jdk

Форк
0
/x
/
xDirector.cpp 
406 строк · 18.4 Кб
1
/*
2
 * Copyright (c) 2015, 2024, Oracle and/or its affiliates. All rights reserved.
3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
 *
5
 * This code is free software; you can redistribute it and/or modify it
6
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.
8
 *
9
 * This code is distributed in the hope that it will be useful, but WITHOUT
10
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12
 * version 2 for more details (a copy is included in the LICENSE file that
13
 * accompanied this code).
14
 *
15
 * You should have received a copy of the GNU General Public License version
16
 * 2 along with this work; if not, write to the Free Software Foundation,
17
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
 *
19
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
 * or visit www.oracle.com if you need additional information or have any
21
 * questions.
22
 */
23

24
#include "precompiled.hpp"
25
#include "gc/shared/gc_globals.hpp"
26
#include "gc/x/xDirector.hpp"
27
#include "gc/x/xDriver.hpp"
28
#include "gc/x/xHeap.inline.hpp"
29
#include "gc/x/xHeuristics.hpp"
30
#include "gc/x/xStat.hpp"
31
#include "logging/log.hpp"
32

33
constexpr double one_in_1000 = 3.290527;
34
constexpr double sample_interval = 1.0 / XStatAllocRate::sample_hz;
35

36
XDirector::XDirector(XDriver* driver) :
37
    _driver(driver),
38
    _metronome(XStatAllocRate::sample_hz) {
39
  set_name("XDirector");
40
  create_and_start();
41
}
42

43
static void sample_allocation_rate() {
44
  // Sample allocation rate. This is needed by rule_allocation_rate()
45
  // below to estimate the time we have until we run out of memory.
46
  const double bytes_per_second = XStatAllocRate::sample_and_reset();
47

48
  log_debug(gc, alloc)("Allocation Rate: %.1fMB/s, Predicted: %.1fMB/s, Avg: %.1f(+/-%.1f)MB/s",
49
                       bytes_per_second / M,
50
                       XStatAllocRate::predict() / M,
51
                       XStatAllocRate::avg() / M,
52
                       XStatAllocRate::sd() / M);
53
}
54

55
static XDriverRequest rule_allocation_stall() {
56
  // Perform GC if we've observed at least one allocation stall since
57
  // the last GC started.
58
  if (!XHeap::heap()->has_alloc_stalled()) {
59
    return GCCause::_no_gc;
60
  }
61

62
  log_debug(gc, director)("Rule: Allocation Stall Observed");
63

64
  return GCCause::_z_allocation_stall;
65
}
66

67
static XDriverRequest rule_warmup() {
68
  if (XStatCycle::is_warm()) {
69
    // Rule disabled
70
    return GCCause::_no_gc;
71
  }
72

73
  // Perform GC if heap usage passes 10/20/30% and no other GC has been
74
  // performed yet. This allows us to get some early samples of the GC
75
  // duration, which is needed by the other rules.
76
  const size_t soft_max_capacity = XHeap::heap()->soft_max_capacity();
77
  const size_t used = XHeap::heap()->used();
78
  const double used_threshold_percent = (XStatCycle::nwarmup_cycles() + 1) * 0.1;
79
  const size_t used_threshold = soft_max_capacity * used_threshold_percent;
80

81
  log_debug(gc, director)("Rule: Warmup %.0f%%, Used: " SIZE_FORMAT "MB, UsedThreshold: " SIZE_FORMAT "MB",
82
                          used_threshold_percent * 100, used / M, used_threshold / M);
83

84
  if (used < used_threshold) {
85
    return GCCause::_no_gc;
86
  }
87

88
  return GCCause::_z_warmup;
89
}
90

91
static XDriverRequest rule_timer() {
92
  if (ZCollectionInterval <= 0) {
93
    // Rule disabled
94
    return GCCause::_no_gc;
95
  }
96

97
  // Perform GC if timer has expired.
98
  const double time_since_last_gc = XStatCycle::time_since_last();
99
  const double time_until_gc = ZCollectionInterval - time_since_last_gc;
100

101
  log_debug(gc, director)("Rule: Timer, Interval: %.3fs, TimeUntilGC: %.3fs",
102
                          ZCollectionInterval, time_until_gc);
103

104
  if (time_until_gc > 0) {
105
    return GCCause::_no_gc;
106
  }
107

108
  return GCCause::_z_timer;
109
}
110

111
static double estimated_gc_workers(double serial_gc_time, double parallelizable_gc_time, double time_until_deadline) {
112
  const double parallelizable_time_until_deadline = MAX2(time_until_deadline - serial_gc_time, 0.001);
113
  return parallelizable_gc_time / parallelizable_time_until_deadline;
114
}
115

116
static uint discrete_gc_workers(double gc_workers) {
117
  return clamp<uint>(ceil(gc_workers), 1, ConcGCThreads);
118
}
119

120
static double select_gc_workers(double serial_gc_time, double parallelizable_gc_time, double alloc_rate_sd_percent, double time_until_oom) {
121
  // Use all workers until we're warm
122
  if (!XStatCycle::is_warm()) {
123
    const double not_warm_gc_workers = ConcGCThreads;
124
    log_debug(gc, director)("Select GC Workers (Not Warm), GCWorkers: %.3f", not_warm_gc_workers);
125
    return not_warm_gc_workers;
126
  }
127

128
  // Calculate number of GC workers needed to avoid a long GC cycle and to avoid OOM.
129
  const double avoid_long_gc_workers = estimated_gc_workers(serial_gc_time, parallelizable_gc_time, 10 /* seconds */);
130
  const double avoid_oom_gc_workers = estimated_gc_workers(serial_gc_time, parallelizable_gc_time, time_until_oom);
131

132
  const double gc_workers = MAX2(avoid_long_gc_workers, avoid_oom_gc_workers);
133
  const uint actual_gc_workers = discrete_gc_workers(gc_workers);
134
  const uint last_gc_workers = XStatCycle::last_active_workers();
135

136
  // More than 15% division from the average is considered unsteady
137
  if (alloc_rate_sd_percent >= 0.15) {
138
    const double half_gc_workers = ConcGCThreads / 2.0;
139
    const double unsteady_gc_workers = MAX3<double>(gc_workers, last_gc_workers, half_gc_workers);
140
    log_debug(gc, director)("Select GC Workers (Unsteady), "
141
                            "AvoidLongGCWorkers: %.3f, AvoidOOMGCWorkers: %.3f, LastGCWorkers: %.3f, HalfGCWorkers: %.3f, GCWorkers: %.3f",
142
                            avoid_long_gc_workers, avoid_oom_gc_workers, (double)last_gc_workers, half_gc_workers, unsteady_gc_workers);
143
    return unsteady_gc_workers;
144
  }
145

146
  if (actual_gc_workers < last_gc_workers) {
147
    // Before decreasing number of GC workers compared to the previous GC cycle, check if the
148
    // next GC cycle will need to increase it again. If so, use the same number of GC workers
149
    // that will be needed in the next cycle.
150
    const double gc_duration_delta = (parallelizable_gc_time / actual_gc_workers) - (parallelizable_gc_time / last_gc_workers);
151
    const double additional_time_for_allocations = XStatCycle::time_since_last() - gc_duration_delta - sample_interval;
152
    const double next_time_until_oom = time_until_oom + additional_time_for_allocations;
153
    const double next_avoid_oom_gc_workers = estimated_gc_workers(serial_gc_time, parallelizable_gc_time, next_time_until_oom);
154

155
    // Add 0.5 to increase friction and avoid lowering too eagerly
156
    const double next_gc_workers = next_avoid_oom_gc_workers + 0.5;
157
    const double try_lowering_gc_workers = clamp<double>(next_gc_workers, actual_gc_workers, last_gc_workers);
158

159
    log_debug(gc, director)("Select GC Workers (Try Lowering), "
160
                           "AvoidLongGCWorkers: %.3f, AvoidOOMGCWorkers: %.3f, NextAvoidOOMGCWorkers: %.3f, LastGCWorkers: %.3f, GCWorkers: %.3f",
161
                            avoid_long_gc_workers, avoid_oom_gc_workers, next_avoid_oom_gc_workers, (double)last_gc_workers, try_lowering_gc_workers);
162
    return try_lowering_gc_workers;
163
  }
164

165
  log_debug(gc, director)("Select GC Workers (Normal), "
166
                         "AvoidLongGCWorkers: %.3f, AvoidOOMGCWorkers: %.3f, LastGCWorkers: %.3f, GCWorkers: %.3f",
167
                         avoid_long_gc_workers, avoid_oom_gc_workers, (double)last_gc_workers, gc_workers);
168
  return gc_workers;
169
}
170

171
static XDriverRequest rule_allocation_rate_dynamic() {
172
  if (!XStatCycle::is_time_trustable()) {
173
    // Rule disabled
174
    return GCCause::_no_gc;
175
  }
176

177
  // Calculate amount of free memory available. Note that we take the
178
  // relocation headroom into account to avoid in-place relocation.
179
  const size_t soft_max_capacity = XHeap::heap()->soft_max_capacity();
180
  const size_t used = XHeap::heap()->used();
181
  const size_t free_including_headroom = soft_max_capacity - MIN2(soft_max_capacity, used);
182
  const size_t free = free_including_headroom - MIN2(free_including_headroom, XHeuristics::relocation_headroom());
183

184
  // Calculate time until OOM given the max allocation rate and the amount
185
  // of free memory. The allocation rate is a moving average and we multiply
186
  // that with an allocation spike tolerance factor to guard against unforeseen
187
  // phase changes in the allocate rate. We then add ~3.3 sigma to account for
188
  // the allocation rate variance, which means the probability is 1 in 1000
189
  // that a sample is outside of the confidence interval.
190
  const double alloc_rate_predict = XStatAllocRate::predict();
191
  const double alloc_rate_avg = XStatAllocRate::avg();
192
  const double alloc_rate_sd = XStatAllocRate::sd();
193
  const double alloc_rate_sd_percent = alloc_rate_sd / (alloc_rate_avg + 1.0);
194
  const double alloc_rate = (MAX2(alloc_rate_predict, alloc_rate_avg) * ZAllocationSpikeTolerance) + (alloc_rate_sd * one_in_1000) + 1.0;
195
  const double time_until_oom = (free / alloc_rate) / (1.0 + alloc_rate_sd_percent);
196

197
  // Calculate max serial/parallel times of a GC cycle. The times are
198
  // moving averages, we add ~3.3 sigma to account for the variance.
199
  const double serial_gc_time = XStatCycle::serial_time().davg() + (XStatCycle::serial_time().dsd() * one_in_1000);
200
  const double parallelizable_gc_time = XStatCycle::parallelizable_time().davg() + (XStatCycle::parallelizable_time().dsd() * one_in_1000);
201

202
  // Calculate number of GC workers needed to avoid OOM.
203
  const double gc_workers = select_gc_workers(serial_gc_time, parallelizable_gc_time, alloc_rate_sd_percent, time_until_oom);
204

205
  // Convert to a discrete number of GC workers within limits.
206
  const uint actual_gc_workers = discrete_gc_workers(gc_workers);
207

208
  // Calculate GC duration given number of GC workers needed.
209
  const double actual_gc_duration = serial_gc_time + (parallelizable_gc_time / actual_gc_workers);
210
  const uint last_gc_workers = XStatCycle::last_active_workers();
211

212
  // Calculate time until GC given the time until OOM and GC duration.
213
  // We also subtract the sample interval, so that we don't overshoot the
214
  // target time and end up starting the GC too late in the next interval.
215
  const double time_until_gc = time_until_oom - actual_gc_duration - sample_interval;
216

217
  log_debug(gc, director)("Rule: Allocation Rate (Dynamic GC Workers), "
218
                          "MaxAllocRate: %.1fMB/s (+/-%.1f%%), Free: " SIZE_FORMAT "MB, GCCPUTime: %.3f, "
219
                          "GCDuration: %.3fs, TimeUntilOOM: %.3fs, TimeUntilGC: %.3fs, GCWorkers: %u -> %u",
220
                          alloc_rate / M,
221
                          alloc_rate_sd_percent * 100,
222
                          free / M,
223
                          serial_gc_time + parallelizable_gc_time,
224
                          serial_gc_time + (parallelizable_gc_time / actual_gc_workers),
225
                          time_until_oom,
226
                          time_until_gc,
227
                          last_gc_workers,
228
                          actual_gc_workers);
229

230
  if (actual_gc_workers <= last_gc_workers && time_until_gc > 0) {
231
    return XDriverRequest(GCCause::_no_gc, actual_gc_workers);
232
  }
233

234
  return XDriverRequest(GCCause::_z_allocation_rate, actual_gc_workers);
235
}
236

237
static XDriverRequest rule_allocation_rate_static() {
238
  if (!XStatCycle::is_time_trustable()) {
239
    // Rule disabled
240
    return GCCause::_no_gc;
241
  }
242

243
  // Perform GC if the estimated max allocation rate indicates that we
244
  // will run out of memory. The estimated max allocation rate is based
245
  // on the moving average of the sampled allocation rate plus a safety
246
  // margin based on variations in the allocation rate and unforeseen
247
  // allocation spikes.
248

249
  // Calculate amount of free memory available. Note that we take the
250
  // relocation headroom into account to avoid in-place relocation.
251
  const size_t soft_max_capacity = XHeap::heap()->soft_max_capacity();
252
  const size_t used = XHeap::heap()->used();
253
  const size_t free_including_headroom = soft_max_capacity - MIN2(soft_max_capacity, used);
254
  const size_t free = free_including_headroom - MIN2(free_including_headroom, XHeuristics::relocation_headroom());
255

256
  // Calculate time until OOM given the max allocation rate and the amount
257
  // of free memory. The allocation rate is a moving average and we multiply
258
  // that with an allocation spike tolerance factor to guard against unforeseen
259
  // phase changes in the allocate rate. We then add ~3.3 sigma to account for
260
  // the allocation rate variance, which means the probability is 1 in 1000
261
  // that a sample is outside of the confidence interval.
262
  const double max_alloc_rate = (XStatAllocRate::avg() * ZAllocationSpikeTolerance) + (XStatAllocRate::sd() * one_in_1000);
263
  const double time_until_oom = free / (max_alloc_rate + 1.0); // Plus 1.0B/s to avoid division by zero
264

265
  // Calculate max serial/parallel times of a GC cycle. The times are
266
  // moving averages, we add ~3.3 sigma to account for the variance.
267
  const double serial_gc_time = XStatCycle::serial_time().davg() + (XStatCycle::serial_time().dsd() * one_in_1000);
268
  const double parallelizable_gc_time = XStatCycle::parallelizable_time().davg() + (XStatCycle::parallelizable_time().dsd() * one_in_1000);
269

270
  // Calculate GC duration given number of GC workers needed.
271
  const double gc_duration = serial_gc_time + (parallelizable_gc_time / ConcGCThreads);
272

273
  // Calculate time until GC given the time until OOM and max duration of GC.
274
  // We also deduct the sample interval, so that we don't overshoot the target
275
  // time and end up starting the GC too late in the next interval.
276
  const double time_until_gc = time_until_oom - gc_duration - sample_interval;
277

278
  log_debug(gc, director)("Rule: Allocation Rate (Static GC Workers), MaxAllocRate: %.1fMB/s, Free: " SIZE_FORMAT "MB, GCDuration: %.3fs, TimeUntilGC: %.3fs",
279
                          max_alloc_rate / M, free / M, gc_duration, time_until_gc);
280

281
  if (time_until_gc > 0) {
282
    return GCCause::_no_gc;
283
  }
284

285
  return GCCause::_z_allocation_rate;
286
}
287

288
static XDriverRequest rule_allocation_rate() {
289
  if (UseDynamicNumberOfGCThreads) {
290
    return rule_allocation_rate_dynamic();
291
  } else {
292
    return rule_allocation_rate_static();
293
  }
294
}
295

296
static XDriverRequest rule_high_usage() {
297
  // Perform GC if the amount of free memory is 5% or less. This is a preventive
298
  // meassure in the case where the application has a very low allocation rate,
299
  // such that the allocation rate rule doesn't trigger, but the amount of free
300
  // memory is still slowly but surely heading towards zero. In this situation,
301
  // we start a GC cycle to avoid a potential allocation stall later.
302

303
  // Calculate amount of free memory available. Note that we take the
304
  // relocation headroom into account to avoid in-place relocation.
305
  const size_t soft_max_capacity = XHeap::heap()->soft_max_capacity();
306
  const size_t used = XHeap::heap()->used();
307
  const size_t free_including_headroom = soft_max_capacity - MIN2(soft_max_capacity, used);
308
  const size_t free = free_including_headroom - MIN2(free_including_headroom, XHeuristics::relocation_headroom());
309
  const double free_percent = percent_of(free, soft_max_capacity);
310

311
  log_debug(gc, director)("Rule: High Usage, Free: " SIZE_FORMAT "MB(%.1f%%)",
312
                          free / M, free_percent);
313

314
  if (free_percent > 5.0) {
315
    return GCCause::_no_gc;
316
  }
317

318
  return GCCause::_z_high_usage;
319
}
320

321
static XDriverRequest rule_proactive() {
322
  if (!ZProactive || !XStatCycle::is_warm()) {
323
    // Rule disabled
324
    return GCCause::_no_gc;
325
  }
326

327
  // Perform GC if the impact of doing so, in terms of application throughput
328
  // reduction, is considered acceptable. This rule allows us to keep the heap
329
  // size down and allow reference processing to happen even when we have a lot
330
  // of free space on the heap.
331

332
  // Only consider doing a proactive GC if the heap usage has grown by at least
333
  // 10% of the max capacity since the previous GC, or more than 5 minutes has
334
  // passed since the previous GC. This helps avoid superfluous GCs when running
335
  // applications with very low allocation rate.
336
  const size_t used_after_last_gc = XStatHeap::used_at_relocate_end();
337
  const size_t used_increase_threshold = XHeap::heap()->soft_max_capacity() * 0.10; // 10%
338
  const size_t used_threshold = used_after_last_gc + used_increase_threshold;
339
  const size_t used = XHeap::heap()->used();
340
  const double time_since_last_gc = XStatCycle::time_since_last();
341
  const double time_since_last_gc_threshold = 5 * 60; // 5 minutes
342
  if (used < used_threshold && time_since_last_gc < time_since_last_gc_threshold) {
343
    // Don't even consider doing a proactive GC
344
    log_debug(gc, director)("Rule: Proactive, UsedUntilEnabled: " SIZE_FORMAT "MB, TimeUntilEnabled: %.3fs",
345
                            (used_threshold - used) / M,
346
                            time_since_last_gc_threshold - time_since_last_gc);
347
    return GCCause::_no_gc;
348
  }
349

350
  const double assumed_throughput_drop_during_gc = 0.50; // 50%
351
  const double acceptable_throughput_drop = 0.01;        // 1%
352
  const double serial_gc_time = XStatCycle::serial_time().davg() + (XStatCycle::serial_time().dsd() * one_in_1000);
353
  const double parallelizable_gc_time = XStatCycle::parallelizable_time().davg() + (XStatCycle::parallelizable_time().dsd() * one_in_1000);
354
  const double gc_duration = serial_gc_time + (parallelizable_gc_time / ConcGCThreads);
355
  const double acceptable_gc_interval = gc_duration * ((assumed_throughput_drop_during_gc / acceptable_throughput_drop) - 1.0);
356
  const double time_until_gc = acceptable_gc_interval - time_since_last_gc;
357

358
  log_debug(gc, director)("Rule: Proactive, AcceptableGCInterval: %.3fs, TimeSinceLastGC: %.3fs, TimeUntilGC: %.3fs",
359
                          acceptable_gc_interval, time_since_last_gc, time_until_gc);
360

361
  if (time_until_gc > 0) {
362
    return GCCause::_no_gc;
363
  }
364

365
  return GCCause::_z_proactive;
366
}
367

368
static XDriverRequest make_gc_decision() {
369
  // List of rules
370
  using XDirectorRule = XDriverRequest (*)();
371
  const XDirectorRule rules[] = {
372
    rule_allocation_stall,
373
    rule_warmup,
374
    rule_timer,
375
    rule_allocation_rate,
376
    rule_high_usage,
377
    rule_proactive,
378
  };
379

380
  // Execute rules
381
  for (size_t i = 0; i < ARRAY_SIZE(rules); i++) {
382
    const XDriverRequest request = rules[i]();
383
    if (request.cause() != GCCause::_no_gc) {
384
      return request;
385
    }
386
  }
387

388
  return GCCause::_no_gc;
389
}
390

391
void XDirector::run_service() {
392
  // Main loop
393
  while (_metronome.wait_for_tick()) {
394
    sample_allocation_rate();
395
    if (!_driver->is_busy()) {
396
      const XDriverRequest request = make_gc_decision();
397
      if (request.cause() != GCCause::_no_gc) {
398
        _driver->collect(request);
399
      }
400
    }
401
  }
402
}
403

404
void XDirector::stop_service() {
405
  _metronome.stop();
406
}
407

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.