2
* Copyright (c) 2012, 2024, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
24
#include "precompiled.hpp"
25
#include "classfile/javaClasses.inline.hpp"
26
#include "classfile/symbolTable.hpp"
27
#include "classfile/systemDictionary.hpp"
28
#include "classfile/vmClasses.hpp"
29
#include "compiler/compileBroker.hpp"
30
#include "gc/shared/collectedHeap.hpp"
31
#include "gc/shared/memAllocator.hpp"
32
#include "gc/shared/oopStorage.inline.hpp"
33
#include "jvmci/jniAccessMark.inline.hpp"
34
#include "jvmci/jvmciCompilerToVM.hpp"
35
#include "jvmci/jvmciCodeInstaller.hpp"
36
#include "jvmci/jvmciRuntime.hpp"
37
#include "jvmci/metadataHandles.hpp"
38
#include "logging/log.hpp"
39
#include "logging/logStream.hpp"
40
#include "memory/oopFactory.hpp"
41
#include "memory/universe.hpp"
42
#include "oops/constantPool.inline.hpp"
43
#include "oops/klass.inline.hpp"
44
#include "oops/method.inline.hpp"
45
#include "oops/objArrayKlass.hpp"
46
#include "oops/oop.inline.hpp"
47
#include "oops/typeArrayOop.inline.hpp"
48
#include "prims/jvmtiExport.hpp"
49
#include "prims/methodHandles.hpp"
50
#include "runtime/arguments.hpp"
51
#include "runtime/atomic.hpp"
52
#include "runtime/deoptimization.hpp"
53
#include "runtime/fieldDescriptor.inline.hpp"
54
#include "runtime/frame.inline.hpp"
55
#include "runtime/java.hpp"
56
#include "runtime/jniHandles.inline.hpp"
57
#include "runtime/mutex.hpp"
58
#include "runtime/reflection.hpp"
59
#include "runtime/sharedRuntime.hpp"
60
#include "runtime/synchronizer.hpp"
62
#include "gc/g1/g1BarrierSetRuntime.hpp"
65
// Simple helper to see if the caller of a runtime stub which
66
// entered the VM has been deoptimized
68
static bool caller_is_deopted() {
69
JavaThread* thread = JavaThread::current();
70
RegisterMap reg_map(thread,
71
RegisterMap::UpdateMap::skip,
72
RegisterMap::ProcessFrames::include,
73
RegisterMap::WalkContinuation::skip);
74
frame runtime_frame = thread->last_frame();
75
frame caller_frame = runtime_frame.sender(®_map);
76
assert(caller_frame.is_compiled_frame(), "must be compiled");
77
return caller_frame.is_deoptimized_frame();
80
// Stress deoptimization
81
static void deopt_caller() {
82
if ( !caller_is_deopted()) {
83
JavaThread* thread = JavaThread::current();
84
RegisterMap reg_map(thread,
85
RegisterMap::UpdateMap::skip,
86
RegisterMap::ProcessFrames::include,
87
RegisterMap::WalkContinuation::skip);
88
frame runtime_frame = thread->last_frame();
89
frame caller_frame = runtime_frame.sender(®_map);
90
Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint);
91
assert(caller_is_deopted(), "Must be deoptimized");
95
// Manages a scope for a JVMCI runtime call that attempts a heap allocation.
96
// If there is a pending OutOfMemoryError upon closing the scope and the runtime
97
// call is of the variety where allocation failure returns null without an
98
// exception, the following action is taken:
99
// 1. The pending OutOfMemoryError is cleared
100
// 2. null is written to JavaThread::_vm_result
101
class RetryableAllocationMark {
103
InternalOOMEMark _iom;
105
RetryableAllocationMark(JavaThread* thread) : _iom(thread) {}
106
~RetryableAllocationMark() {
107
JavaThread* THREAD = _iom.thread(); // For exception macros.
108
if (THREAD != nullptr) {
109
if (HAS_PENDING_EXCEPTION) {
110
oop ex = PENDING_EXCEPTION;
111
THREAD->set_vm_result(nullptr);
112
if (ex->is_a(vmClasses::OutOfMemoryError_klass())) {
113
CLEAR_PENDING_EXCEPTION;
120
JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_or_null(JavaThread* current, Klass* klass))
122
assert(klass->is_klass(), "not a class");
123
Handle holder(current, klass->klass_holder()); // keep the klass alive
124
InstanceKlass* h = InstanceKlass::cast(klass);
126
RetryableAllocationMark ram(current);
127
h->check_valid_for_instantiation(true, CHECK);
128
if (!h->is_initialized()) {
129
// Cannot re-execute class initialization without side effects
130
// so return without attempting the initialization
131
current->set_vm_result(nullptr);
134
// allocate instance and return via TLS
135
oop obj = h->allocate_instance(CHECK);
136
current->set_vm_result(obj);
139
SharedRuntime::on_slowpath_allocation_exit(current);
142
JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_or_null(JavaThread* current, Klass* array_klass, jint length))
144
// Note: no handle for klass needed since they are not used
145
// anymore after new_objArray() and no GC can happen before.
146
// (This may have to change if this code changes!)
147
assert(array_klass->is_klass(), "not a class");
149
if (array_klass->is_typeArray_klass()) {
150
BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type();
151
RetryableAllocationMark ram(current);
152
obj = oopFactory::new_typeArray(elt_type, length, CHECK);
154
Handle holder(current, array_klass->klass_holder()); // keep the klass alive
155
Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
156
RetryableAllocationMark ram(current);
157
obj = oopFactory::new_objArray(elem_klass, length, CHECK);
159
// This is pretty rare but this runtime patch is stressful to deoptimization
160
// if we deoptimize here so force a deopt to stress the path.
161
if (DeoptimizeALot) {
162
static int deopts = 0;
163
if (deopts++ % 2 == 0) {
164
// Drop the allocation
170
current->set_vm_result(obj);
172
SharedRuntime::on_slowpath_allocation_exit(current);
175
JRT_ENTRY(void, JVMCIRuntime::new_multi_array_or_null(JavaThread* current, Klass* klass, int rank, jint* dims))
176
assert(klass->is_klass(), "not a class");
177
assert(rank >= 1, "rank must be nonzero");
178
Handle holder(current, klass->klass_holder()); // keep the klass alive
179
RetryableAllocationMark ram(current);
180
oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
181
current->set_vm_result(obj);
184
JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_or_null(JavaThread* current, oopDesc* element_mirror, jint length))
185
RetryableAllocationMark ram(current);
186
oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK);
187
current->set_vm_result(obj);
190
JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_or_null(JavaThread* current, oopDesc* type_mirror))
191
InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror));
193
if (klass == nullptr) {
194
ResourceMark rm(current);
195
THROW(vmSymbols::java_lang_InstantiationException());
197
RetryableAllocationMark ram(current);
199
// Create new instance (the receiver)
200
klass->check_valid_for_instantiation(false, CHECK);
202
if (!klass->is_initialized()) {
203
// Cannot re-execute class initialization without side effects
204
// so return without attempting the initialization
205
current->set_vm_result(nullptr);
209
oop obj = klass->allocate_instance(CHECK);
210
current->set_vm_result(obj);
213
extern void vm_exit(int code);
215
// Enter this method from compiled code handler below. This is where we transition
216
// to VM mode. This is done as a helper routine so that the method called directly
217
// from compiled code does not have to transition to VM. This allows the entry
218
// method to see if the nmethod that we have just looked up a handler for has
219
// been deoptimized while we were in the vm. This simplifies the assembly code
222
// We are entering here from exception stub (via the entry method below)
223
// If there is a compiled exception handler in this method, we will continue there;
224
// otherwise we will unwind the stack and continue at the caller of top frame method
225
// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
226
// control the area where we can allow a safepoint. After we exit the safepoint area we can
227
// check to see if the handler we are going to return is now in a nmethod that has
228
// been deoptimized. If that is the case we return the deopt blob
229
// unpack_with_exception entry instead. This makes life for the exception blob easier
230
// because making that same check and diverting is painful from assembly language.
231
JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
232
// Reset method handle flag.
233
current->set_is_method_handle_return(false);
235
Handle exception(current, ex);
237
// The frame we rethrow the exception to might not have been processed by the GC yet.
238
// The stack watermark barrier takes care of detecting that and ensuring the frame
240
StackWatermarkSet::after_unwind(current);
242
nm = CodeCache::find_nmethod(pc);
243
assert(nm != nullptr, "did not find nmethod");
244
// Adjust the pc as needed/
245
if (nm->is_deopt_pc(pc)) {
246
RegisterMap map(current,
247
RegisterMap::UpdateMap::skip,
248
RegisterMap::ProcessFrames::include,
249
RegisterMap::WalkContinuation::skip);
250
frame exception_frame = current->last_frame().sender(&map);
251
// if the frame isn't deopted then pc must not correspond to the caller of last_frame
252
assert(exception_frame.is_deoptimized_frame(), "must be deopted");
253
pc = exception_frame.pc();
255
assert(exception.not_null(), "null exceptions should be handled by throw_exception");
256
assert(oopDesc::is_oop(exception()), "just checking");
257
// Check that exception is a subclass of Throwable
258
assert(exception->is_a(vmClasses::Throwable_klass()),
259
"Exception not subclass of Throwable");
263
if (log_is_enabled(Info, exceptions)) {
266
assert(nm->method() != nullptr, "Unexpected null method()");
267
tempst.print("JVMCI compiled method <%s>\n"
268
" at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
269
nm->method()->print_value_string(), p2i(pc), p2i(current));
270
Exceptions::log_exception(exception, tempst.as_string());
272
// for AbortVMOnException flag
273
Exceptions::debug_check_abort(exception);
275
// Check the stack guard pages and re-enable them if necessary and there is
276
// enough space on the stack to do so. Use fast exceptions only if the guard
277
// pages are enabled.
278
bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
280
if (JvmtiExport::can_post_on_exceptions()) {
281
// To ensure correct notification of exception catches and throws
282
// we have to deoptimize here. If we attempted to notify the
283
// catches and throws during this exception lookup it's possible
284
// we could deoptimize on the way out of the VM and end back in
285
// the interpreter at the throw site. This would result in double
286
// notifications since the interpreter would also notify about
287
// these same catches and throws as it unwound the frame.
289
RegisterMap reg_map(current,
290
RegisterMap::UpdateMap::include,
291
RegisterMap::ProcessFrames::include,
292
RegisterMap::WalkContinuation::skip);
293
frame stub_frame = current->last_frame();
294
frame caller_frame = stub_frame.sender(®_map);
296
// We don't really want to deoptimize the nmethod itself since we
297
// can actually continue in the exception handler ourselves but I
298
// don't see an easy way to have the desired effect.
299
Deoptimization::deoptimize_frame(current, caller_frame.id(), Deoptimization::Reason_constraint);
300
assert(caller_is_deopted(), "Must be deoptimized");
302
return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
305
// ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
306
if (guard_pages_enabled) {
307
address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
308
if (fast_continuation != nullptr) {
309
// Set flag if return address is a method handle call site.
310
current->set_is_method_handle_return(nm->is_method_handle_return(pc));
311
return fast_continuation;
315
// If the stack guard pages are enabled, check whether there is a handler in
316
// the current method. Otherwise (guard pages disabled), force an unwind and
317
// skip the exception cache update (i.e., just leave continuation==nullptr).
318
address continuation = nullptr;
319
if (guard_pages_enabled) {
321
// New exception handling mechanism can support inlined methods
322
// with exception handlers since the mappings are from PC to PC
324
// Clear out the exception oop and pc since looking up an
325
// exception handler can cause class loading, which might throw an
326
// exception and those fields are expected to be clear during
327
// normal bytecode execution.
328
current->clear_exception_oop_and_pc();
330
bool recursive_exception = false;
331
continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
332
// If an exception was thrown during exception dispatch, the exception oop may have changed
333
current->set_exception_oop(exception());
334
current->set_exception_pc(pc);
336
// The exception cache is used only for non-implicit exceptions
337
// Update the exception cache only when another exception did
338
// occur during the computation of the compiled exception handler
339
// (e.g., when loading the class of the catch type).
340
// Checking for exception oop equality is not
341
// sufficient because some exceptions are pre-allocated and reused.
342
if (continuation != nullptr && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) {
343
nm->add_handler_for_exception_and_pc(exception, pc, continuation);
347
// Set flag if return address is a method handle call site.
348
current->set_is_method_handle_return(nm->is_method_handle_return(pc));
350
if (log_is_enabled(Info, exceptions)) {
352
log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
353
" for exception thrown at PC " PTR_FORMAT,
354
p2i(current), p2i(continuation), p2i(pc));
360
// Enter this method from compiled code only if there is a Java exception handler
361
// in the method handling the exception.
362
// We are entering here from exception stub. We don't do a normal VM transition here.
363
// We do it in a helper. This is so we can check to see if the nmethod we have just
364
// searched for an exception handler has been deoptimized in the meantime.
365
address JVMCIRuntime::exception_handler_for_pc(JavaThread* current) {
366
oop exception = current->exception_oop();
367
address pc = current->exception_pc();
368
// Still in Java mode
369
DEBUG_ONLY(NoHandleMark nhm);
370
nmethod* nm = nullptr;
371
address continuation = nullptr;
373
// Enter VM mode by calling the helper
374
ResetNoHandleMark rnhm;
375
continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
377
// Back in JAVA, use no oops DON'T safepoint
379
// Now check to see if the compiled method we were called from is now deoptimized.
380
// If so we must return to the deopt blob and deoptimize the nmethod
381
if (nm != nullptr && caller_is_deopted()) {
382
continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
385
assert(continuation != nullptr, "no handler found");
389
JRT_BLOCK_ENTRY(void, JVMCIRuntime::monitorenter(JavaThread* current, oopDesc* obj, BasicLock* lock))
390
SharedRuntime::monitor_enter_helper(obj, lock, current);
393
JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* current, oopDesc* obj, BasicLock* lock))
394
assert(current == JavaThread::current(), "pre-condition");
395
assert(current->last_Java_sp(), "last_Java_sp must be set");
396
assert(oopDesc::is_oop(obj), "invalid lock object pointer dected");
397
SharedRuntime::monitor_exit_helper(obj, lock, current);
400
// Object.notify() fast path, caller does slow path
401
JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread* current, oopDesc* obj))
402
assert(current == JavaThread::current(), "pre-condition");
404
// Very few notify/notifyAll operations find any threads on the waitset, so
405
// the dominant fast-path is to simply return.
406
// Relatedly, it's critical that notify/notifyAll be fast in order to
407
// reduce lock hold times.
408
if (!SafepointSynchronize::is_synchronizing()) {
409
if (ObjectSynchronizer::quick_notify(obj, current, false)) {
413
return false; // caller must perform slow path
417
// Object.notifyAll() fast path, caller does slow path
418
JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread* current, oopDesc* obj))
419
assert(current == JavaThread::current(), "pre-condition");
421
if (!SafepointSynchronize::is_synchronizing() ) {
422
if (ObjectSynchronizer::quick_notify(obj, current, true)) {
426
return false; // caller must perform slow path
430
JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* current, const char* exception, const char* message))
432
TempNewSymbol symbol = SymbolTable::new_symbol(exception);
433
SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message);
435
return caller_is_deopted();
438
JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* current, const char* exception, Klass* klass))
440
ResourceMark rm(current);
441
TempNewSymbol symbol = SymbolTable::new_symbol(exception);
442
SharedRuntime::throw_and_post_jvmti_exception(current, symbol, klass->external_name());
444
return caller_is_deopted();
447
JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_class_cast_exception(JavaThread* current, const char* exception, Klass* caster_klass, Klass* target_klass))
449
ResourceMark rm(current);
450
const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass);
451
TempNewSymbol symbol = SymbolTable::new_symbol(exception);
452
SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message);
454
return caller_is_deopted();
457
class ArgumentPusher : public SignatureIterator {
459
JavaCallArguments* _jca;
464
guarantee(!_pushed, "one argument");
470
guarantee(!_pushed, "one argument");
473
v.i = (jint) _argument;
477
double next_double() {
478
guarantee(!_pushed, "one argument");
485
Handle next_object() {
486
guarantee(!_pushed, "one argument");
488
return Handle(Thread::current(), cast_to_oop(_argument));
492
ArgumentPusher(Symbol* signature, JavaCallArguments* jca, jlong argument) : SignatureIterator(signature) {
493
this->_return_type = T_ILLEGAL;
495
_argument = argument;
497
do_parameters_on(this);
500
void do_type(BasicType type) {
503
case T_ARRAY: _jca->push_oop(next_object()); break;
504
case T_BOOLEAN: _jca->push_int((jboolean) next_arg()); break;
505
case T_CHAR: _jca->push_int((jchar) next_arg()); break;
506
case T_SHORT: _jca->push_int((jint) next_arg()); break;
507
case T_BYTE: _jca->push_int((jbyte) next_arg()); break;
508
case T_INT: _jca->push_int((jint) next_arg()); break;
509
case T_LONG: _jca->push_long((jlong) next_arg()); break;
510
case T_FLOAT: _jca->push_float(next_float()); break;
511
case T_DOUBLE: _jca->push_double(next_double()); break;
512
default: fatal("Unexpected type %s", type2name(type));
518
JRT_ENTRY(jlong, JVMCIRuntime::invoke_static_method_one_arg(JavaThread* current, Method* method, jlong argument))
520
HandleMark hm(current);
522
methodHandle mh(current, method);
523
if (mh->size_of_parameters() > 1 && !mh->is_static()) {
524
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Invoked method must be static and take at most one argument");
527
Symbol* signature = mh->signature();
528
JavaCallArguments jca(mh->size_of_parameters());
529
ArgumentPusher jap(signature, &jca, argument);
530
BasicType return_type = jap.return_type();
531
JavaValue result(return_type);
532
JavaCalls::call(&result, mh, &jca, CHECK_0);
534
if (return_type == T_VOID) {
536
} else if (return_type == T_OBJECT || return_type == T_ARRAY) {
537
current->set_vm_result(result.get_oop());
540
jvalue *value = (jvalue *) result.get_value_addr();
541
// Narrow the value down if required (Important on big endian machines)
542
switch (return_type) {
544
return (jboolean) value->i;
546
return (jbyte) value->i;
548
return (jchar) value->i;
550
return (jshort) value->i;
558
fatal("Unexpected type %s", type2name(return_type));
564
JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline))
567
if (obj == nullptr) {
569
} else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) {
570
if (oopDesc::is_oop_or_null(obj, true)) {
572
tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj));
574
tty->print(INTPTR_FORMAT, p2i(obj));
578
assert(obj != nullptr && java_lang_String::is_instance(obj), "must be");
579
char *buf = java_lang_String::as_utf8_string(obj);
589
void JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj) {
590
G1BarrierSetRuntime::write_ref_field_pre_entry(obj, thread);
593
void JVMCIRuntime::write_barrier_post(JavaThread* thread, volatile CardValue* card_addr) {
594
G1BarrierSetRuntime::write_ref_field_post_entry(card_addr, thread);
597
#endif // INCLUDE_G1GC
599
JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child))
601
if(!Universe::heap()->is_in(parent)) {
602
tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent));
606
if(!Universe::heap()->is_in(child)) {
607
tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child));
614
JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* current, jlong where, jlong format, jlong value))
615
ResourceMark rm(current);
616
const char *error_msg = where == 0L ? "<internal JVMCI error>" : (char*) (address) where;
617
char *detail_msg = nullptr;
619
const char* buf = (char*) (address) format;
620
size_t detail_msg_length = strlen(buf) * 2;
621
detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length);
622
jio_snprintf(detail_msg, detail_msg_length, buf, value);
624
report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg);
627
JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread))
628
oop exception = thread->exception_oop();
629
assert(exception != nullptr, "npe");
630
thread->set_exception_oop(nullptr);
631
thread->set_exception_pc(0);
636
PRAGMA_FORMAT_NONLITERAL_IGNORED
637
JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3))
639
tty->print(format, v1, v2, v3);
643
static void decipher(jlong v, bool ignoreZero) {
644
if (v != 0 || !ignoreZero) {
645
void* p = (void *)(address) v;
646
CodeBlob* cb = CodeCache::find_blob(p);
648
if (cb->is_nmethod()) {
650
tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin()));
653
cb->print_value_on(tty);
656
if (Universe::heap()->is_in(p)) {
657
oop obj = cast_to_oop(p);
658
obj->print_value_on(tty);
661
tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v);
666
PRAGMA_FORMAT_NONLITERAL_IGNORED
667
JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3))
669
const char *buf = (const char*) (address) format;
671
if (buf != nullptr) {
672
fatal(buf, v1, v2, v3);
674
fatal("<anonymous error>");
676
} else if (buf != nullptr) {
677
tty->print(buf, v1, v2, v3);
679
assert(v2 == 0, "v2 != 0");
680
assert(v3 == 0, "v3 != 0");
686
JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline))
694
case 'Z': tty->print(value == 0 ? "false" : "true"); break;
695
case 'B': tty->print("%d", (jbyte) value); break;
696
case 'C': tty->print("%c", (jchar) value); break;
697
case 'S': tty->print("%d", (jshort) value); break;
698
case 'I': tty->print("%d", (jint) value); break;
699
case 'F': tty->print("%f", uu.f); break;
700
case 'J': tty->print(JLONG_FORMAT, value); break;
701
case 'D': tty->print("%lf", uu.d); break;
702
default: assert(false, "unknown typeChar"); break;
709
JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* current, oopDesc* obj))
710
return (jint) obj->identity_hash();
713
JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* current, int value))
719
// Implementation of JVMCI.initializeRuntime()
720
// When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV.
721
JVM_ENTRY_NO_ENV(jobject, JVM_GetJVMCIRuntime(JNIEnv *libjvmciOrHotspotEnv, jclass c))
722
JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv);
724
JVMCI_THROW_MSG_NULL(InternalError, "JVMCI is not enabled");
726
JVMCIENV->runtime()->initialize_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL);
727
JVMCIObject runtime = JVMCIENV->runtime()->get_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL);
728
return JVMCIENV->get_jobject(runtime);
731
// Implementation of Services.readSystemPropertiesInfo(int[] offsets)
732
// When called from libjvmci, `env` is a libjvmci env so use JVM_ENTRY_NO_ENV.
733
JVM_ENTRY_NO_ENV(jlong, JVM_ReadSystemPropertiesInfo(JNIEnv *env, jclass c, jintArray offsets_handle))
734
JVMCIENV_FROM_JNI(thread, env);
736
JVMCI_THROW_MSG_0(InternalError, "JVMCI is not enabled");
738
JVMCIPrimitiveArray offsets = JVMCIENV->wrap(offsets_handle);
739
JVMCIENV->put_int_at(offsets, 0, SystemProperty::next_offset_in_bytes());
740
JVMCIENV->put_int_at(offsets, 1, SystemProperty::key_offset_in_bytes());
741
JVMCIENV->put_int_at(offsets, 2, PathString::value_offset_in_bytes());
743
return (jlong) Arguments::system_properties();
747
void JVMCIRuntime::call_getCompiler(TRAPS) {
748
JVMCIENV_FROM_THREAD(THREAD);
749
JVMCIENV->check_init(CHECK);
750
JVMCIObject jvmciRuntime = JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_CHECK);
751
initialize(JVMCI_CHECK);
752
JVMCIENV->call_HotSpotJVMCIRuntime_getCompiler(jvmciRuntime, JVMCI_CHECK);
755
void JVMCINMethodData::initialize(int nmethod_mirror_index,
756
int nmethod_entry_patch_offset,
757
const char* nmethod_mirror_name,
758
FailedSpeculation** failed_speculations)
760
_failed_speculations = failed_speculations;
761
_nmethod_mirror_index = nmethod_mirror_index;
762
guarantee(nmethod_entry_patch_offset != -1, "missing entry barrier");
763
_nmethod_entry_patch_offset = nmethod_entry_patch_offset;
764
if (nmethod_mirror_name != nullptr) {
766
char* dest = (char*) name();
767
strcpy(dest, nmethod_mirror_name);
773
void JVMCINMethodData::copy(JVMCINMethodData* data) {
774
initialize(data->_nmethod_mirror_index, data->_nmethod_entry_patch_offset, data->name(), data->_failed_speculations);
777
void JVMCINMethodData::add_failed_speculation(nmethod* nm, jlong speculation) {
778
jlong index = speculation >> JVMCINMethodData::SPECULATION_LENGTH_BITS;
779
guarantee(index >= 0 && index <= max_jint, "Encoded JVMCI speculation index is not a positive Java int: " INTPTR_FORMAT, index);
780
int length = speculation & JVMCINMethodData::SPECULATION_LENGTH_MASK;
781
if (index + length > (uint) nm->speculations_size()) {
782
fatal(INTPTR_FORMAT "[index: " JLONG_FORMAT ", length: %d out of bounds wrt encoded speculations of length %u", speculation, index, length, nm->speculations_size());
784
address data = nm->speculations_begin() + index;
785
FailedSpeculation::add_failed_speculation(nm, _failed_speculations, data, length);
788
oop JVMCINMethodData::get_nmethod_mirror(nmethod* nm, bool phantom_ref) {
789
if (_nmethod_mirror_index == -1) {
793
return nm->oop_at_phantom(_nmethod_mirror_index);
795
return nm->oop_at(_nmethod_mirror_index);
799
void JVMCINMethodData::set_nmethod_mirror(nmethod* nm, oop new_mirror) {
800
guarantee(_nmethod_mirror_index != -1, "cannot set JVMCI mirror for nmethod");
801
oop* addr = nm->oop_addr_at(_nmethod_mirror_index);
802
guarantee(new_mirror != nullptr, "use clear_nmethod_mirror to clear the mirror");
803
guarantee(*addr == nullptr, "cannot overwrite non-null mirror");
807
// Since we've patched some oops in the nmethod,
808
// (re)register it with the heap.
809
MutexLocker ml(CodeCache_lock, Mutex::_no_safepoint_check_flag);
810
Universe::heap()->register_nmethod(nm);
813
void JVMCINMethodData::invalidate_nmethod_mirror(nmethod* nm) {
814
oop nmethod_mirror = get_nmethod_mirror(nm, /* phantom_ref */ false);
815
if (nmethod_mirror == nullptr) {
819
// Update the values in the mirror if it still refers to nm.
820
// We cannot use JVMCIObject to wrap the mirror as this is called
821
// during GC, forbidding the creation of JNIHandles.
822
JVMCIEnv* jvmciEnv = nullptr;
823
nmethod* current = (nmethod*) HotSpotJVMCI::InstalledCode::address(jvmciEnv, nmethod_mirror);
825
if (nm->is_unloading()) {
826
// Break the link from the mirror to nm such that
827
// future invocations via the mirror will result in
828
// an InvalidInstalledCodeException.
829
HotSpotJVMCI::InstalledCode::set_address(jvmciEnv, nmethod_mirror, 0);
830
HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0);
831
HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0);
832
} else if (nm->is_not_entrant()) {
833
// Zero the entry point so any new invocation will fail but keep
834
// the address link around that so that existing activations can
835
// be deoptimized via the mirror (i.e. JVMCIEnv::invalidate_installed_code).
836
HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0);
837
HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0);
841
if (_nmethod_mirror_index != -1 && nm->is_unloading()) {
842
// Drop the reference to the nmethod mirror object but don't clear the actual oop reference. Otherwise
843
// it would appear that the nmethod didn't need to be unloaded in the first place.
844
_nmethod_mirror_index = -1;
848
// Handles to objects in the Hotspot heap.
849
static OopStorage* object_handles() {
850
return Universe::vm_global();
853
jlong JVMCIRuntime::make_oop_handle(const Handle& obj) {
854
assert(!Universe::heap()->is_stw_gc_active(), "can't extend the root set during GC pause");
855
assert(oopDesc::is_oop(obj()), "not an oop");
857
oop* ptr = OopHandle(object_handles(), obj()).ptr_raw();
858
MutexLocker ml(_lock);
859
_oop_handles.append(ptr);
860
return reinterpret_cast<jlong>(ptr);
864
bool JVMCIRuntime::is_oop_handle(jlong handle) {
865
const oop* ptr = (oop*) handle;
866
return object_handles()->allocation_status(ptr) == OopStorage::ALLOCATED_ENTRY;
870
int JVMCIRuntime::release_and_clear_oop_handles() {
871
guarantee(_num_attached_threads == cannot_be_attached, "only call during JVMCI runtime shutdown");
872
int released = release_cleared_oop_handles();
873
if (_oop_handles.length() != 0) {
874
for (int i = 0; i < _oop_handles.length(); i++) {
875
oop* oop_ptr = _oop_handles.at(i);
876
guarantee(oop_ptr != nullptr, "release_cleared_oop_handles left null entry in _oop_handles");
877
guarantee(NativeAccess<>::oop_load(oop_ptr) != nullptr, "unexpected cleared handle");
878
// Satisfy OopHandles::release precondition that all
879
// handles being released are null.
880
NativeAccess<>::oop_store(oop_ptr, (oop) nullptr);
883
// Do the bulk release
884
object_handles()->release(_oop_handles.adr_at(0), _oop_handles.length());
885
released += _oop_handles.length();
887
_oop_handles.clear();
891
static bool is_referent_non_null(oop* handle) {
892
return handle != nullptr && NativeAccess<>::oop_load(handle) != nullptr;
895
// Swaps the elements in `array` at index `a` and index `b`
896
static void swap(GrowableArray<oop*>* array, int a, int b) {
897
oop* tmp = array->at(a);
898
array->at_put(a, array->at(b));
899
array->at_put(b, tmp);
902
int JVMCIRuntime::release_cleared_oop_handles() {
903
// Despite this lock, it's possible for another thread
904
// to clear a handle's referent concurrently (e.g., a thread
905
// executing IndirectHotSpotObjectConstantImpl.clear()).
906
// This is benign - it means there can still be cleared
907
// handles in _oop_handles when this method returns.
908
MutexLocker ml(_lock);
911
if (_oop_handles.length() != 0) {
912
// Key for _oop_handles contents in example below:
913
// H: handle with non-null referent
914
// h: handle with clear (i.e., null) referent
917
// Shuffle all handles with non-null referents to the front of the list
918
// Example: Before: 0HHh-Hh-
920
for (int i = 0; i < _oop_handles.length(); i++) {
921
oop* handle = _oop_handles.at(i);
922
if (is_referent_non_null(handle)) {
923
if (i != next && !is_referent_non_null(_oop_handles.at(next))) {
924
// Swap elements at index `next` and `i`
925
swap(&_oop_handles, next, i);
931
// `next` is now the index of the first null handle or handle with a null referent
932
int num_alive = next;
934
// Shuffle all null handles to the end of the list
935
// Example: Before: HHHh--h-
938
for (int i = next; i < _oop_handles.length(); i++) {
939
oop* handle = _oop_handles.at(i);
940
if (handle != nullptr) {
941
if (i != next && _oop_handles.at(next) == nullptr) {
942
// Swap elements at index `next` and `i`
943
swap(&_oop_handles, next, i);
948
if (next != num_alive) {
949
int to_release = next - num_alive;
951
// `next` is now the index of the first null handle
952
// Example: to_release: 2
954
// Bulk release the handles with a null referent
955
object_handles()->release(_oop_handles.adr_at(num_alive), to_release);
957
// Truncate oop handles to only those with a non-null referent
958
JVMCI_event_2("compacted oop handles in JVMCI runtime %d from %d to %d", _id, _oop_handles.length(), num_alive);
959
_oop_handles.trunc_to(num_alive);
968
jmetadata JVMCIRuntime::allocate_handle(const methodHandle& handle) {
969
MutexLocker ml(_lock);
970
return _metadata_handles->allocate_handle(handle);
973
jmetadata JVMCIRuntime::allocate_handle(const constantPoolHandle& handle) {
974
MutexLocker ml(_lock);
975
return _metadata_handles->allocate_handle(handle);
978
void JVMCIRuntime::release_handle(jmetadata handle) {
979
MutexLocker ml(_lock);
980
_metadata_handles->chain_free_list(handle);
983
// Function for redirecting shared library JavaVM output to tty
984
static void _log(const char* buf, size_t count) {
985
tty->write((char*) buf, count);
988
// Function for redirecting shared library JavaVM fatal error data to a log file.
989
// The log file is opened on first call to this function.
990
static void _fatal_log(const char* buf, size_t count) {
991
JVMCI::fatal_log(buf, count);
994
// Function for shared library JavaVM to flush tty
995
static void _flush_log() {
999
// Function for shared library JavaVM to exit HotSpot on a fatal error
1000
static void _fatal() {
1001
Thread* thread = Thread::current_or_null_safe();
1002
if (thread != nullptr && thread->is_Java_thread()) {
1003
JavaThread* jthread = JavaThread::cast(thread);
1004
JVMCIRuntime* runtime = jthread->libjvmci_runtime();
1005
if (runtime != nullptr) {
1006
int javaVM_id = runtime->get_shared_library_javavm_id();
1007
fatal("Fatal error in JVMCI shared library JavaVM[%d] owned by JVMCI runtime %d", javaVM_id, runtime->id());
1010
intx current_thread_id = os::current_thread_id();
1011
fatal("thread " INTX_FORMAT ": Fatal error in JVMCI shared library", current_thread_id);
1014
JVMCIRuntime::JVMCIRuntime(JVMCIRuntime* next, int id, bool for_compile_broker) :
1015
_init_state(uninitialized),
1016
_shared_library_javavm(nullptr),
1017
_shared_library_javavm_id(0),
1020
_metadata_handles(new MetadataHandles()),
1021
_oop_handles(100, mtJVMCI),
1022
_num_attached_threads(0),
1023
_for_compile_broker(for_compile_broker)
1026
_lock = JVMCIRuntime_lock;
1028
stringStream lock_name;
1029
lock_name.print("%s@%d", JVMCIRuntime_lock->name(), id);
1030
Mutex::Rank lock_rank = DEBUG_ONLY(JVMCIRuntime_lock->rank()) NOT_DEBUG(Mutex::safepoint);
1031
_lock = new PaddedMonitor(lock_rank, lock_name.as_string(/*c_heap*/true));
1033
JVMCI_event_1("created new %s JVMCI runtime %d (" PTR_FORMAT ")",
1034
id == -1 ? "Java" : for_compile_broker ? "CompileBroker" : "Compiler", id, p2i(this));
1037
JVMCIRuntime* JVMCIRuntime::select_runtime_in_shutdown(JavaThread* thread) {
1038
assert(JVMCI_lock->owner() == thread, "must be");
1039
// When shutting down, use the first available runtime.
1040
for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1041
if (runtime->_num_attached_threads != cannot_be_attached) {
1042
runtime->pre_attach_thread(thread);
1043
JVMCI_event_1("using pre-existing JVMCI runtime %d in shutdown", runtime->id());
1047
// Lazily initialize JVMCI::_shutdown_compiler_runtime. Safe to
1048
// do here since JVMCI_lock is locked.
1049
if (JVMCI::_shutdown_compiler_runtime == nullptr) {
1050
JVMCI::_shutdown_compiler_runtime = new JVMCIRuntime(nullptr, -2, true);
1052
JVMCIRuntime* runtime = JVMCI::_shutdown_compiler_runtime;
1053
JVMCI_event_1("using reserved shutdown JVMCI runtime %d", runtime->id());
1057
JVMCIRuntime* JVMCIRuntime::select_runtime(JavaThread* thread, JVMCIRuntime* skip, int* count) {
1058
assert(JVMCI_lock->owner() == thread, "must be");
1059
bool for_compile_broker = thread->is_Compiler_thread();
1060
for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1061
if (count != nullptr) {
1064
if (for_compile_broker == runtime->_for_compile_broker) {
1065
int count = runtime->_num_attached_threads;
1066
if (count == cannot_be_attached || runtime == skip) {
1067
// Cannot attach to rt
1070
// If selecting for repacking, ignore a runtime without an existing JavaVM
1071
if (skip != nullptr && !runtime->has_shared_library_javavm()) {
1075
// Select first runtime with sufficient capacity
1076
if (count < (int) JVMCIThreadsPerNativeLibraryRuntime) {
1077
runtime->pre_attach_thread(thread);
1085
JVMCIRuntime* JVMCIRuntime::select_or_create_runtime(JavaThread* thread) {
1086
assert(JVMCI_lock->owner() == thread, "must be");
1088
JVMCIRuntime* runtime;
1089
if (JVMCI::using_singleton_shared_library_runtime()) {
1090
runtime = JVMCI::_compiler_runtimes;
1091
guarantee(runtime != nullptr, "must be");
1092
while (runtime->_num_attached_threads == cannot_be_attached) {
1093
// Since there is only a singleton JVMCIRuntime, we
1094
// need to wait for it to be available for attaching.
1097
runtime->pre_attach_thread(thread);
1099
runtime = select_runtime(thread, nullptr, &id);
1101
if (runtime == nullptr) {
1102
runtime = new JVMCIRuntime(JVMCI::_compiler_runtimes, id, thread->is_Compiler_thread());
1103
JVMCI::_compiler_runtimes = runtime;
1104
runtime->pre_attach_thread(thread);
1109
JVMCIRuntime* JVMCIRuntime::for_thread(JavaThread* thread) {
1110
assert(thread->libjvmci_runtime() == nullptr, "must be");
1111
// Find the runtime with fewest attached threads
1112
JVMCIRuntime* runtime = nullptr;
1114
MutexLocker locker(JVMCI_lock);
1115
runtime = JVMCI::in_shutdown() ? select_runtime_in_shutdown(thread) : select_or_create_runtime(thread);
1117
runtime->attach_thread(thread);
1121
const char* JVMCIRuntime::attach_shared_library_thread(JavaThread* thread, JavaVM* javaVM) {
1122
MutexLocker locker(JVMCI_lock);
1123
for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
1124
if (runtime->_shared_library_javavm == javaVM) {
1125
if (runtime->_num_attached_threads == cannot_be_attached) {
1126
return "Cannot attach to JVMCI runtime that is shutting down";
1128
runtime->pre_attach_thread(thread);
1129
runtime->attach_thread(thread);
1133
return "Cannot find JVMCI runtime";
1136
void JVMCIRuntime::pre_attach_thread(JavaThread* thread) {
1137
assert(JVMCI_lock->owner() == thread, "must be");
1138
_num_attached_threads++;
1141
void JVMCIRuntime::attach_thread(JavaThread* thread) {
1142
assert(thread->libjvmci_runtime() == nullptr, "must be");
1143
thread->set_libjvmci_runtime(this);
1144
guarantee(this == JVMCI::_shutdown_compiler_runtime ||
1145
_num_attached_threads > 0,
1146
"missing reservation in JVMCI runtime %d: _num_attached_threads=%d", _id, _num_attached_threads);
1147
JVMCI_event_1("attached to JVMCI runtime %d%s", _id, JVMCI::in_shutdown() ? " [in JVMCI shutdown]" : "");
1150
void JVMCIRuntime::repack(JavaThread* thread) {
1151
JVMCIRuntime* new_runtime = nullptr;
1153
MutexLocker locker(JVMCI_lock);
1154
if (JVMCI::using_singleton_shared_library_runtime() || _num_attached_threads != 1 || JVMCI::in_shutdown()) {
1157
new_runtime = select_runtime(thread, this, nullptr);
1159
if (new_runtime != nullptr) {
1160
JVMCI_event_1("Moving thread from JVMCI runtime %d to JVMCI runtime %d (%d attached)", _id, new_runtime->_id, new_runtime->_num_attached_threads - 1);
1161
detach_thread(thread, "moving thread to another JVMCI runtime");
1162
new_runtime->attach_thread(thread);
1166
bool JVMCIRuntime::detach_thread(JavaThread* thread, const char* reason, bool can_destroy_javavm) {
1167
if (this == JVMCI::_shutdown_compiler_runtime || JVMCI::in_shutdown()) {
1168
// Do minimal work when shutting down JVMCI
1169
thread->set_libjvmci_runtime(nullptr);
1172
bool should_shutdown;
1173
bool destroyed_javavm = false;
1175
MutexLocker locker(JVMCI_lock);
1176
_num_attached_threads--;
1177
JVMCI_event_1("detaching from JVMCI runtime %d: %s (%d other threads still attached)", _id, reason, _num_attached_threads);
1178
should_shutdown = _num_attached_threads == 0 && !JVMCI::in_shutdown();
1179
if (should_shutdown && !can_destroy_javavm) {
1180
// If it's not possible to destroy the JavaVM on this thread then the VM must
1181
// not be shutdown. This can happen when a shared library thread is the last
1182
// thread to detach from a shared library JavaVM (e.g. GraalServiceThread).
1183
JVMCI_event_1("Cancelled shut down of JVMCI runtime %d", _id);
1184
should_shutdown = false;
1186
if (should_shutdown) {
1187
// Prevent other threads from attaching to this runtime
1188
// while it is shutting down and destroying its JavaVM
1189
_num_attached_threads = cannot_be_attached;
1192
if (should_shutdown) {
1193
// Release the JavaVM resources associated with this
1194
// runtime once there are no threads attached to it.
1196
if (can_destroy_javavm) {
1197
destroyed_javavm = destroy_shared_library_javavm();
1198
if (destroyed_javavm) {
1199
// Can release all handles now that there's no code executing
1200
// that could be using them. Handles for the Java JVMCI runtime
1201
// are never released as we cannot guarantee all compiler threads
1202
// using it have been stopped.
1203
int released = release_and_clear_oop_handles();
1204
JVMCI_event_1("releasing handles for JVMCI runtime %d: oop handles=%d, metadata handles={total=%d, live=%d, blocks=%d}",
1207
_metadata_handles->num_handles(),
1208
_metadata_handles->num_handles() - _metadata_handles->num_free_handles(),
1209
_metadata_handles->num_blocks());
1211
// No need to acquire _lock since this is the only thread accessing this runtime
1212
_metadata_handles->clear();
1215
// Allow other threads to attach to this runtime now
1216
MutexLocker locker(JVMCI_lock);
1217
_num_attached_threads = 0;
1218
if (JVMCI::using_singleton_shared_library_runtime()) {
1219
// Notify any thread waiting to attach to the
1220
// singleton JVMCIRuntime
1221
JVMCI_lock->notify();
1224
thread->set_libjvmci_runtime(nullptr);
1225
JVMCI_event_1("detached from JVMCI runtime %d", _id);
1226
return destroyed_javavm;
1229
JNIEnv* JVMCIRuntime::init_shared_library_javavm(int* create_JavaVM_err, const char** err_msg) {
1230
MutexLocker locker(_lock);
1231
JavaVM* javaVM = _shared_library_javavm;
1232
if (javaVM == nullptr) {
1234
const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.forceEnomemOnLibjvmciInit");
1235
if (val != nullptr && strcmp(val, "true") == 0) {
1236
*create_JavaVM_err = JNI_ENOMEM;
1242
void* sl_handle = JVMCI::get_shared_library(sl_path, true);
1244
jint (*JNI_CreateJavaVM)(JavaVM **pvm, void **penv, void *args);
1245
typedef jint (*JNI_CreateJavaVM_t)(JavaVM **pvm, void **penv, void *args);
1247
JNI_CreateJavaVM = CAST_TO_FN_PTR(JNI_CreateJavaVM_t, os::dll_lookup(sl_handle, "JNI_CreateJavaVM"));
1248
if (JNI_CreateJavaVM == nullptr) {
1249
fatal("Unable to find JNI_CreateJavaVM in %s", sl_path);
1253
JavaVMInitArgs vm_args;
1254
vm_args.version = JNI_VERSION_1_2;
1255
vm_args.ignoreUnrecognized = JNI_TRUE;
1256
JavaVMOption options[6];
1257
jlong javaVM_id = 0;
1259
// Protocol: JVMCI shared library JavaVM should support a non-standard "_javavm_id"
1260
// option whose extraInfo info field is a pointer to which a unique id for the
1261
// JavaVM should be written.
1262
options[0].optionString = (char*) "_javavm_id";
1263
options[0].extraInfo = &javaVM_id;
1265
options[1].optionString = (char*) "_log";
1266
options[1].extraInfo = (void*) _log;
1267
options[2].optionString = (char*) "_flush_log";
1268
options[2].extraInfo = (void*) _flush_log;
1269
options[3].optionString = (char*) "_fatal";
1270
options[3].extraInfo = (void*) _fatal;
1271
options[4].optionString = (char*) "_fatal_log";
1272
options[4].extraInfo = (void*) _fatal_log;
1273
options[5].optionString = (char*) "_createvm_errorstr";
1274
options[5].extraInfo = (void*) err_msg;
1276
vm_args.version = JNI_VERSION_1_2;
1277
vm_args.options = options;
1278
vm_args.nOptions = sizeof(options) / sizeof(JavaVMOption);
1280
JNIEnv* env = nullptr;
1281
int result = (*JNI_CreateJavaVM)(&javaVM, (void**) &env, &vm_args);
1282
if (result == JNI_OK) {
1283
guarantee(env != nullptr, "missing env");
1284
_shared_library_javavm_id = javaVM_id;
1285
_shared_library_javavm = javaVM;
1286
JVMCI_event_1("created JavaVM[%ld]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id);
1289
*create_JavaVM_err = result;
1295
void JVMCIRuntime::init_JavaVM_info(jlongArray info, JVMCI_TRAPS) {
1296
if (info != nullptr) {
1297
typeArrayOop info_oop = (typeArrayOop) JNIHandles::resolve(info);
1298
if (info_oop->length() < 4) {
1299
JVMCI_THROW_MSG(ArrayIndexOutOfBoundsException, err_msg("%d < 4", info_oop->length()));
1301
JavaVM* javaVM = _shared_library_javavm;
1302
info_oop->long_at_put(0, (jlong) (address) javaVM);
1303
info_oop->long_at_put(1, (jlong) (address) javaVM->functions->reserved0);
1304
info_oop->long_at_put(2, (jlong) (address) javaVM->functions->reserved1);
1305
info_oop->long_at_put(3, (jlong) (address) javaVM->functions->reserved2);
1309
#define JAVAVM_CALL_BLOCK \
1310
guarantee(thread != nullptr && _shared_library_javavm != nullptr, "npe"); \
1311
ThreadToNativeFromVM ttnfv(thread); \
1312
JavaVM* javavm = _shared_library_javavm;
1314
jint JVMCIRuntime::AttachCurrentThread(JavaThread* thread, void **penv, void *args) {
1316
return javavm->AttachCurrentThread(penv, args);
1319
jint JVMCIRuntime::AttachCurrentThreadAsDaemon(JavaThread* thread, void **penv, void *args) {
1321
return javavm->AttachCurrentThreadAsDaemon(penv, args);
1324
jint JVMCIRuntime::DetachCurrentThread(JavaThread* thread) {
1326
return javavm->DetachCurrentThread();
1329
jint JVMCIRuntime::GetEnv(JavaThread* thread, void **penv, jint version) {
1331
return javavm->GetEnv(penv, version);
1333
#undef JAVAVM_CALL_BLOCK \
1335
void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(JVMCI_TRAPS) {
1336
if (is_HotSpotJVMCIRuntime_initialized()) {
1337
if (JVMCIENV->is_hotspot() && UseJVMCINativeLibrary) {
1338
JVMCI_THROW_MSG(InternalError, "JVMCI has already been enabled in the JVMCI shared library");
1342
initialize(JVMCI_CHECK);
1344
// This should only be called in the context of the JVMCI class being initialized
1345
JVMCIObject result = JVMCIENV->call_HotSpotJVMCIRuntime_runtime(JVMCI_CHECK);
1346
result = JVMCIENV->make_global(result);
1348
OrderAccess::storestore(); // Ensure handle is fully constructed before publishing
1349
_HotSpotJVMCIRuntime_instance = result;
1351
JVMCI::_is_initialized = true;
1354
JVMCIRuntime::InitState JVMCIRuntime::_shared_library_javavm_refs_init_state = JVMCIRuntime::uninitialized;
1355
JVMCIRuntime::InitState JVMCIRuntime::_hotspot_javavm_refs_init_state = JVMCIRuntime::uninitialized;
1357
class JavaVMRefsInitialization: public StackObj {
1358
JVMCIRuntime::InitState *_state;
1361
JavaVMRefsInitialization(JVMCIRuntime::InitState *state, int id) {
1364
// All classes, methods and fields in the JVMCI shared library
1365
// are in the read-only part of the image. As such, these
1366
// values (and any global handle derived from them via NewGlobalRef)
1367
// are the same for all JavaVM instances created in the
1368
// shared library which means they only need to be initialized
1369
// once. In non-product mode, we check this invariant.
1370
// See com.oracle.svm.jni.JNIImageHeapHandles.
1371
// The same is true for Klass* and field offsets in HotSpotJVMCI.
1372
if (*state == JVMCIRuntime::uninitialized DEBUG_ONLY( || true)) {
1373
*state = JVMCIRuntime::being_initialized;
1374
JVMCI_event_1("initializing JavaVM references in JVMCI runtime %d", id);
1376
while (*state != JVMCIRuntime::fully_initialized) {
1377
JVMCI_event_1("waiting for JavaVM references initialization in JVMCI runtime %d", id);
1380
JVMCI_event_1("done waiting for JavaVM references initialization in JVMCI runtime %d", id);
1384
~JavaVMRefsInitialization() {
1385
if (*_state == JVMCIRuntime::being_initialized) {
1386
*_state = JVMCIRuntime::fully_initialized;
1387
JVMCI_event_1("initialized JavaVM references in JVMCI runtime %d", _id);
1388
JVMCI_lock->notify_all();
1392
bool should_init() {
1393
return *_state == JVMCIRuntime::being_initialized;
1397
void JVMCIRuntime::initialize(JVMCI_TRAPS) {
1398
// Check first without _lock
1399
if (_init_state == fully_initialized) {
1403
JavaThread* THREAD = JavaThread::current();
1405
MutexLocker locker(_lock);
1406
// Check again under _lock
1407
if (_init_state == fully_initialized) {
1411
while (_init_state == being_initialized) {
1412
JVMCI_event_1("waiting for initialization of JVMCI runtime %d", _id);
1414
if (_init_state == fully_initialized) {
1415
JVMCI_event_1("done waiting for initialization of JVMCI runtime %d", _id);
1420
JVMCI_event_1("initializing JVMCI runtime %d", _id);
1421
_init_state = being_initialized;
1424
MutexUnlocker unlock(_lock);
1426
HandleMark hm(THREAD);
1427
ResourceMark rm(THREAD);
1429
MutexLocker lock_jvmci(JVMCI_lock);
1430
if (JVMCIENV->is_hotspot()) {
1431
JavaVMRefsInitialization initialization(&_hotspot_javavm_refs_init_state, _id);
1432
if (initialization.should_init()) {
1433
MutexUnlocker unlock_jvmci(JVMCI_lock);
1434
HotSpotJVMCI::compute_offsets(CHECK_EXIT);
1437
JavaVMRefsInitialization initialization(&_shared_library_javavm_refs_init_state, _id);
1438
if (initialization.should_init()) {
1439
MutexUnlocker unlock_jvmci(JVMCI_lock);
1440
JNIAccessMark jni(JVMCIENV, THREAD);
1442
JNIJVMCI::initialize_ids(jni.env());
1443
if (jni()->ExceptionCheck()) {
1444
jni()->ExceptionDescribe();
1445
fatal("JNI exception during init");
1447
// _lock is re-locked at this point
1452
if (!JVMCIENV->is_hotspot()) {
1453
JNIAccessMark jni(JVMCIENV, THREAD);
1454
JNIJVMCI::register_natives(jni.env());
1456
create_jvmci_primitive_type(T_BOOLEAN, JVMCI_CHECK_EXIT_((void)0));
1457
create_jvmci_primitive_type(T_BYTE, JVMCI_CHECK_EXIT_((void)0));
1458
create_jvmci_primitive_type(T_CHAR, JVMCI_CHECK_EXIT_((void)0));
1459
create_jvmci_primitive_type(T_SHORT, JVMCI_CHECK_EXIT_((void)0));
1460
create_jvmci_primitive_type(T_INT, JVMCI_CHECK_EXIT_((void)0));
1461
create_jvmci_primitive_type(T_LONG, JVMCI_CHECK_EXIT_((void)0));
1462
create_jvmci_primitive_type(T_FLOAT, JVMCI_CHECK_EXIT_((void)0));
1463
create_jvmci_primitive_type(T_DOUBLE, JVMCI_CHECK_EXIT_((void)0));
1464
create_jvmci_primitive_type(T_VOID, JVMCI_CHECK_EXIT_((void)0));
1466
DEBUG_ONLY(CodeInstaller::verify_bci_constants(JVMCIENV);)
1469
_init_state = fully_initialized;
1470
JVMCI_event_1("initialized JVMCI runtime %d", _id);
1471
_lock->notify_all();
1474
JVMCIObject JVMCIRuntime::create_jvmci_primitive_type(BasicType type, JVMCI_TRAPS) {
1475
JavaThread* THREAD = JavaThread::current(); // For exception macros.
1476
// These primitive types are long lived and are created before the runtime is fully set up
1477
// so skip registering them for scanning.
1478
JVMCIObject mirror = JVMCIENV->get_object_constant(java_lang_Class::primitive_mirror(type), false, true);
1479
if (JVMCIENV->is_hotspot()) {
1480
JavaValue result(T_OBJECT);
1481
JavaCallArguments args;
1482
args.push_oop(Handle(THREAD, HotSpotJVMCI::resolve(mirror)));
1483
args.push_int(type2char(type));
1484
JavaCalls::call_static(&result, HotSpotJVMCI::HotSpotResolvedPrimitiveType::klass(), vmSymbols::fromMetaspace_name(), vmSymbols::primitive_fromMetaspace_signature(), &args, CHECK_(JVMCIObject()));
1486
return JVMCIENV->wrap(JNIHandles::make_local(result.get_oop()));
1488
JNIAccessMark jni(JVMCIENV);
1489
jobject result = jni()->CallStaticObjectMethod(JNIJVMCI::HotSpotResolvedPrimitiveType::clazz(),
1490
JNIJVMCI::HotSpotResolvedPrimitiveType_fromMetaspace_method(),
1491
mirror.as_jobject(), type2char(type));
1492
if (jni()->ExceptionCheck()) {
1493
return JVMCIObject();
1495
return JVMCIENV->wrap(result);
1499
void JVMCIRuntime::initialize_JVMCI(JVMCI_TRAPS) {
1500
if (!is_HotSpotJVMCIRuntime_initialized()) {
1501
initialize(JVMCI_CHECK);
1502
JVMCIENV->call_JVMCI_getRuntime(JVMCI_CHECK);
1503
guarantee(_HotSpotJVMCIRuntime_instance.is_non_null(), "NPE in JVMCI runtime %d", _id);
1507
JVMCIObject JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_TRAPS) {
1508
initialize(JVMCI_CHECK_(JVMCIObject()));
1509
initialize_JVMCI(JVMCI_CHECK_(JVMCIObject()));
1510
return _HotSpotJVMCIRuntime_instance;
1513
// Implementation of CompilerToVM.registerNatives()
1514
// When called from libjvmci, `libjvmciOrHotspotEnv` is a libjvmci env so use JVM_ENTRY_NO_ENV.
1515
JVM_ENTRY_NO_ENV(void, JVM_RegisterJVMCINatives(JNIEnv *libjvmciOrHotspotEnv, jclass c2vmClass))
1516
JVMCIENV_FROM_JNI(thread, libjvmciOrHotspotEnv);
1519
JVMCI_THROW_MSG(InternalError, "JVMCI is not enabled");
1522
JVMCIENV->runtime()->initialize(JVMCIENV);
1525
ResourceMark rm(thread);
1526
HandleMark hm(thread);
1527
ThreadToNativeFromVM trans(thread);
1529
// Ensure _non_oop_bits is initialized
1530
Universe::non_oop_word();
1531
JNIEnv *env = libjvmciOrHotspotEnv;
1532
if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count())) {
1533
if (!env->ExceptionCheck()) {
1534
for (int i = 0; i < CompilerToVM::methods_count(); i++) {
1535
if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods + i, 1)) {
1536
guarantee(false, "Error registering JNI method %s%s", CompilerToVM::methods[i].name, CompilerToVM::methods[i].signature);
1541
env->ExceptionDescribe();
1543
guarantee(false, "Failed registering CompilerToVM native methods");
1549
void JVMCIRuntime::shutdown() {
1550
if (_HotSpotJVMCIRuntime_instance.is_non_null()) {
1551
JVMCI_event_1("shutting down HotSpotJVMCIRuntime for JVMCI runtime %d", _id);
1552
JVMCIEnv __stack_jvmci_env__(JavaThread::current(), _HotSpotJVMCIRuntime_instance.is_hotspot(),__FILE__, __LINE__);
1553
JVMCIEnv* JVMCIENV = &__stack_jvmci_env__;
1554
if (JVMCIENV->init_error() == JNI_OK) {
1555
JVMCIENV->call_HotSpotJVMCIRuntime_shutdown(_HotSpotJVMCIRuntime_instance);
1557
JVMCI_event_1("Error in JVMCIEnv for shutdown (err: %d)", JVMCIENV->init_error());
1559
if (_num_attached_threads == cannot_be_attached) {
1560
// Only when no other threads are attached to this runtime
1561
// is it safe to reset these fields.
1562
_HotSpotJVMCIRuntime_instance = JVMCIObject();
1563
_init_state = uninitialized;
1564
JVMCI_event_1("shut down JVMCI runtime %d", _id);
1569
bool JVMCIRuntime::destroy_shared_library_javavm() {
1570
guarantee(_num_attached_threads == cannot_be_attached,
1571
"cannot destroy JavaVM for JVMCI runtime %d with %d attached threads", _id, _num_attached_threads);
1573
int javaVM_id = _shared_library_javavm_id;
1575
// Exactly one thread can destroy the JavaVM
1576
// and release the handle to it.
1577
MutexLocker only_one(_lock);
1578
javaVM = _shared_library_javavm;
1579
if (javaVM != nullptr) {
1580
_shared_library_javavm = nullptr;
1581
_shared_library_javavm_id = 0;
1584
if (javaVM != nullptr) {
1587
// Must transition into native before calling into libjvmci
1588
ThreadToNativeFromVM ttnfv(JavaThread::current());
1589
result = javaVM->DestroyJavaVM();
1591
if (result == JNI_OK) {
1592
JVMCI_event_1("destroyed JavaVM[%d]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id);
1594
warning("Non-zero result (%d) when calling JNI_DestroyJavaVM on JavaVM[%d]@" PTR_FORMAT, result, javaVM_id, p2i(javaVM));
1601
void JVMCIRuntime::bootstrap_finished(TRAPS) {
1602
if (_HotSpotJVMCIRuntime_instance.is_non_null()) {
1603
JVMCIENV_FROM_THREAD(THREAD);
1604
JVMCIENV->check_init(CHECK);
1605
JVMCIENV->call_HotSpotJVMCIRuntime_bootstrapFinished(_HotSpotJVMCIRuntime_instance, JVMCIENV);
1609
void JVMCIRuntime::describe_pending_hotspot_exception(JavaThread* THREAD) {
1610
if (HAS_PENDING_EXCEPTION) {
1611
Handle exception(THREAD, PENDING_EXCEPTION);
1612
CLEAR_PENDING_EXCEPTION;
1613
java_lang_Throwable::print_stack_trace(exception, tty);
1615
// Clear and ignore any exceptions raised during printing
1616
CLEAR_PENDING_EXCEPTION;
1621
void JVMCIRuntime::fatal_exception(JVMCIEnv* JVMCIENV, const char* message) {
1622
JavaThread* THREAD = JavaThread::current(); // For exception macros.
1624
static volatile int report_error = 0;
1625
if (!report_error && Atomic::cmpxchg(&report_error, 0, 1) == 0) {
1626
// Only report an error once
1627
tty->print_raw_cr(message);
1628
if (JVMCIENV != nullptr) {
1629
JVMCIENV->describe_pending_exception(tty);
1631
describe_pending_hotspot_exception(THREAD);
1634
// Allow error reporting thread time to print the stack trace.
1637
fatal("Fatal JVMCI exception (see JVMCI Events for stack trace): %s", message);
1640
// ------------------------------------------------------------------
1641
// Note: the logic of this method should mirror the logic of
1642
// constantPoolOopDesc::verify_constant_pool_resolve.
1643
bool JVMCIRuntime::check_klass_accessibility(Klass* accessing_klass, Klass* resolved_klass) {
1644
if (accessing_klass->is_objArray_klass()) {
1645
accessing_klass = ObjArrayKlass::cast(accessing_klass)->bottom_klass();
1647
if (!accessing_klass->is_instance_klass()) {
1651
if (resolved_klass->is_objArray_klass()) {
1652
// Find the element klass, if this is an array.
1653
resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass();
1655
if (resolved_klass->is_instance_klass()) {
1656
Reflection::VerifyClassAccessResults result =
1657
Reflection::verify_class_access(accessing_klass, InstanceKlass::cast(resolved_klass), true);
1658
return result == Reflection::ACCESS_OK;
1663
// ------------------------------------------------------------------
1664
Klass* JVMCIRuntime::get_klass_by_name_impl(Klass*& accessing_klass,
1665
const constantPoolHandle& cpool,
1667
bool require_local) {
1668
JVMCI_EXCEPTION_CONTEXT;
1670
// Now we need to check the SystemDictionary
1671
if (sym->char_at(0) == JVM_SIGNATURE_CLASS &&
1672
sym->char_at(sym->utf8_length()-1) == JVM_SIGNATURE_ENDCLASS) {
1673
// This is a name from a signature. Strip off the trimmings.
1674
// Call recursive to keep scope of strippedsym.
1675
TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1,
1676
sym->utf8_length()-2);
1677
return get_klass_by_name_impl(accessing_klass, cpool, strippedsym, require_local);
1682
if (accessing_klass != nullptr) {
1683
loader = Handle(THREAD, accessing_klass->class_loader());
1684
domain = Handle(THREAD, accessing_klass->protection_domain());
1687
Klass* found_klass = require_local ?
1688
SystemDictionary::find_instance_or_array_klass(THREAD, sym, loader, domain) :
1689
SystemDictionary::find_constrained_instance_or_array_klass(THREAD, sym, loader);
1691
// If we fail to find an array klass, look again for its element type.
1692
// The element type may be available either locally or via constraints.
1693
// In either case, if we can find the element type in the system dictionary,
1694
// we must build an array type around it. The CI requires array klasses
1695
// to be loaded if their element klasses are loaded, except when memory
1697
if (sym->char_at(0) == JVM_SIGNATURE_ARRAY &&
1698
(sym->char_at(1) == JVM_SIGNATURE_ARRAY || sym->char_at(1) == JVM_SIGNATURE_CLASS)) {
1699
// We have an unloaded array.
1700
// Build it on the fly if the element class exists.
1701
TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1,
1702
sym->utf8_length()-1);
1704
// Get element Klass recursively.
1706
get_klass_by_name_impl(accessing_klass,
1710
if (elem_klass != nullptr) {
1711
// Now make an array for it
1712
return elem_klass->array_klass(THREAD);
1716
if (found_klass == nullptr && !cpool.is_null() && cpool->has_preresolution()) {
1717
// Look inside the constant pool for pre-resolved class entries.
1718
for (int i = cpool->length() - 1; i >= 1; i--) {
1719
if (cpool->tag_at(i).is_klass()) {
1720
Klass* kls = cpool->resolved_klass_at(i);
1721
if (kls->name() == sym) {
1731
// ------------------------------------------------------------------
1732
Klass* JVMCIRuntime::get_klass_by_name(Klass* accessing_klass,
1734
bool require_local) {
1736
constantPoolHandle cpool;
1737
return get_klass_by_name_impl(accessing_klass,
1743
// ------------------------------------------------------------------
1744
// Implementation of get_klass_by_index.
1745
Klass* JVMCIRuntime::get_klass_by_index_impl(const constantPoolHandle& cpool,
1747
bool& is_accessible,
1749
JVMCI_EXCEPTION_CONTEXT;
1750
Klass* klass = ConstantPool::klass_at_if_loaded(cpool, index);
1751
Symbol* klass_name = nullptr;
1752
if (klass == nullptr) {
1753
klass_name = cpool->klass_name_at(index);
1756
if (klass == nullptr) {
1757
// Not found in constant pool. Use the name to do the lookup.
1758
Klass* k = get_klass_by_name_impl(accessor,
1762
// Calculate accessibility the hard way.
1764
is_accessible = false;
1765
} else if (k->class_loader() != accessor->class_loader() &&
1766
get_klass_by_name_impl(accessor, cpool, k->name(), true) == nullptr) {
1767
// Loaded only remotely. Not linked yet.
1768
is_accessible = false;
1770
// Linked locally, and we must also check public/private, etc.
1771
is_accessible = check_klass_accessibility(accessor, k);
1773
if (!is_accessible) {
1779
// It is known to be accessible, since it was found in the constant pool.
1780
is_accessible = true;
1784
// ------------------------------------------------------------------
1785
// Get a klass from the constant pool.
1786
Klass* JVMCIRuntime::get_klass_by_index(const constantPoolHandle& cpool,
1788
bool& is_accessible,
1791
Klass* result = get_klass_by_index_impl(cpool, index, is_accessible, accessor);
1795
// ------------------------------------------------------------------
1796
// Perform an appropriate method lookup based on accessor, holder,
1797
// name, signature, and bytecode.
1798
Method* JVMCIRuntime::lookup_method(InstanceKlass* accessor,
1804
// Accessibility checks are performed in JVMCIEnv::get_method_by_index_impl().
1805
assert(check_klass_accessibility(accessor, holder), "holder not accessible");
1807
LinkInfo link_info(holder, name, sig, accessor,
1808
LinkInfo::AccessCheck::required,
1809
LinkInfo::LoaderConstraintCheck::required,
1812
case Bytecodes::_invokestatic:
1813
return LinkResolver::resolve_static_call_or_null(link_info);
1814
case Bytecodes::_invokespecial:
1815
return LinkResolver::resolve_special_call_or_null(link_info);
1816
case Bytecodes::_invokeinterface:
1817
return LinkResolver::linktime_resolve_interface_method_or_null(link_info);
1818
case Bytecodes::_invokevirtual:
1819
return LinkResolver::linktime_resolve_virtual_method_or_null(link_info);
1821
fatal("Unhandled bytecode: %s", Bytecodes::name(bc));
1822
return nullptr; // silence compiler warnings
1827
// ------------------------------------------------------------------
1828
Method* JVMCIRuntime::get_method_by_index_impl(const constantPoolHandle& cpool,
1829
int index, Bytecodes::Code bc,
1830
InstanceKlass* accessor) {
1831
if (bc == Bytecodes::_invokedynamic) {
1832
if (cpool->resolved_indy_entry_at(index)->is_resolved()) {
1833
return cpool->resolved_indy_entry_at(index)->method();
1839
int holder_index = cpool->klass_ref_index_at(index, bc);
1840
bool holder_is_accessible;
1841
Klass* holder = get_klass_by_index_impl(cpool, holder_index, holder_is_accessible, accessor);
1843
// Get the method's name and signature.
1844
Symbol* name_sym = cpool->name_ref_at(index, bc);
1845
Symbol* sig_sym = cpool->signature_ref_at(index, bc);
1847
if (cpool->has_preresolution()
1848
|| ((holder == vmClasses::MethodHandle_klass() || holder == vmClasses::VarHandle_klass()) &&
1849
MethodHandles::is_signature_polymorphic_name(holder, name_sym))) {
1850
// Short-circuit lookups for JSR 292-related call sites.
1851
// That is, do not rely only on name-based lookups, because they may fail
1852
// if the names are not resolvable in the boot class loader (7056328).
1854
case Bytecodes::_invokevirtual:
1855
case Bytecodes::_invokeinterface:
1856
case Bytecodes::_invokespecial:
1857
case Bytecodes::_invokestatic:
1859
Method* m = ConstantPool::method_at_if_loaded(cpool, index);
1870
if (holder_is_accessible) { // Our declared holder is loaded.
1871
constantTag tag = cpool->tag_ref_at(index, bc);
1872
Method* m = lookup_method(accessor, holder, name_sym, sig_sym, bc, tag);
1874
// We found the method.
1879
// Either the declared holder was not loaded, or the method could
1885
// ------------------------------------------------------------------
1886
InstanceKlass* JVMCIRuntime::get_instance_klass_for_declared_method_holder(Klass* method_holder) {
1887
// For the case of <array>.clone(), the method holder can be an ArrayKlass*
1888
// instead of an InstanceKlass*. For that case simply pretend that the
1889
// declared holder is Object.clone since that's where the call will bottom out.
1890
if (method_holder->is_instance_klass()) {
1891
return InstanceKlass::cast(method_holder);
1892
} else if (method_holder->is_array_klass()) {
1893
return vmClasses::Object_klass();
1895
ShouldNotReachHere();
1901
// ------------------------------------------------------------------
1902
Method* JVMCIRuntime::get_method_by_index(const constantPoolHandle& cpool,
1903
int index, Bytecodes::Code bc,
1904
InstanceKlass* accessor) {
1906
return get_method_by_index_impl(cpool, index, bc, accessor);
1909
// ------------------------------------------------------------------
1910
// Check for changes to the system dictionary during compilation
1911
// class loads, evolution, breakpoints
1912
JVMCI::CodeInstallResult JVMCIRuntime::validate_compile_task_dependencies(Dependencies* dependencies,
1913
JVMCICompileState* compile_state,
1914
char** failure_detail,
1915
bool& failing_dep_is_call_site)
1917
failing_dep_is_call_site = false;
1918
// If JVMTI capabilities were enabled during compile, the compilation is invalidated.
1919
if (compile_state != nullptr && compile_state->jvmti_state_changed()) {
1920
*failure_detail = (char*) "Jvmti state change during compilation invalidated dependencies";
1921
return JVMCI::dependencies_failed;
1924
CompileTask* task = compile_state == nullptr ? nullptr : compile_state->task();
1925
Dependencies::DepType result = dependencies->validate_dependencies(task, failure_detail);
1927
if (result == Dependencies::end_marker) {
1930
if (result == Dependencies::call_site_target_value) {
1931
failing_dep_is_call_site = true;
1933
return JVMCI::dependencies_failed;
1936
// Called after an upcall to `function` while compiling `method`.
1937
// If an exception occurred, it is cleared, the compilation state
1938
// is updated with the failure and this method returns true.
1939
// Otherwise, it returns false.
1940
static bool after_compiler_upcall(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, const char* function) {
1941
if (JVMCIENV->has_pending_exception()) {
1943
bool reason_on_C_heap = true;
1944
const char* pending_string = nullptr;
1945
const char* pending_stack_trace = nullptr;
1946
JVMCIENV->pending_exception_as_string(&pending_string, &pending_stack_trace);
1947
if (pending_string == nullptr) pending_string = "null";
1948
// Using stringStream instead of err_msg to avoid truncation
1950
st.print("uncaught exception in %s [%s]", function, pending_string);
1951
const char* failure_reason = os::strdup(st.freeze(), mtJVMCI);
1952
if (failure_reason == nullptr) {
1953
failure_reason = "uncaught exception";
1954
reason_on_C_heap = false;
1956
JVMCI_event_1("%s", failure_reason);
1957
Log(jit, compilation) log;
1958
if (log.is_info()) {
1959
log.info("%s while compiling %s", failure_reason, method->name_and_sig_as_C_string());
1960
if (pending_stack_trace != nullptr) {
1961
LogStream ls(log.info());
1962
ls.print_raw_cr(pending_stack_trace);
1965
JVMCICompileState* compile_state = JVMCIENV->compile_state();
1966
compile_state->set_failure(true, failure_reason, reason_on_C_heap);
1967
compiler->on_upcall(failure_reason, compile_state);
1973
void JVMCIRuntime::compile_method(JVMCIEnv* JVMCIENV, JVMCICompiler* compiler, const methodHandle& method, int entry_bci) {
1974
JVMCI_EXCEPTION_CONTEXT
1976
JVMCICompileState* compile_state = JVMCIENV->compile_state();
1978
bool is_osr = entry_bci != InvocationEntryBci;
1979
if (compiler->is_bootstrapping() && is_osr) {
1980
// no OSR compilations during bootstrap - the compiler is just too slow at this point,
1981
// and we know that there are no endless loops
1982
compile_state->set_failure(true, "No OSR during bootstrap");
1985
if (JVMCI::in_shutdown()) {
1986
if (UseJVMCINativeLibrary) {
1987
JVMCIRuntime *runtime = JVMCI::compiler_runtime(thread, false);
1988
if (runtime != nullptr) {
1989
runtime->detach_thread(thread, "JVMCI shutdown pre-empted compilation");
1992
compile_state->set_failure(false, "Avoiding compilation during shutdown");
1996
HandleMark hm(thread);
1997
JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
1998
if (after_compiler_upcall(JVMCIENV, compiler, method, "get_HotSpotJVMCIRuntime")) {
2001
JVMCIObject jvmci_method = JVMCIENV->get_jvmci_method(method, JVMCIENV);
2002
if (after_compiler_upcall(JVMCIENV, compiler, method, "get_jvmci_method")) {
2006
JVMCIObject result_object = JVMCIENV->call_HotSpotJVMCIRuntime_compileMethod(receiver, jvmci_method, entry_bci,
2007
(jlong) compile_state, compile_state->task()->compile_id());
2009
if (JVMCIENV->has_pending_exception()) {
2010
const char* val = Arguments::PropertyList_get_value(Arguments::system_properties(), "test.jvmci.compileMethodExceptionIsFatal");
2011
if (val != nullptr && strcmp(val, "true") == 0) {
2012
fatal_exception(JVMCIENV, "testing JVMCI fatal exception handling");
2017
if (after_compiler_upcall(JVMCIENV, compiler, method, "call_HotSpotJVMCIRuntime_compileMethod")) {
2020
compiler->on_upcall(nullptr);
2021
guarantee(result_object.is_non_null(), "call_HotSpotJVMCIRuntime_compileMethod returned null");
2022
JVMCIObject failure_message = JVMCIENV->get_HotSpotCompilationRequestResult_failureMessage(result_object);
2023
if (failure_message.is_non_null()) {
2024
// Copy failure reason into resource memory first ...
2025
const char* failure_reason = JVMCIENV->as_utf8_string(failure_message);
2026
// ... and then into the C heap.
2027
failure_reason = os::strdup(failure_reason, mtJVMCI);
2028
bool retryable = JVMCIENV->get_HotSpotCompilationRequestResult_retry(result_object) != 0;
2029
compile_state->set_failure(retryable, failure_reason, true);
2031
if (!compile_state->task()->is_success()) {
2032
compile_state->set_failure(true, "no nmethod produced");
2034
compile_state->task()->set_num_inlined_bytecodes(JVMCIENV->get_HotSpotCompilationRequestResult_inlinedBytecodes(result_object));
2035
compiler->inc_methods_compiled();
2038
if (compiler->is_bootstrapping()) {
2039
compiler->set_bootstrap_compilation_request_handled();
2043
bool JVMCIRuntime::is_gc_supported(JVMCIEnv* JVMCIENV, CollectedHeap::Name name) {
2044
JVMCI_EXCEPTION_CONTEXT
2046
JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
2047
if (JVMCIENV->has_pending_exception()) {
2048
fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization");
2050
return JVMCIENV->call_HotSpotJVMCIRuntime_isGCSupported(receiver, (int) name);
2053
bool JVMCIRuntime::is_intrinsic_supported(JVMCIEnv* JVMCIENV, jint id) {
2054
JVMCI_EXCEPTION_CONTEXT
2056
JVMCIObject receiver = get_HotSpotJVMCIRuntime(JVMCIENV);
2057
if (JVMCIENV->has_pending_exception()) {
2058
fatal_exception(JVMCIENV, "Exception during HotSpotJVMCIRuntime initialization");
2060
return JVMCIENV->call_HotSpotJVMCIRuntime_isIntrinsicSupported(receiver, id);
2063
// ------------------------------------------------------------------
2064
JVMCI::CodeInstallResult JVMCIRuntime::register_method(JVMCIEnv* JVMCIENV,
2065
const methodHandle& method,
2068
CodeOffsets* offsets,
2070
CodeBuffer* code_buffer,
2072
OopMapSet* oop_map_set,
2073
ExceptionHandlerTable* handler_table,
2074
ImplicitExceptionTable* implicit_exception_table,
2075
AbstractCompiler* compiler,
2076
DebugInformationRecorder* debug_info,
2077
Dependencies* dependencies,
2080
bool has_unsafe_access,
2081
bool has_wide_vector,
2082
JVMCIObject compiled_code,
2083
JVMCIObject nmethod_mirror,
2084
FailedSpeculation** failed_speculations,
2086
int speculations_len,
2087
int nmethod_entry_patch_offset) {
2088
JVMCI_EXCEPTION_CONTEXT;
2089
CompLevel comp_level = CompLevel_full_optimization;
2090
char* failure_detail = nullptr;
2092
bool install_default = JVMCIENV->get_HotSpotNmethod_isDefault(nmethod_mirror) != 0;
2093
assert(JVMCIENV->isa_HotSpotNmethod(nmethod_mirror), "must be");
2094
JVMCIObject name = JVMCIENV->get_InstalledCode_name(nmethod_mirror);
2095
const char* nmethod_mirror_name = name.is_null() ? nullptr : JVMCIENV->as_utf8_string(name);
2096
int nmethod_mirror_index;
2097
if (!install_default) {
2098
// Reserve or initialize mirror slot in the oops table.
2099
OopRecorder* oop_recorder = debug_info->oop_recorder();
2100
nmethod_mirror_index = oop_recorder->allocate_oop_index(nmethod_mirror.is_hotspot() ? nmethod_mirror.as_jobject() : nullptr);
2102
// A default HotSpotNmethod mirror is never tracked by the nmethod
2103
nmethod_mirror_index = -1;
2106
JVMCI::CodeInstallResult result(JVMCI::ok);
2108
// We require method counters to store some method state (max compilation levels) required by the compilation policy.
2109
if (method->get_method_counters(THREAD) == nullptr) {
2110
result = JVMCI::cache_full;
2111
failure_detail = (char*) "can't create method counters";
2114
if (result == JVMCI::ok) {
2115
// Check if memory should be freed before allocation
2116
CodeCache::gc_on_allocation();
2118
// To prevent compile queue updates.
2119
MutexLocker locker(THREAD, MethodCompileQueue_lock);
2121
// Prevent InstanceKlass::add_to_hierarchy from running
2122
// and invalidating our dependencies until we install this method.
2123
MutexLocker ml(Compile_lock);
2125
// Encode the dependencies now, so we can check them right away.
2126
dependencies->encode_content_bytes();
2128
// Record the dependencies for the current compile in the log
2129
if (LogCompilation) {
2130
for (Dependencies::DepStream deps(dependencies); deps.next(); ) {
2131
deps.log_dependency();
2135
// Check for {class loads, evolution, breakpoints} during compilation
2136
JVMCICompileState* compile_state = JVMCIENV->compile_state();
2137
bool failing_dep_is_call_site;
2138
result = validate_compile_task_dependencies(dependencies, compile_state, &failure_detail, failing_dep_is_call_site);
2139
if (result != JVMCI::ok) {
2140
// While not a true deoptimization, it is a preemptive decompile.
2141
MethodData* mdp = method()->method_data();
2142
if (mdp != nullptr && !failing_dep_is_call_site) {
2143
mdp->inc_decompile_count();
2145
if (mdp->decompile_count() > (uint)PerMethodRecompilationCutoff) {
2147
tty->print_cr("WARN: endless recompilation of %s. Method was set to not compilable.", method()->name_and_sig_as_C_string());
2152
// All buffers in the CodeBuffer are allocated in the CodeCache.
2153
// If the code buffer is created on each compile attempt
2154
// as in C2, then it must be freed.
2155
//code_buffer->free_blob();
2157
JVMCINMethodData* data = JVMCINMethodData::create(nmethod_mirror_index,
2158
nmethod_entry_patch_offset,
2159
nmethod_mirror_name,
2160
failed_speculations);
2161
nm = nmethod::new_nmethod(method,
2166
debug_info, dependencies, code_buffer,
2167
frame_words, oop_map_set,
2168
handler_table, implicit_exception_table,
2169
compiler, comp_level,
2170
speculations, speculations_len, data);
2174
if (nm == nullptr) {
2175
// The CodeCache is full. Print out warning and disable compilation.
2177
MutexUnlocker ml(Compile_lock);
2178
MutexUnlocker locker(MethodCompileQueue_lock);
2179
CompileBroker::handle_full_code_cache(CodeCache::get_code_blob_type(comp_level));
2181
result = JVMCI::cache_full;
2183
nm->set_has_unsafe_access(has_unsafe_access);
2184
nm->set_has_wide_vectors(has_wide_vector);
2185
nm->set_has_monitors(has_monitors);
2186
nm->set_has_scoped_access(true); // conservative
2188
JVMCINMethodData* data = nm->jvmci_nmethod_data();
2189
assert(data != nullptr, "must be");
2190
if (install_default) {
2191
assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == nullptr, "must be");
2192
if (entry_bci == InvocationEntryBci) {
2193
// If there is an old version we're done with it
2194
nmethod* old = method->code();
2195
if (TraceMethodReplacement && old != nullptr) {
2197
char *method_name = method->name_and_sig_as_C_string();
2198
tty->print_cr("Replacing method %s", method_name);
2200
if (old != nullptr ) {
2201
old->make_not_entrant();
2204
LogTarget(Info, nmethod, install) lt;
2205
if (lt.is_enabled()) {
2207
char *method_name = method->name_and_sig_as_C_string();
2208
lt.print("Installing method (%d) %s [entry point: %p]",
2209
comp_level, method_name, nm->entry_point());
2211
// Allow the code to be executed
2212
MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2213
if (nm->make_in_use()) {
2214
method->set_code(method, nm);
2216
result = JVMCI::nmethod_reclaimed;
2219
LogTarget(Info, nmethod, install) lt;
2220
if (lt.is_enabled()) {
2222
char *method_name = method->name_and_sig_as_C_string();
2223
lt.print("Installing osr method (%d) %s @ %d",
2224
comp_level, method_name, entry_bci);
2226
MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2227
if (nm->make_in_use()) {
2228
InstanceKlass::cast(method->method_holder())->add_osr_nmethod(nm);
2230
result = JVMCI::nmethod_reclaimed;
2234
assert(!nmethod_mirror.is_hotspot() || data->get_nmethod_mirror(nm, /* phantom_ref */ false) == HotSpotJVMCI::resolve(nmethod_mirror), "must be");
2235
MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
2236
if (!nm->make_in_use()) {
2237
result = JVMCI::nmethod_reclaimed;
2244
// String creation must be done outside lock
2245
if (failure_detail != nullptr) {
2246
// A failure to allocate the string is silently ignored.
2247
JVMCIObject message = JVMCIENV->create_string(failure_detail, JVMCIENV);
2248
JVMCIENV->set_HotSpotCompiledNmethod_installationFailureMessage(compiled_code, message);
2251
if (result == JVMCI::ok) {
2252
JVMCICompileState* state = JVMCIENV->compile_state();
2253
if (state != nullptr) {
2254
// Compilation succeeded, post what we know about it
2255
nm->post_compiled_method(state->task());
2262
void JVMCIRuntime::post_compile(JavaThread* thread) {
2263
if (UseJVMCINativeLibrary && JVMCI::one_shared_library_javavm_per_compilation()) {
2264
if (thread->libjvmci_runtime() != nullptr) {
2265
detach_thread(thread, "single use JavaVM");
2267
// JVMCI shutdown may have already detached the thread