()) {
1090
    runtime = JVMCI::_compiler_runtimes;
1091
    guarantee(runtime != nullptr, "must be");
1092
    while (runtime->_num_attached_threads == cannot_be_attached) {
1093
      // Since there is only a singleton JVMCIRuntime, we
1094
      // need to wait for it to be available for attaching.
1095
      JVMCI_lock->wait();
1096
    }
1097
    runtime->pre_attach_thread(thread);
1098
  } else {
1099
    runtime = select_runtime(thread, nullptr, &id);
1100
  }
1101
  if (runtime == nullptr) {
1102
    runtime = new JVMCIRuntime(JVMCI::_compiler_runtimes, id, thread->is_Compiler_thread());
1103
    JVMCI::_compiler_runtimes = runtime;
1104
    runtime->pre_attach_thread(thread);
1105
  }
1106
  return runtime;
1107
}
1108

1109
JVMCIRuntime* JVMCIRuntime::for_thread(JavaThread* thread) {
1110
  assert(thread->libjvmci_runtime() == nullptr, "must be");
1111
  // Find the runtime with fewest attached threads
1112
  JVMCIRuntime* runtime = nullptr;
1113
  {
1114
    MutexLocker locker(JVMCI_lock);
1115
    runtime = JVMCI::in_shutdown() ? select_runtime_in_shutdown(thread) : select_or_create_runtime(thread);
1116
  }
1117
  runtime->attach_thread(thread);
1118
  return runtime;
1119
}
1120

1121
const char* JVMCIRuntime::attach_shared_library_thread(JavaThread* thread, JavaVM* javaVM) {
1122
  MutexLocker locker(JVMCI_lock);
1123
  for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1124
    if (runtime->_shared_library_javavm == javaVM) {
1125
      if (runtime->_num_attached_threads == cannot_be_attached) {
1126
        return "Cannot attach to JVMCI runtime that is shutting down";
1127
      }
1128
      runtime->pre_attach_thread(thread);
1129
      runtime->attach_thread(thread);
1130
      return nullptr;
1131
    }
1132
  }
1133
  return "Cannot find JVMCI runtime";
1134
}
1135

1136
void JVMCIRuntime::pre_attach_thread(JavaThread* thread) {
1137
  assert(JVMCI_lock->owner() == thread, "must be");
1138
  _num_attached_threads++;
1139
}
1140

1141
void JVMCIRuntime::attach_thread(JavaThread* thread) {
1142
  assert(thread->libjvmci_runtime() == nullptr, "must be");
1143
  thread->set_libjvmci_runtime(this);
1144
  guarantee(this == JVMCI::_shutdown_compiler_runtime ||
1145
            _num_attached_threads > 0,
1146
            "missing reservation in JVMCI runtime %d: _num_attached_threads=%d", _id, _num_attached_threads);
1147
  JVMCI_event_1("attached to JVMCI runtime %d%s", _id, JVMCI::in_shutdown() ? " [in JVMCI shutdown]" : "");
1148
}
1149

1150
void JVMCIRuntime::repack(JavaThread* thread) {
1151
  JVMCIRuntime* new_runtime = nullptr;
1152
  {
1153
    MutexLocker locker(JVMCI_lock);
1154
    if (JVMCI::using_singleton_shared_library_runtime() || _num_attached_threads != 1 || JVMCI::in_shutdown()) {
1155
      return;
1156
    }
1157
    new_runtime = select_runtime(thread, this, nullptr);
1158
  }
1159
  if (new_runtime != nullptr) {
1160
    JVMCI_event_1("Moving thread from JVMCI runtime %d to JVMCI runtime %d (%d attached)", _id, new_runtime->_id, new_runtime->_num_attached_threads - 1);
1161
    detach_thread(thread, "moving thread to another JVMCI runtime");
1162
    new_runtime->attach_thread(thread);
1163
  }
1164
}
1165

1166
bool JVMCIRuntime::detach_thread(JavaThread* thread, const char* reason, bool can_destroy_javavm) {
1167
  if (this == JVMCI::_shutdown_compiler_runtime || JVMCI::in_shutdown()) {
1168
    // Do minimal work when shutting down JVMCI
1169
    thread->set_libjvmci_runtime(nullptr);
1170
    return false;
1171
  }
1172
  bool should_shutdown;
1173
  bool destroyed_javavm = false;
1174
  {
1175
    MutexLocker locker(JVMCI_lock);
1176
    _num_attached_threads--;
1177
    JVMCI_event_1("detaching from JVMCI runtime %d: %s (%d other threads still attached)", _id, reason, _num_attached_threads);
1178
    should_shutdown = _num_attached_threads == 0 && !JVMCI::in_shutdown();
1179
    if (should_shutdown && !can_destroy_javavm) {
1180
      // If it's not possible to destroy the JavaVM on this thread then the VM must
1181
      // not be shutdown. This can happen when a shared library thread is the last
1182
      // thread to detach from a shared library JavaVM (e.g. GraalServiceThread).
1183
      JVMCI_event_1("Cancelled shut down of JVMCI runtime %d", _id);
1184
      should_shutdown = false;
1185
    }
1186
    if (should_shutdown) {
1187
      // Prevent other threads from attaching to this runtime
1188
      // while it is shutting down and destroying its JavaVM
1189
      _num_attached_threads = cannot_be_attached;
1190
    }
1191
  }
1192
  if (should_shutdown) {
1193
    // Release the JavaVM resources associated with this
1194
    // runtime once there are no threads attached to it.
1195
    shutdown();
1196
    if (can_destroy_javavm) {
1197
      destroyed_javavm = destroy_shared_library_javavm();
1198
      if (destroyed_javavm) {
1199
        // Can release all handles now that there's no code executing
1200
        // that could be using them. Handles for the Java JVMCI runtime
1201
        // are never released as we cannot guarantee all compiler threads
1202
        // using it have been stopped.
1203
        int released = release_and_clear_oop_handles();
1204
        JVMCI_event_1("releasing handles for JVMCI runtime %d: oop handles=%d, metadata handles={total=%d, live=%d, blocks=%d}",
1205
            _id,
1206
            released,
1207
            _metadata_handles->num_handles(),
1208
            _metadata_handles->num_handles() - _metadata_handles->num_free_handles(),
1209
            _metadata_handles->num_blocks());
1210

1211
        // No need to acquire _lock since this is the only thread accessing this runtime
1212
        _metadata_handles->clear();
1213
      }
1214
    }
1215
    // Allow other threads to attach to this runtime now
1216
    MutexLocker locker(JVMCI_lock);
1217
    _num_attached_threads = 0;
1218
    if (JVMCI::using_singleton_shared_library_runtime()) {
1219
      // Notify any thread waiting to attach to the
1220
      // singleton JVMCIRuntime
1221
      JVMCI_lock->notify();
1222
    }
1223
  }
1224
  thread->set_libjvmci_runtime(nullptr);
1225
  JVMCI_event_1("detached from JVMCI runtime %d", _id);
1226
  return destroyed_javavm;
1227
}
1228

1229
JNIEnv* JVMCIRuntime::init_shared_library_javavm(int* create_JavaVM_err, const char** err_msg) {
1230
  MutexLocker locker(_lock);
1231
  JavaVM* javaVM = _shared_library_javavm;
1232
  if (javaVM == nullptr) {
1233
#ifdef ASSERT
1234
    const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.forceEnomemOnLibjvmciInit");
1235
    if (val != nullptr && strcmp(val, "true") == 0) {
1236
      *create_JavaVM_err = JNI_ENOMEM;
1237
      return nullptr;
1238
    }
1239
#endif
1240

1241
    char* sl_path;
1242
    void* sl_handle = JVMCI::get_shared_library(sl_path, true);
1243

1244
    jint (*JNI_CreateJavaVM)(JavaVM **pvm, void **penv, void *args);
1245
    typedef jint (*JNI_CreateJavaVM_t)(JavaVM **pvm, void **penv, void *args);
1246

1247
    JNI_CreateJavaVM = CAST_TO_FN_PTR(JNI_CreateJavaVM_t, os::dll_lookup(sl_handle, "JNI_CreateJavaVM"));
1248
    if (JNI_CreateJavaVM == nullptr) {
1249
      fatal("Unable to find JNI_CreateJavaVM in %s", sl_path);
1250
    }
1251

1252
    ResourceMark rm;
1253
    JavaVMInitArgs vm_args;
1254
    vm_args.version = JNI_VERSION_1_2;
1255
    vm_args.ignoreUnrecognized = JNI_TRUE;
1256
    JavaVMOption options[6];
1257
    jlong javaVM_id = 0;
1258

1259
    // Protocol: JVMCI shared library JavaVM should support a non-standard "_javavm_id"
1260
    // option whose extraInfo info field is a pointer to which a unique id for the
1261
    // JavaVM should be written.
1262
    options[0].optionString = (char*) "_javavm_id";
1263
    options[0].extraInfo = &javaVM_id;
1264

1265
    options[1].optionString = (char*) "_log";
1266
    options[1].extraInfo = (void*) _log;
1267
    options[2].optionString = (char*) "_flush_log";
1268
    options[2].extraInfo = (void*) _flush_log;
1269
    options[3].optionString = (char*) "_fatal";
1270
    options[3].extraInfo = (void*) _fatal;
1271
    options[4].optionString = (char*) "_fatal_log";
1272
    options[4].extraInfo = (void*) _fatal_log;
1273
    options[5].optionString = (char*) "_createvm_errorstr";
1274
    options[5].extraInfo = (void*) err_msg;
1275

1276
    vm_args.version = JNI_VERSION_1_2;
1277
    vm_args.options = options;
1278
    vm_args.nOptions = sizeof(options) / sizeof(JavaVMOption);
1279

1280
    JNIEnv* env = nullptr;
1281
    int result = (*JNI_CreateJavaVM)(&javaVM, (void**) &env, &vm_args);
1282
    if (result == JNI_OK) {
1283
      guarantee(env != nullptr, "missing env");
1284
      _shared_library_javavm_id = javaVM_id;
1285
      _shared_library_javavm = javaVM;
1286
      JVMCI_event_1("created JavaVM[%ld]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id);
1287
      return env;
1288
    } else {
1289
      *create_JavaVM_err = result;
1290
    }
1291
  }
1292
  return nullptr;
1293
}
1294

1295
void JVMCIRuntime::init_JavaVM_info(jlongArray info, JVMCI_TRAPS) {
1296
  if (info != nullptr) {
1297
    typeArrayOop info_oop = (typeArrayOop) JNIHandles::resolve(info);
1298
    if (info_oop->length() < 4) {
1299
      JVMCI_THROW_MSG(ArrayIndexOutOfBoundsException, err_msg("%d < 4", info_oop->length()));
1300
    }
1301
    JavaVM* javaVM = _shared_library_javavm;
1302
    info_oop->long_at_put(0, (jlong) (address) javaVM);
1303
    info_oop->long_at_put(1, (jlong) (address) javaVM->functions->reserved0);
1304
    info_oop->long_at_put(2, (jlong) (address) javaVM->functions->reserved1);
1305
    info_oop->long_at_put(3, (jlong) (address) javaVM->functions->reserved2);
1306
  }
1307
}
1308

1309
#define JAVAVM_CALL_BLOCK                                             \
1310
  guarantee(thread != nullptr && _shared_library_javavm != nullptr, "npe"); \
1311
  ThreadToNativeFromVM ttnfv(thread);                                 \
1312
  JavaVM* javavm = _shared_library_javavm;
1313

1314
jint JVMCIRuntime::AttachCurrentThread(JavaThread* thread, void **penv, void *args) {
1315
  JAVAVM_CALL_BLOCK
1316
  return javavm->AttachCurrentThread(penv, args);
1317
}
1318

1319
jint JVMCIRuntime::AttachCurrentThreadAsDaemon(JavaThread* thread, void **penv, void *args) {
1320
  JAVAVM_CALL_BLOCK
1321
  return javavm->AttachCurrentThreadAsDaemon(penv, args);
1322
}
1323

1324
jint JVMCIRuntime::DetachCurrentThread(JavaThread* thread) {
1325
  JAVAVM_CALL_BLOCK
1326
  return javavm->DetachCurrentThread();
1327
}
1328

1329
jint JVMCIRuntime::GetEnv(JavaThread* thread, void **penv, jint version) {
1330
  JAVAVM_CALL_BLOCK
1331
  return javavm->GetEnv(penv, version);
1332
}
1333
#undef JAVAVM_CALL_BLOCK                                             \
1334

1335
void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(JVMCI_TRAPS) {
1336
  if (is_HotSpotJVMCIRuntime_initialized()) {
1337
    if (JVMCIENV->is_hotspot() && UseJVMCINativeLibrary) {
1338
      JVMCI_THROW_MSG(InternalError, "JVMCI has already been enabled in the JVMCI shared library");
1339
    }
1340
  }
1341

1342
  initialize(JVMCI_CHECK);
1343

1344
  // This should only be called in the context of the JVMCI class being initialized
1345
  JVMCIObject result = JVMCIENV->call_HotSpotJVMCIRuntime_runtime(JVMCI_CHECK);
1346
  result = JVMCIENV->make_global(result);
1347

1348
  OrderAccess::storestore();  // Ensure handle is fully constructed before publishing
1349
  _HotSpotJVMCIRuntime_instance = result;
1350

1351
  JVMCI::_is_initialized = true;
1352
}
1353

1354
JVMCIRuntime::InitState JVMCIRuntime::_shared_library_javavm_refs_init_state = JVMCIRuntime::uninitialized;
1355
JVMCIRuntime::InitState JVMCIRuntime::_hotspot_javavm_refs_init_state = JVMCIRuntime::uninitialized;
1356

1357
class JavaVMRefsInitialization: public StackObj {
1358
  JVMCIRuntime::InitState *_state;
1359
  int _id;
1360
 public:
1361
  JavaVMRefsInitialization(JVMCIRuntime::InitState *state, int id) {
1362
    _state = state;
1363
    _id = id;
1364
    // All classes, methods and fields in the JVMCI shared library
1365
    // are in the read-only part of the image. As such, these
1366
    // values (and any global handle derived from them via NewGlobalRef)
1367
    // are the same for all JavaVM instances created in the
1368
    // shared library which means they only need to be initialized
1369
    // once. In non-product mode, we check this invariant.
1370
    // See com.oracle.svm.jni.JNIImageHeapHandles.
1371
    // The same is true for Klass* and field offsets in HotSpotJVMCI.
1372
    if (*state == JVMCIRuntime::uninitialized DEBUG_ONLY( || true)) {
1373
      *state = JVMCIRuntime::being_initialized;
1374
      JVMCI_event_1("initializing JavaVM references in JVMCI runtime %d", id);
1375
    } else {
1376
      while (*state != JVMCIRuntime::fully_initialized) {
1377
        JVMCI_event_1("waiting for JavaVM references initialization in JVMCI runtime %d", id);
1378
        JVMCI_lock->wait();
1379
      }
1380
      JVMCI_event_1("done waiting for JavaVM references initialization in JVMCI runtime %d", id);
1381
    }
1382
  }
1383

1384
  ~JavaVMRefsInitialization() {
1385
    if (*_state == JVMCIRuntime::being_initialized) {
1386
      *_state = JVMCIRuntime::fully_initialized;
1387
      JVMCI_event_1("initialized JavaVM references in JVMCI runtime %d", _id);
1388
      JVMCI_lock->notify_all();
1389
    }
1390
  }
1391

1392
  bool should_init() {
1393
    return *_state == JVMCIRuntime::being_initialized;
1394
  }
1395
};
1396

1397
void JVMCIRuntime::initialize(JVMCI_TRAPS) {
1398
  // Check first without _lock
1399
  if (_init_state == fully_initialized) {
1400
    return;
1401
  }
1402

1403
  JavaThread* THREAD = JavaThread::current();
1404

1405
  MutexLocker locker(_lock);
1406
  // Check again under _lock
1407
  if (_init_state == fully_initialized) {
1408
    return;
1409
  }
1410

1411
  while (_init_state == being_initialized) {
1412
    JVMCI_event_1("waiting for initialization of JVMCI runtime %d", _id);
1413
    _lock->wait();
1414
    if (_init_state == fully_initialized) {
1415
      JVMCI_event_1("done waiting for initialization of JVMCI runtime %d", _id);
1416
      return;
1417
    }
1418
  }
1419

1420
  JVMCI_event_1("initializing JVMCI runtime %d", _id);
1421
  _init_state = being_initialized;
1422

1423
  {
1424
    MutexUnlocker unlock(_lock);
1425

1426
    HandleMark hm(THREAD);
1427
    ResourceMark rm(THREAD);
1428
    {
1429
      MutexLocker lock_jvmci(JVMCI_lock);
1430
      if (JVMCIENV->is_hotspot()) {
1431
        JavaVMRefsInitialization initialization(&_hotspot_javavm_refs_init_state, _id);
1432
        if (initialization.should_init()) {
1433
          MutexUnlocker unlock_jvmci(JVMCI_lock);
1434
          HotSpotJVMCI::compute_offsets(CHECK_EXIT);
1435
        }
1436
      } else {
1437
        JavaVMRefsInitialization initialization(&_shared_library_javavm_refs_init_state, _id);
1438
        if (initialization.should_init()) {
1439
          MutexUnlocker unlock_jvmci(JVMCI_lock);
1440
          JNIAccessMark jni(JVMCIENV, THREAD);
1441

1442
          JNIJVMCI::initialize_ids(jni.env());
1443
          if (jni()->ExceptionCheck()) {
1444
            jni()->ExceptionDescribe();
1445
            fatal("JNI exception during init");
1446
          }
1447
          // _lock is re-locked at this point
1448
        }
1449
      }
1450
    }
1451

1452
    if (!JVMCIENV->is_hotspot()) {
1453
      JNIAccessMark jni(JVMCIENV, THREAD);
1454
      JNIJVMCI::register_natives(jni.env());
1455
    }
1456
    create_jvmci_primitive_type(T_BOOLEAN, JVMCI_CHECK_EXIT_((void)0));
1457
    create_jvmci_primitive_type(T_BYTE, JVMCI_CHECK_EXIT_((void)0));
1458
    create_jvmci_primitive_type(T_CHAR, JVMCI_CHECK_EXIT_((void)0));
1459
    create_jvmci_primitive_type(T_SHORT, JVMCI_CHECK_EXIT_((void)0));
1460
    create_jvmci_primitive_type(T_INT, JVMCI_CHECK_EXIT_((void)0));
1461
    create_jvmci_primitive_type(T_LONG, JVMCI_CHECK_EXIT_((void)0));
1462
    create_jvmci_primitive_type(T_FLOAT, JVMCI_CHECK_EXIT_((void)0));
1463
    create_jvmci_primitive_type(T_DOUBLE, JVMCI_CHECK_EXIT_((void)0));
1464
    create_jvmci_primitive_type(T_VOID, JVMCI_CHECK_EXIT_((void)0));
1465

1466
    DEBUG_ONLY(CodeInstaller::verify_bci_constants(JVMCIENV);)
1467
  }
1468

1469
  _init_state = fully_initialized;
1470
  JVMCI_event_1("initialized JVMCI runtime %d", _id);
1471
  _lock->notify_all();
1472
}
1473

1474
JVMCIObject JVMCIRuntime::create_jvmci_primitive_type(BasicType type, JVMCI_TRAPS) {
1475
  JavaThread* THREAD = JavaThread::current(); // For exception macros.
1476
  // These primitive types are long lived and are created before the runtime is fully set up
1477
  // so skip registering them for scanning.
1478
  JVMCIObject mirror = JVMCIENV->get_object_constant(java_lang_Class::primitive_mirror(type), false, true);
1479
  if (JVMCIENV->is_hotspot()) {
1480
    JavaValue result(T_OBJECT);
1481
    JavaCallArguments args;
1482
    args.push_oop(Handle(THREAD, HotSpotJVMCI::resolve(mirror)));
1483
    args.push_int(type2char(type));
1484
    JavaCalls::call_static(&result, HotSpotJVMCI::HotSpotResolvedPrimitiveType::klass(), vmSymbols::fromMetaspace_name(), vmSymbols::primitive_fromMetaspace_signature(), &args, CHECK_(JVMCIObject()));
1485

1486
    return JVMCIENV->wrap(JNIHandles::make_local(result.get_oop()));
1487
  } else {
1488
    JNIAccessMark jni(JVMCIENV);
1489
    jobject result = jni()->CallStaticObjectMethod(JNIJVMCI::HotSpotResolvedPrimitiveType::clazz(),
1490
                                           JNIJVMCI::HotSpotResolvedPrimitiveType_fromMetaspace_method(),
1491
                                           mirror.as_jobject(), type2char(type));
1492
    if (jni()->ExceptionCheck()) {
1493
      return JVMCIObject();
1494
    }
1495
    return JVMCIENV->wrap(result);
1496
  }
1497
}
1498

1499
void JVMCIRuntime::initialize_JVMCI(JVMCI_TRAPS) {
1500
  if (!is_HotSpotJVMCIRuntime_initialized()) {
1501
    initialize(JVMCI_CHECK);
1502
    JVMCIENV->call_JVMCI_getRuntime(JVMCI_CHECK);
1503
    guarantee(_HotSpotJVMCIRuntime_instance.is_non_null(), "NPE in JVMCI runtime %d", _id);
1504
  }
1505
}
1506

1507
JVMCIObject JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_TRAPS) {
1508
  initialize(JVMCI_CHECK_(JVMCIObject()));
1509
  initialize_JVMCI(JVMCI_CHECK_(JVMCIObject()));
1510
  return _HotSpotJVMCIRuntime_instance;
1511
}
1512

1513
// Implementation of CompilerToVM.registerNatives()
1514
// When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV.
1515
JVM_ENTRY_NO_ENV(void, JVM_RegisterJVMCINatives(JNIEnv *libjvmciOrHotspotEnv, jclass c2vmClass))
1516
  JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv);
1517

1518
  if (!EnableJVMCI) {
1519
    JVMCI_THROW_MSG(InternalError, "JVMCI is not enabled");
1520
  }
1521

1522
  JVMCIENV->runtime()->initialize(JVMCIENV);
1523

1524
  {
1525
    ResourceMark rm(thread);
1526
    HandleMark hm(thread);
1527
    ThreadToNativeFromVM trans(thread);
1528

1529
    // Ensure _non_oop_bits is initialized
1530
    Universe::non_oop_word();
1531
    JNIEnv *env = libjvmciOrHotspotEnv;
1532
    if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count())) {
1533
      if (!env->ExceptionCheck()) {
1534
        for (int i = 0; i < CompilerToVM::methods_count(); i++) {
1535
          if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods + i, 1)) {
1536
            guarantee(false, "Error registering JNI method %s%s", CompilerToVM::methods[i].name, CompilerToVM::methods[i].signature);
1537
            break;
1538
          }
1539
        }
1540
      } else {
1541
        env->ExceptionDescribe();
1542
      }
1543
      guarantee(false, "Failed registering CompilerToVM native methods");
1544
    }
1545
  }
1546
JVM_END
1547

1548

1549
void JVMCIRuntime::shutdown() {
1550
  if (_HotSpotJVMCIRuntime_instance.is_non_null()) {
1551
    JVMCI_event_1("shutting down HotSpotJVMCIRuntime for JVMCI runtime %d", _id);
1552
    JVMCIEnv __stack_jvmci_env__(JavaThread::current(), _HotSpotJVMCIRuntime_instance.is_hotspot(),__FILE__, __LINE__);
1553
    JVMCIEnv* JVMCIENV = &__stack_jvmci_env__;
1554
    if (JVMCIENV->init_error() == JNI_OK) {
1555
      JVMCIENV->call_HotSpotJVMCIRuntime_shutdown(_HotSpotJVMCIRuntime_instance);
1556
    } else {
1557
      JVMCI_event_1("Error in JVMCIEnv for shutdown (err: %d)", JVMCIENV->init_error());
1558
    }
1559
    if (_num_attached_threads == cannot_be_attached) {
1560
      // Only when no other threads are attached to this runtime
1561
      // is it safe to reset these fields.
1562
      _HotSpotJVMCIRuntime_instance = JVMCIObject();
1563
      _init_state = uninitialized;
1564
      JVMCI_event_1("shut down JVMCI runtime %d", _id);
1565
    }
1566
  }
1567
}
1568

1569
bool JVMCIRuntime::destroy_shared_library_javavm() {
1570
  guarantee(_num_attached_threads == cannot_be_attached,
1571
      "cannot destroy JavaVM for JVMCI runtime %d with %d attached threads", _id, _num_attached_threads);
1572
  JavaVM* javaVM;
1573
  int javaVM_id = _shared_library_javavm_id;
1574
  {
1575
    // Exactly one thread can destroy the JavaVM
1576
    // and release the handle to it.
1577
    MutexLocker only_one(_lock);
1578
    javaVM = _shared_library_javavm;
1579
    if (javaVM != nullptr) {
1580
      _shared_library_javavm = nullptr;
1581
      _shared_library_javavm_id = 0;
1582
    }
1583
  }
1584
  if (javaVM != nullptr) {
1585
    int result;
1586
    {
1587
      // Must transition into native before calling into libjvmci
1588
      ThreadToNativeFromVM ttnfv(JavaThread::current());
1589
      result = javaVM->DestroyJavaVM();
1590
    }
1591
    if (result == JNI_OK) {
1592
      JVMCI_event_1("destroyed JavaVM[%d]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id);
1593
    } else {
1594
      warning("Non-zero result (%d) when calling JNI_DestroyJavaVM on JavaVM[%d]@" PTR_FORMAT, result, javaVM_id, p2i(javaVM));
1595
    }
1596
    return true;
1597
  }
1598
  return false;
1599
}
1600

1601
void JVMCIRuntime::bootstrap_finished(TRAPS) {
1602
  if (_HotSpotJVMCIRuntime_instance.is_non_null()) {
1603
    JVMCIENV_FROM_THREAD(THREAD);
1604
    JVMCIENV->check_init(CHECK);
1605
    JVMCIENV->call_HotSpotJVMCIRuntime_bootstrapFinished(_HotSpotJVMCIRuntime_instance, JVMCIENV);
1606
  }
1607
}
1608

1609
void JVMCIRuntime::describe_pending_hotspot_exception(JavaThread* THREAD) {
1610
  if (HAS_PENDING_EXCEPTION) {
1611
    Handle exception(THREAD, PENDING_EXCEPTION);
1612
    CLEAR_PENDING_EXCEPTION;
1613
    java_lang_Throwable::print_stack_trace(exception, tty);
1614

1615
    // Clear and ignore any exceptions raised during printing
1616
    CLEAR_PENDING_EXCEPTION;
1617
  }
1618
}
1619

1620

1621
void JVMCIRuntime::fatal_exception(JVMCIEnv* JVMCIENV, const char* message) {
1622
  JavaThread* THREAD = JavaThread::current(); // For exception macros.
1623

1624
  static volatile int report_error = 0;
1625
  if (!report_error && Atomic::cmpxchg(&report_error, 0, 1) == 0) {
1626
    // Only report an error once
1627
    tty->print_raw_cr(message);
1628
    if (JVMCIENV != nullptr) {
1629
      JVMCIENV->describe_pending_exception(tty);
1630
    } else {
1631
      describe_pending_hotspot_exception(THREAD);
1632
    }
1633
  } else {
1634
    // Allow error reporting thread time to print the stack trace.
1635
    THREAD->sleep(200);
1636
  }
1637
  fatal("Fatal JVMCI exception (see JVMCI Events for stack trace): %s", message);
1638
}
1639

1640
// ------------------------------------------------------------------
1641
// Note: the logic of this method should mirror the logic of
1642
// constantPoolOopDesc::verify_constant_pool_resolve.
1643
bool JVMCIRuntime::check_klass_accessibility(Klass* accessing_klass, Klass* resolved_klass) {
1644
  if (accessing_klass->is_objArray_klass()) {
1645
    accessing_klass = ObjArrayKlass::cast(accessing_klass)->bottom_klass();
1646
  }
1647
  if (!accessing_klass->is_instance_klass()) {
1648
    return true;
1649
  }
1650

1651
  if (resolved_klass->is_objArray_klass()) {
1652
    // Find the element klass, if this is an array.
1653
    resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass();
1654
  }
1655
  if (resolved_klass->is_instance_klass()) {
1656
    Reflection::VerifyClassAccessResults result =
1657
      Reflection::verify_class_access(accessing_klass, InstanceKlass::cast(resolved_klass), true);
1658
    return result == Reflection::ACCESS_OK;
1659
  }
1660
  return true;
1661
}
1662

1663
// ------------------------------------------------------------------
1664
Klass* JVMCIRuntime::get_klass_by_name_impl(Klass*& accessing_klass,
1665
                                          const constantPoolHandle& cpool,
1666
                                          Symbol* sym,
1667
                                          bool require_local) {
1668
  JVMCI_EXCEPTION_CONTEXT;
1669

1670
  // Now we need to check the SystemDictionary
1671
  if (sym->char_at(0) == JVM_SIGNATURE_CLASS &&
1672
      sym->char_at(sym->utf8_length()-1) == JVM_SIGNATURE_ENDCLASS) {
1673
    // This is a name from a signature.  Strip off the trimmings.
1674
    // Call recursive to keep scope of strippedsym.
1675
    TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1,
1676
                                                        sym->utf8_length()-2);
1677
    return get_klass_by_name_impl(accessing_klass, cpool, strippedsym, require_local);
1678
  }
1679

1680
  Handle loader;
1681
  Handle domain;
1682
  if (accessing_klass != nullptr) {
1683
    loader = Handle(THREAD, accessing_klass->class_loader());
1684
    domain = Handle(THREAD, accessing_klass->protection_domain());
1685
  }
1686

1687
  Klass* found_klass = require_local ?
1688
                         SystemDictionary::find_instance_or_array_klass(THREAD, sym, loader, domain) :
1689
                         SystemDictionary::find_constrained_instance_or_array_klass(THREAD, sym, loader);
1690

1691
  // If we fail to find an array klass, look again for its element type.
1692
  // The element type may be available either locally or via constraints.
1693
  // In either case, if we can find the element type in the system dictionary,
1694
  // we must build an array type around it.  The CI requires array klasses
1695
  // to be loaded if their element klasses are loaded, except when memory
1696
  // is exhausted.
1697
  if (sym->char_at(0) == JVM_SIGNATURE_ARRAY &&
1698
      (sym->char_at(1) == JVM_SIGNATURE_ARRAY || sym->char_at(1) == JVM_SIGNATURE_CLASS)) {
1699
    // We have an unloaded array.
1700
    // Build it on the fly if the element class exists.
1701
    TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1,
1702
                                                     sym->utf8_length()-1);
1703

1704
    // Get element Klass recursively.
1705
    Klass* elem_klass =
1706
      get_klass_by_name_impl(accessing_klass,
1707
                             cpool,
1708
                             elem_sym,
1709
                             require_local);
1710
    if (elem_klass != nullptr) {
1711
      // Now make an array for it
1712
      return elem_klass->array_klass(THREAD);
1713
    }
1714
  }
1715

1716
  if (found_klass == nullptr && !cpool.is_null() && cpool->has_preresolution()) {
1717
    // Look inside the constant pool for pre-resolved class entries.
1718
    for (int i = cpool->length() - 1; i >= 1; i--) {
1719
      if (cpool->tag_at(i).is_klass()) {
1720
        Klass*  kls = cpool->resolved_klass_at(i);
1721
        if (kls->name() == sym) {
1722
          return kls;
1723
        }
1724
      }
1725
    }
1726
  }
1727

1728
  return found_klass;
1729
}
1730

1731
// ------------------------------------------------------------------
1732
Klass* JVMCIRuntime::get_klass_by_name(Klass* accessing_klass,
1733
                                  Symbol* klass_name,
1734
                                  bool require_local) {
1735
  ResourceMark rm;
1736
  constantPoolHandle cpool;
1737
  return get_klass_by_name_impl(accessing_klass,
1738
                                                 cpool,
1739
                                                 klass_name,
1740
                                                 require_local);
1741
}
1742

1743
// ------------------------------------------------------------------
1744
// Implementation of get_klass_by_index.
1745
Klass* JVMCIRuntime::get_klass_by_index_impl(const constantPoolHandle& cpool,
1746
                                        int index,
1747
                                        bool& is_accessible,
1748
                                        Klass* accessor) {
1749
  JVMCI_EXCEPTION_CONTEXT;
1750
  Klass* klass = ConstantPool::klass_at_if_loaded(cpool, index);
1751
  Symbol* klass_name = nullptr;
1752
  if (klass == nullptr) {
1753
    klass_name = cpool->klass_name_at(index);
1754
  }
1755

1756
  if (klass == nullptr) {
1757
    // Not found in constant pool.  Use the name to do the lookup.
1758
    Klass* k = get_klass_by_name_impl(accessor,
1759
                                        cpool,
1760
                                        klass_name,
1761
                                        false);
1762
    // Calculate accessibility the hard way.
1763
    if (k == nullptr) {
1764
      is_accessible = false;
1765
    } else if (k->class_loader() != accessor->class_loader() &&
1766
               get_klass_by_name_impl(accessor, cpool, k->name(), true) == nullptr) {
1767
      // Loaded only remotely.  Not linked yet.
1768
      is_accessible = false;
1769
    } else {
1770
      // Linked locally, and we must also check public/private, etc.
1771
      is_accessible = check_klass_accessibility(accessor, k);
1772
    }
1773
    if (!is_accessible) {
1774
      return nullptr;
1775
    }
1776
    return k;
1777
  }
1778

1779
  // It is known to be accessible, since it was found in the constant pool.
1780
  is_accessible = true;
1781
  return klass;
1782
}
1783

1784
// ------------------------------------------------------------------
1785
// Get a klass from the constant pool.
1786
Klass* JVMCIRuntime::get_klass_by_index(const constantPoolHandle& cpool,
1787
                                   int index,
1788
                                   bool& is_accessible,
1789
                                   Klass* accessor) {
1790
  ResourceMark rm;
1791
  Klass* result = get_klass_by_index_impl(cpool, index, is_accessible, accessor);
1792
  return result;
1793
}
1794

1795
// ------------------------------------------------------------------
1796
// Perform an appropriate method lookup based on accessor, holder,
1797
// name, signature, and bytecode.
1798
Method* JVMCIRuntime::lookup_method(InstanceKlass* accessor,
1799
                                    Klass*        holder,
1800
                                    Symbol*       name,
1801
                                    Symbol*       sig,
1802
                                    Bytecodes::Code bc,
1803
                                    constantTag   tag) {
1804
  // Accessibility checks are performed in JVMCIEnv::get_method_by_index_impl().
1805
  assert(check_klass_accessibility(accessor, holder), "holder not accessible");
1806

1807
  LinkInfo link_info(holder, name, sig, accessor,
1808
                     LinkInfo::AccessCheck::required,
1809
                     LinkInfo::LoaderConstraintCheck::required,
1810
                     tag);
1811
  switch (bc) {
1812
    case Bytecodes::_invokestatic:
1813
      return LinkResolver::resolve_static_call_or_null(link_info);
1814
    case Bytecodes::_invokespecial:
1815
      return LinkResolver::resolve_special_call_or_null(link_info);
1816
    case Bytecodes::_invokeinterface:
1817
      return LinkResolver::linktime_resolve_interface_method_or_null(link_info);
1818
    case Bytecodes::_invokevirtual:
1819
      return LinkResolver::linktime_resolve_virtual_method_or_null(link_info);
1820
    default:
1821
      fatal("Unhandled bytecode: %s", Bytecodes::name(bc));
1822
      return nullptr; // silence compiler warnings
1823
  }
1824
}
1825

1826

1827
// ------------------------------------------------------------------
1828
Method* JVMCIRuntime::get_method_by_index_impl(const constantPoolHandle& cpool,
1829
                                               int index, Bytecodes::Code bc,
1830
                                               InstanceKlass* accessor) {
1831
  if (bc == Bytecodes::_invokedynamic) {
1832
    if (cpool->resolved_indy_entry_at(index)->is_resolved()) {
1833
      return cpool->resolved_indy_entry_at(index)->method();
1834
    }
1835

1836
    return nullptr;
1837
  }
1838

1839
  int holder_index = cpool->klass_ref_index_at(index, bc);
1840
  bool holder_is_accessible;
1841
  Klass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor);
1842

1843
  // Get the method's name and signature.
1844
  Symbol* name_sym = cpool->name_ref_at(index, bc);
1845
  Symbol* sig_sym  = cpool->signature_ref_at(index, bc);
1846

1847
  if (cpool->has_preresolution()
1848
      || ((holder == vmClasses::MethodHandle_klass() || holder == vmClasses::VarHandle_klass()) &&
1849
          MethodHandles::is_signature_polymorphic_name(holder, name_sym))) {
1850
    // Short-circuit lookups for JSR 292-related call sites.
1851
    // That is, do not rely only on name-based lookups, because they may fail
1852
    // if the names are not resolvable in the boot class loader (7056328).
1853
    switch (bc) {
1854
    case Bytecodes::_invokevirtual:
1855
    case Bytecodes::_invokeinterface:
1856
    case Bytecodes::_invokespecial:
1857
    case Bytecodes::_invokestatic:
1858
      {
1859
        Method* m = ConstantPool::method_at_if_loaded(cpool, index);
1860
        if (m != nullptr) {
1861
          return m;
1862
        }
1863
      }
1864
      break;
1865
    default:
1866
      break;
1867
    }
1868
  }
1869

1870
  if (holder_is_accessible) { // Our declared holder is loaded.
1871
    constantTag tag = cpool->tag_ref_at(index, bc);
1872
    Method* m = lookup_method(accessor, holder, name_sym, sig_sym, bc, tag);
1873
    if (m != nullptr) {
1874
      // We found the method.
1875
      return m;
1876
    }
1877
  }
1878

1879
  // Either the declared holder was not loaded, or the method could
1880
  // not be found.
1881

1882
  return nullptr;
1883
}
1884

1885
// ------------------------------------------------------------------
1886
InstanceKlass* JVMCIRuntime::get_instance_klass_for_declared_method_holder(Klass* method_holder) {
1887
  // For the case of <array>.clone(), the method holder can be an ArrayKlass*
1888
  // instead of an InstanceKlass*.  For that case simply pretend that the
1889
  // declared holder is Object.clone since that's where the call will bottom out.
1890
  if (method_holder->is_instance_klass()) {
1891
    return InstanceKlass::cast(method_holder);
1892
  } else if (method_holder->is_array_klass()) {
1893
    return vmClasses::Object_klass();
1894
  } else {
1895
    ShouldNotReachHere();
1896
  }
1897
  return nullptr;
1898
}
1899

1900

1901
// ------------------------------------------------------------------
1902
Method* JVMCIRuntime::get_method_by_index(const constantPoolHandle& cpool,
1903
                                     int index, Bytecodes::Code bc,
1904
                                     InstanceKlass* accessor) {
1905
  ResourceMark rm;
1906
  return get_method_by_index_impl(cpool, index, bc, accessor);
1907
}
1908

1909
// ------------------------------------------------------------------
1910
// Check for changes to the system dictionary during compilation
1911
// class loads, evolution, breakpoints
1912
JVMCI::CodeInstallResult JVMCIRuntime::validate_compile_task_dependencies(Dependencies* dependencies,
1913
                                                                          JVMCICompileState* compile_state,
1914
                                                                          char** failure_detail,
1915
                                                                          bool& failing_dep_is_call_site)
1916
{
1917
  failing_dep_is_call_site = false;
1918
  // If JVMTI capabilities were enabled during compile, the compilation is invalidated.
1919
  if (compile_state != nullptr && compile_state->jvmti_state_changed()) {
1920
    *failure_detail = (char*) "Jvmti state change during compilation invalidated dependencies";
1921
    return JVMCI::dependencies_failed;
1922
  }
1923

1924
  CompileTask* task = compile_state == nullptr ? nullptr : compile_state->task();
1925
  Dependencies::DepType result = dependencies->validate_dependencies(task, failure_detail);
1926

1927
  if (result == Dependencies::end_marker) {
1928
    return JVMCI::ok;
1929
  }
1930
  if (result == Dependencies::call_site_target_value) {
1931
    failing_dep_is_call_site = true;
1932
  }
1933
  return JVMCI::dependencies_failed;
1934
}
1935

1936
// Called after an upcall to `function` while compiling `method`.
1937
// If an exception occurred, it is cleared, the compilation state
1938
// is updated with the failure and this method returns true.
1939
// Otherwise, it returns false.
1940
static bool after_compiler_upcall(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, const char* function) {
1941
  if (JVMCIENV->has_pending_exception()) {
1942
    ResourceMark rm;
1943
    bool reason_on_C_heap = true;
1944
    const char* pending_string = nullptr;
1945
    const char* pending_stack_trace = nullptr;
1946
    JVMCIENV->pending_exception_as_string(&pending_string, &pending_stack_trace);
1947
    if (pending_string == nullptr) pending_string = "null";
1948
    // Using stringStream instead of err_msg to avoid truncation
1949
    stringStream st;
1950
    st.print("uncaught exception in %s [%s]", function, pending_string);
1951
    const char* failure_reason = os::strdup(st.freeze(), mtJVMCI);
1952
    if (failure_reason == nullptr) {
1953
      failure_reason = "uncaught exception";
1954
      reason_on_C_heap = false;
1955
    }
1956
    JVMCI_event_1("%s", failure_reason);
1957
    Log(jit, compilation) log;
1958
    if (log.is_info()) {
1959
      log.info("%s while compiling %s", failure_reason, method->name_and_sig_as_C_string());
1960
      if (pending_stack_trace != nullptr) {
1961
        LogStream ls(log.info());
1962
        ls.print_raw_cr(pending_stack_trace);
1963
      }
1964
    }
1965
    JVMCICompileState* compile_state = JVMCIENV->compile_state();
1966
    compile_state->set_failure(true, failure_reason, reason_on_C_heap);
1967
    compiler->on_upcall(failure_reason, compile_state);
1968
    return true;
1969
  }
1970
  return false;
1971
}
1972

1973
void JVMCIRuntime::compile_method(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, int entry_bci) {
1974
  JVMCI_EXCEPTION_CONTEXT
1975

1976
  JVMCICompileState* compile_state = JVMCIENV->compile_state();
1977

1978
  bool is_osr = entry_bci != InvocationEntryBci;
1979
  if (compiler->is_bootstrapping() && is_osr) {
1980
    // no OSR compilations during bootstrap - the compiler is just too slow at this point,
1981
    // and we know that there are no endless loops
1982
    compile_state->set_failure(true, "No OSR during bootstrap");
1983
    return;
1984
  }
1985
  if (JVMCI::in_shutdown()) {
1986
    if (UseJVMCINativeLibrary) {
1987
      JVMCIRuntime *runtime = JVMCI::compiler_runtime(thread, false);
1988
      if (runtime != nullptr) {
1989
        runtime->detach_thread(thread, "JVMCI shutdown pre-empted compilation");
1990
      }
1991
    }
1992
    compile_state->set_failure(false, "Avoiding compilation during shutdown");
1993
    return;
1994
  }
1995

1996
  HandleMark hm(thread);
1997
  JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
1998
  if (after_compiler_upcall(JVMCIENV, compiler, method, "get_HotSpotJVMCIRuntime")) {
1999
    return;
2000
  }
2001
  JVMCIObject jvmci_method = JVMCIENV->get_jvmci_method(method, JVMCIENV);
2002
  if (after_compiler_upcall(JVMCIENV, compiler, method, "get_jvmci_method")) {
2003
    return;
2004
  }
2005

2006
  JVMCIObject result_object = JVMCIENV->call_HotSpotJVMCIRuntime_compileMethod(receiver, jvmci_method, entry_bci,
2007
                                                                     (jlong) compile_state, compile_state->task()->compile_id());
2008
#ifdef ASSERT
2009
  if (JVMCIENV->has_pending_exception()) {
2010
    const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.compileMethodExceptionIsFatal");
2011
    if (val != nullptr && strcmp(val, "true") == 0) {
2012
      fatal_exception(JVMCIENV, "testing JVMCI fatal exception handling");
2013
    }
2014
  }
2015
#endif
2016

2017
  if (after_compiler_upcall(JVMCIENV, compiler, method, "call_HotSpotJVMCIRuntime_compileMethod")) {
2018
    return;
2019
  }
2020
  compiler->on_upcall(nullptr);
2021
  guarantee(result_object.is_non_null(), "call_HotSpotJVMCIRuntime_compileMethod returned null");
2022
  JVMCIObject failure_message = JVMCIENV->get_HotSpotCompilationRequestResult_failureMessage(result_object);
2023
  if (failure_message.is_non_null()) {
2024
    // Copy failure reason into resource memory first ...
2025
    const char* failure_reason = JVMCIENV->as_utf8_string(failure_message);
2026
    // ... and then into the C heap.
2027
    failure_reason = os::strdup(failure_reason, mtJVMCI);
2028
    bool retryable = JVMCIENV->get_HotSpotCompilationRequestResult_retry(result_object) != 0;
2029
    compile_state->set_failure(retryable, failure_reason, true);
2030
  } else {
2031
    if (!compile_state->task()->is_success()) {
2032
      compile_state->set_failure(true, "no nmethod produced");
2033
    } else {
2034
      compile_state->task()->set_num_inlined_bytecodes(JVMCIENV->get_HotSpotCompilationRequestResult_inlinedBytecodes(result_object));
2035
      compiler->inc_methods_compiled();
2036
    }
2037
  }
2038
  if (compiler->is_bootstrapping()) {
2039
    compiler->set_bootstrap_compilation_request_handled();
2040
  }
2041
}
2042

2043
bool JVMCIRuntime::is_gc_supported(JVMCIEnv* JVMCIENV, CollectedHeap::Name name) {
2044
  JVMCI_EXCEPTION_CONTEXT
2045

2046
  JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
2047
  if (JVMCIENV->has_pending_exception()) {
2048
    fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization");
2049
  }
2050
  return JVMCIENV->call_HotSpotJVMCIRuntime_isGCSupported(receiver, (int) name);
2051
}
2052

2053
bool JVMCIRuntime::is_intrinsic_supported(JVMCIEnv* JVMCIENV, jint id) {
2054
  JVMCI_EXCEPTION_CONTEXT
2055

2056
  JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
2057
  if (JVMCIENV->has_pending_exception()) {
2058
    fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization");
2059
  }
2060
  return JVMCIENV->call_HotSpotJVMCIRuntime_isIntrinsicSupported(receiver, id);
2061
}
2062

2063
// ------------------------------------------------------------------
2064
JVMCI::CodeInstallResult JVMCIRuntime::register_method(JVMCIEnv* JVMCIENV,
2065
                                                       const methodHandle& method,
2066
                                                       nmethod*& nm,
2067
                                                       int entry_bci,
2068
                                                       CodeOffsets* offsets,
2069
                                                       int orig_pc_offset,
2070
                                                       CodeBuffer* code_buffer,
2071
                                                       int frame_words,
2072
                                                       OopMapSet* oop_map_set,
2073
                                                       ExceptionHandlerTable* handler_table,
2074
                                                       ImplicitExceptionTable* implicit_exception_table,
2075
                                                       AbstractCompiler* compiler,
2076
                                                       DebugInformationRecorder* debug_info,
2077
                                                       Dependencies* dependencies,
2078
                                                       int compile_id,
2079
                                                       bool has_monitors,
2080
                                                       bool has_unsafe_access,
2081
                                                       bool has_wide_vector,
2082
                                                       JVMCIObject compiled_code,
2083
                                                       JVMCIObject nmethod_mirror,
2084
                                                       FailedSpeculation** failed_speculations,
2085
                                                       char* speculations,
2086
                                                       int speculations_len,
2087
                                                       int nmethod_entry_patch_offset) {
2088
  JVMCI_EXCEPTION_CONTEXT;
2089
  CompLevel comp_level = CompLevel_full_optimization;
2090
  char* failure_detail = nullptr;
2091

2092
  bool install_default = JVMCIENV->get_HotSpotNmethod_isDefault(nmethod_mirror) != 0;
2093
  assert(JVMCIENV->isa_HotSpotNmethod(nmethod_mirror), "must be");
2094
  JVMCIObject name = JVMCIENV->get_InstalledCode_name(nmethod_mirror);
2095
  const char* nmethod_mirror_name = name.is_null() ? nullptr : JVMCIENV->as_utf8_string(name);
2096
  int nmethod_mirror_index;
2097
  if (!install_default) {
2098
    // Reserve or initialize mirror slot in the oops table.
2099
    OopRecorder* oop_recorder = debug_info->oop_recorder();
2100
    nmethod_mirror_index = oop_recorder->allocate_oop_index(nmethod_mirror.is_hotspot() ? nmethod_mirror.as_jobject() : nullptr);
2101
  } else {
2102
    // A default HotSpotNmethod mirror is never tracked by the nmethod
2103
    nmethod_mirror_index = -1;
2104
  }
2105

2106
  JVMCI::CodeInstallResult result(JVMCI::ok);
2107

2108
  // We require method counters to store some method state (max compilation levels) required by the compilation policy.
2109
  if (method->get_method_counters(THREAD) == nullptr) {
2110
    result = JVMCI::cache_full;
2111
    failure_detail = (char*) "can't create method counters";
2112
  }
2113

2114
  if (result == JVMCI::ok) {
2115
    // Check if memory should be freed before allocation
2116
    CodeCache::gc_on_allocation();
2117

2118
    // To prevent compile queue updates.
2119
    MutexLocker locker(THREAD, MethodCompileQueue_lock);
2120

2121
    // Prevent InstanceKlass::add_to_hierarchy from running
2122
    // and invalidating our dependencies until we install this method.
2123
    MutexLocker ml(Compile_lock);
2124

2125
    // Encode the dependencies now, so we can check them right away.
2126
    dependencies->encode_content_bytes();
2127

2128
    // Record the dependencies for the current compile in the log
2129
    if (LogCompilation) {
2130
      for (Dependencies::DepStream deps(dependencies); deps.next(); ) {
2131
        deps.log_dependency();
2132
      }
2133
    }
2134

2135
    // Check for {class loads, evolution, breakpoints} during compilation
2136
    JVMCICompileState* compile_state = JVMCIENV->compile_state();
2137
    bool failing_dep_is_call_site;
2138
    result = validate_compile_task_dependencies(dependencies, compile_state, &failure_detail, failing_dep_is_call_site);
2139
    if (result != JVMCI::ok) {
2140
      // While not a true deoptimization, it is a preemptive decompile.
2141
      MethodData* mdp = method()->method_data();
2142
      if (mdp != nullptr && !failing_dep_is_call_site) {
2143
        mdp->inc_decompile_count();
2144
#ifdef ASSERT
2145
        if (mdp->decompile_count() > (uint)PerMethodRecompilationCutoff) {
2146
          ResourceMark m;
2147
          tty->print_cr("WARN: endless recompilation of %s. Method was set to not compilable.", method()->name_and_sig_as_C_string());
2148
        }
2149
#endif
2150
      }
2151

2152
      // All buffers in the CodeBuffer are allocated in the CodeCache.
2153
      // If the code buffer is created on each compile attempt
2154
      // as in C2, then it must be freed.
2155
      //code_buffer->free_blob();
2156
    } else {
2157
      JVMCINMethodData* data = JVMCINMethodData::create(nmethod_mirror_index,
2158
                                                        nmethod_entry_patch_offset,
2159
                                                        nmethod_mirror_name,
2160
                                                        failed_speculations);
2161
      nm =  nmethod::new_nmethod(method,
2162
                                 compile_id,
2163
                                 entry_bci,
2164
                                 offsets,
2165
                                 orig_pc_offset,
2166
                                 debug_info, dependencies, code_buffer,
2167
                                 frame_words, oop_map_set,
2168
                                 handler_table, implicit_exception_table,
2169
                                 compiler, comp_level,
2170
                                 speculations, speculations_len, data);
2171

2172

2173
      // Free codeBlobs
2174
      if (nm == nullptr) {
2175
        // The CodeCache is full.  Print out warning and disable compilation.
2176
        {
2177
          MutexUnlocker ml(Compile_lock);
2178
          MutexUnlocker locker(MethodCompileQueue_lock);
2179
          CompileBroker::handle_full_code_cache(CodeCache::get_code_blob_type(comp_level));
2180
        }
2181
        result = JVMCI::cache_full;
2182
      } else {
2183
        nm->set_has_unsafe_access(has_unsafe_access);
2184
        nm->set_has_wide_vectors(has_wide_vector);
2185
        nm->set_has_monitors(has_monitors);
2186
        nm->set_has_scoped_access(true); // conservative
2187

2188
        JVMCINMethodData* data = nm->jvmci_nmethod_data();
2189
        assert(data != nullptr, "must be");
2190
        if (install_default) {
2191
          assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == nullptr, "must be");
2192
          if (entry_bci == InvocationEntryBci) {
2193
            // If there is an old version we're done with it
2194
            nmethod* old = method->code();
2195
            if (TraceMethodReplacement && old != nullptr) {
2196
              ResourceMark rm;
2197
              char *method_name = method->name_and_sig_as_C_string();
2198
              tty->print_cr("Replacing method %s", method_name);
2199
            }
2200
            if (old != nullptr ) {
2201
              old->make_not_entrant();
2202
            }
2203

2204
            LogTarget(Info, nmethod, install) lt;
2205
            if (lt.is_enabled()) {
2206
              ResourceMark rm;
2207
              char *method_name = method->name_and_sig_as_C_string();
2208
              lt.print("Installing method (%d) %s [entry point: %p]",
2209
                        comp_level, method_name, nm->entry_point());
2210
            }
2211
            // Allow the code to be executed
2212
            MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2213
            if (nm->make_in_use()) {
2214
              method->set_code(method, nm);
2215
            } else {
2216
              result = JVMCI::nmethod_reclaimed;
2217
            }
2218
          } else {
2219
            LogTarget(Info, nmethod, install) lt;
2220
            if (lt.is_enabled()) {
2221
              ResourceMark rm;
2222
              char *method_name = method->name_and_sig_as_C_string();
2223
              lt.print("Installing osr method (%d) %s @ %d",
2224
                        comp_level, method_name, entry_bci);
2225
            }
2226
            MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2227
            if (nm->make_in_use()) {
2228
              InstanceKlass::cast(method->method_holder())->add_osr_nmethod(nm);
2229
            } else {
2230
              result = JVMCI::nmethod_reclaimed;
2231
            }
2232
          }
2233
        } else {
2234
          assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == HotSpotJVMCI::resolve(nmethod_mirror), "must be");
2235
          MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2236
          if (!nm->make_in_use()) {
2237
            result = JVMCI::nmethod_reclaimed;
2238
          }
2239
        }
2240
      }
2241
    }
2242
  }
2243

2244
  // String creation must be done outside lock
2245
  if (failure_detail != nullptr) {
2246
    // A failure to allocate the string is silently ignored.
2247
    JVMCIObject message = JVMCIENV->create_string(failure_detail, JVMCIENV);
2248
    JVMCIENV->set_HotSpotCompiledNmethod_installationFailureMessage(compiled_code, message);
2249
  }
2250

2251
  if (result == JVMCI::ok) {
2252
    JVMCICompileState* state = JVMCIENV->compile_state();
2253
    if (state != nullptr) {
2254
      // Compilation succeeded, post what we know about it
2255
      nm->post_compiled_method(state->task());
2256
    }
2257
  }
2258

2259
  return result;
2260
}
2261

2262
void JVMCIRuntime::post_compile(JavaThread* thread) {
2263
  if (UseJVMCINativeLibrary && JVMCI::one_shared_library_javavm_per_compilation()) {
2264
    if (thread->libjvmci_runtime() != nullptr) {
2265
      detach_thread(thread, "single use JavaVM");
2266
    } else {
2267
      // JVMCI shutdown may have already detached the thread
2268
    }
2269
  }
2270
}
2271

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.