2
* Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
25
#include "precompiled.hpp"
26
#include "classfile/javaClasses.inline.hpp"
27
#include "classfile/symbolTable.hpp"
28
#include "classfile/vmClasses.hpp"
29
#include "classfile/vmSymbols.hpp"
30
#include "code/codeCache.hpp"
31
#include "code/codeHeapState.hpp"
32
#include "code/dependencyContext.hpp"
33
#include "compiler/compilationLog.hpp"
34
#include "compiler/compilationMemoryStatistic.hpp"
35
#include "compiler/compilationPolicy.hpp"
36
#include "compiler/compileBroker.hpp"
37
#include "compiler/compileLog.hpp"
38
#include "compiler/compilerEvent.hpp"
39
#include "compiler/compilerOracle.hpp"
40
#include "compiler/directivesParser.hpp"
41
#include "gc/shared/memAllocator.hpp"
42
#include "interpreter/linkResolver.hpp"
44
#include "jfr/jfrEvents.hpp"
45
#include "logging/log.hpp"
46
#include "logging/logStream.hpp"
47
#include "memory/allocation.inline.hpp"
48
#include "memory/resourceArea.hpp"
49
#include "memory/universe.hpp"
50
#include "oops/methodData.hpp"
51
#include "oops/method.inline.hpp"
52
#include "oops/oop.inline.hpp"
53
#include "prims/jvmtiExport.hpp"
54
#include "prims/nativeLookup.hpp"
55
#include "prims/whitebox.hpp"
56
#include "runtime/atomic.hpp"
57
#include "runtime/escapeBarrier.hpp"
58
#include "runtime/globals_extension.hpp"
59
#include "runtime/handles.inline.hpp"
60
#include "runtime/init.hpp"
61
#include "runtime/interfaceSupport.inline.hpp"
62
#include "runtime/java.hpp"
63
#include "runtime/javaCalls.hpp"
64
#include "runtime/jniHandles.inline.hpp"
65
#include "runtime/os.hpp"
66
#include "runtime/perfData.hpp"
67
#include "runtime/safepointVerifiers.hpp"
68
#include "runtime/sharedRuntime.hpp"
69
#include "runtime/threads.hpp"
70
#include "runtime/threadSMR.hpp"
71
#include "runtime/timerTrace.hpp"
72
#include "runtime/vframe.inline.hpp"
73
#include "utilities/debug.hpp"
74
#include "utilities/dtrace.hpp"
75
#include "utilities/events.hpp"
76
#include "utilities/formatBuffer.hpp"
77
#include "utilities/macros.hpp"
79
#include "c1/c1_Compiler.hpp"
82
#include "opto/c2compiler.hpp"
85
#include "jvmci/jvmciEnv.hpp"
86
#include "jvmci/jvmciRuntime.hpp"
91
// Only bother with this argument setup if dtrace is available
93
#define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \
95
Symbol* klass_name = (method)->klass_name(); \
96
Symbol* name = (method)->name(); \
97
Symbol* signature = (method)->signature(); \
98
HOTSPOT_METHOD_COMPILE_BEGIN( \
99
(char *) comp_name, strlen(comp_name), \
100
(char *) klass_name->bytes(), klass_name->utf8_length(), \
101
(char *) name->bytes(), name->utf8_length(), \
102
(char *) signature->bytes(), signature->utf8_length()); \
105
#define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \
107
Symbol* klass_name = (method)->klass_name(); \
108
Symbol* name = (method)->name(); \
109
Symbol* signature = (method)->signature(); \
110
HOTSPOT_METHOD_COMPILE_END( \
111
(char *) comp_name, strlen(comp_name), \
112
(char *) klass_name->bytes(), klass_name->utf8_length(), \
113
(char *) name->bytes(), name->utf8_length(), \
114
(char *) signature->bytes(), signature->utf8_length(), (success)); \
117
#else // ndef DTRACE_ENABLED
119
#define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
120
#define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
122
#endif // ndef DTRACE_ENABLED
124
bool CompileBroker::_initialized = false;
125
volatile bool CompileBroker::_should_block = false;
126
volatile int CompileBroker::_print_compilation_warning = 0;
127
volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
129
// The installed compiler(s)
130
AbstractCompiler* CompileBroker::_compilers[2];
132
// The maximum numbers of compiler threads to be determined during startup.
133
int CompileBroker::_c1_count = 0;
134
int CompileBroker::_c2_count = 0;
136
// An array of compiler names as Java String objects
137
jobject* CompileBroker::_compiler1_objects = nullptr;
138
jobject* CompileBroker::_compiler2_objects = nullptr;
140
CompileLog** CompileBroker::_compiler1_logs = nullptr;
141
CompileLog** CompileBroker::_compiler2_logs = nullptr;
143
// These counters are used to assign an unique ID to each compilation.
144
volatile jint CompileBroker::_compilation_id = 0;
145
volatile jint CompileBroker::_osr_compilation_id = 0;
146
volatile jint CompileBroker::_native_compilation_id = 0;
148
// Performance counters
149
PerfCounter* CompileBroker::_perf_total_compilation = nullptr;
150
PerfCounter* CompileBroker::_perf_osr_compilation = nullptr;
151
PerfCounter* CompileBroker::_perf_standard_compilation = nullptr;
153
PerfCounter* CompileBroker::_perf_total_bailout_count = nullptr;
154
PerfCounter* CompileBroker::_perf_total_invalidated_count = nullptr;
155
PerfCounter* CompileBroker::_perf_total_compile_count = nullptr;
156
PerfCounter* CompileBroker::_perf_total_osr_compile_count = nullptr;
157
PerfCounter* CompileBroker::_perf_total_standard_compile_count = nullptr;
159
PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = nullptr;
160
PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = nullptr;
161
PerfCounter* CompileBroker::_perf_sum_nmethod_size = nullptr;
162
PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = nullptr;
164
PerfStringVariable* CompileBroker::_perf_last_method = nullptr;
165
PerfStringVariable* CompileBroker::_perf_last_failed_method = nullptr;
166
PerfStringVariable* CompileBroker::_perf_last_invalidated_method = nullptr;
167
PerfVariable* CompileBroker::_perf_last_compile_type = nullptr;
168
PerfVariable* CompileBroker::_perf_last_compile_size = nullptr;
169
PerfVariable* CompileBroker::_perf_last_failed_type = nullptr;
170
PerfVariable* CompileBroker::_perf_last_invalidated_type = nullptr;
172
// Timers and counters for generating statistics
173
elapsedTimer CompileBroker::_t_total_compilation;
174
elapsedTimer CompileBroker::_t_osr_compilation;
175
elapsedTimer CompileBroker::_t_standard_compilation;
176
elapsedTimer CompileBroker::_t_invalidated_compilation;
177
elapsedTimer CompileBroker::_t_bailedout_compilation;
179
uint CompileBroker::_total_bailout_count = 0;
180
uint CompileBroker::_total_invalidated_count = 0;
181
uint CompileBroker::_total_compile_count = 0;
182
uint CompileBroker::_total_osr_compile_count = 0;
183
uint CompileBroker::_total_standard_compile_count = 0;
184
uint CompileBroker::_total_compiler_stopped_count = 0;
185
uint CompileBroker::_total_compiler_restarted_count = 0;
187
uint CompileBroker::_sum_osr_bytes_compiled = 0;
188
uint CompileBroker::_sum_standard_bytes_compiled = 0;
189
uint CompileBroker::_sum_nmethod_size = 0;
190
uint CompileBroker::_sum_nmethod_code_size = 0;
192
jlong CompileBroker::_peak_compilation_time = 0;
194
CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization];
196
CompileQueue* CompileBroker::_c2_compile_queue = nullptr;
197
CompileQueue* CompileBroker::_c1_compile_queue = nullptr;
199
bool compileBroker_init() {
201
CompilationLog::init();
204
// init directives stack, adding default directive
205
DirectivesStack::init();
207
if (DirectivesParser::has_file()) {
208
return DirectivesParser::parse_from_flag();
209
} else if (CompilerDirectivesPrint) {
210
// Print default directive even when no other was added
211
DirectivesStack::print(tty);
217
CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
218
CompilerThread* thread = CompilerThread::current();
219
thread->set_task(task);
220
CompileLog* log = thread->log();
221
if (log != nullptr && !task->is_unloaded()) task->log_task_start(log);
224
CompileTaskWrapper::~CompileTaskWrapper() {
225
CompilerThread* thread = CompilerThread::current();
226
CompileTask* task = thread->task();
227
CompileLog* log = thread->log();
228
if (log != nullptr && !task->is_unloaded()) task->log_task_done(log);
229
thread->set_task(nullptr);
230
thread->set_env(nullptr);
231
if (task->is_blocking()) {
232
bool free_task = false;
234
MutexLocker notifier(thread, task->lock());
235
task->mark_complete();
237
if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
238
if (!task->has_waiter()) {
239
// The waiting thread timed out and thus did not free the task.
242
task->set_blocking_jvmci_compile_state(nullptr);
246
// Notify the waiting thread that the compilation has completed
247
// so that it can free the task.
248
task->lock()->notify_all();
252
// The task can only be freed once the task lock is released.
253
CompileTask::free(task);
256
task->mark_complete();
258
// By convention, the compiling thread is responsible for
259
// recycling a non-blocking CompileTask.
260
CompileTask::free(task);
265
* Check if a CompilerThread can be removed and update count if requested.
267
bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
268
assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
269
if (!ReduceNumberOfCompilerThreads) return false;
271
AbstractCompiler *compiler = ct->compiler();
272
int compiler_count = compiler->num_compiler_threads();
273
bool c1 = compiler->is_c1();
275
// Keep at least 1 compiler thread of each type.
276
if (compiler_count < 2) return false;
278
// Keep thread alive for at least some time.
279
if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
282
if (compiler->is_jvmci() && !UseJVMCINativeLibrary) {
283
// Handles for JVMCI thread objects may get released concurrently.
285
assert(CompileThread_lock->owner() == ct, "must be holding lock");
287
// Skip check if it's the last thread and let caller check again.
293
// We only allow the last compiler thread of each type to get removed.
294
jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
295
: compiler2_object(compiler_count - 1);
296
if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
298
assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
299
compiler->set_num_compiler_threads(compiler_count - 1);
301
if (compiler->is_jvmci() && !UseJVMCINativeLibrary) {
302
// Old j.l.Thread object can die when no longer referenced elsewhere.
303
JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
304
_compiler2_objects[compiler_count - 1] = nullptr;
314
* Add a CompileTask to a CompileQueue.
316
void CompileQueue::add(CompileTask* task) {
317
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
319
task->set_next(nullptr);
320
task->set_prev(nullptr);
322
if (_last == nullptr) {
323
// The compile queue is empty.
324
assert(_first == nullptr, "queue is empty");
328
// Append the task to the queue.
329
assert(_last->next() == nullptr, "not last");
330
_last->set_next(task);
331
task->set_prev(_last);
336
if (_size > _peak_size) {
340
// Mark the method as being in the compile queue.
341
task->method()->set_queued_for_compilation();
343
if (CIPrintCompileQueue) {
347
if (LogCompilation && xtty != nullptr) {
348
task->log_task_queued();
351
// Notify CompilerThreads that a task is available.
352
MethodCompileQueue_lock->notify_all();
356
* Empties compilation queue by putting all compilation tasks onto
357
* a freelist. Furthermore, the method wakes up all threads that are
358
* waiting on a compilation task to finish. This can happen if background
359
* compilation is disabled.
361
void CompileQueue::free_all() {
362
MutexLocker mu(MethodCompileQueue_lock);
363
CompileTask* next = _first;
365
// Iterate over all tasks in the compile queue
366
while (next != nullptr) {
367
CompileTask* current = next;
368
next = current->next();
370
// Wake up thread that blocks on the compile task.
371
MutexLocker ct_lock(current->lock());
372
current->lock()->notify();
374
// Put the task back on the freelist.
375
CompileTask::free(current);
380
// Wake up all threads that block on the queue.
381
MethodCompileQueue_lock->notify_all();
385
* Get the next CompileTask from a CompileQueue
387
CompileTask* CompileQueue::get(CompilerThread* thread) {
388
// save methods from RedefineClasses across safepoint
389
// across MethodCompileQueue_lock below.
390
methodHandle save_method;
391
methodHandle save_hot_method;
393
MonitorLocker locker(MethodCompileQueue_lock);
394
// If _first is null we have no more compile jobs. There are two reasons for
395
// having no compile jobs: First, we compiled everything we wanted. Second,
396
// we ran out of code cache so compilation has been disabled. In the latter
397
// case we perform code cache sweeps to free memory such that we can re-enable
399
while (_first == nullptr) {
400
// Exit loop if compilation is disabled forever
401
if (CompileBroker::is_compilation_disabled_forever()) {
405
AbstractCompiler* compiler = thread->compiler();
406
guarantee(compiler != nullptr, "Compiler object must exist");
407
compiler->on_empty_queue(this, thread);
408
if (_first != nullptr) {
409
// The call to on_empty_queue may have temporarily unlocked the MCQ lock
410
// so check again whether any tasks were added to the queue.
414
// If there are no compilation tasks and we can compile new jobs
415
// (i.e., there is enough free space in the code cache) there is
416
// no need to invoke the GC.
417
// We need a timed wait here, since compiler threads can exit if compilation
418
// is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
419
// is not critical and we do not want idle compiler threads to wake up too often.
422
if (UseDynamicNumberOfCompilerThreads && _first == nullptr) {
423
// Still nothing to compile. Give caller a chance to stop this thread.
424
if (CompileBroker::can_remove(CompilerThread::current(), false)) return nullptr;
428
if (CompileBroker::is_compilation_disabled_forever()) {
434
NoSafepointVerifier nsv;
435
task = CompilationPolicy::select_task(this);
436
if (task != nullptr) {
437
task = task->select_for_compilation();
441
if (task != nullptr) {
442
// Save method pointers across unlock safepoint. The task is removed from
443
// the compilation queue, which is walked during RedefineClasses.
444
Thread* thread = Thread::current();
445
save_method = methodHandle(thread, task->method());
446
save_hot_method = methodHandle(thread, task->hot_method());
450
purge_stale_tasks(); // may temporarily release MCQ lock
454
// Clean & deallocate stale compile tasks.
455
// Temporarily releases MethodCompileQueue lock.
456
void CompileQueue::purge_stale_tasks() {
457
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
458
if (_first_stale != nullptr) {
459
// Stale tasks are purged when MCQ lock is released,
460
// but _first_stale updates are protected by MCQ lock.
461
// Once task processing starts and MCQ lock is released,
462
// other compiler threads can reuse _first_stale.
463
CompileTask* head = _first_stale;
464
_first_stale = nullptr;
466
MutexUnlocker ul(MethodCompileQueue_lock);
467
for (CompileTask* task = head; task != nullptr; ) {
468
CompileTask* next_task = task->next();
469
CompileTaskWrapper ctw(task); // Frees the task
470
task->set_failure_reason("stale task");
477
void CompileQueue::remove(CompileTask* task) {
478
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
479
if (task->prev() != nullptr) {
480
task->prev()->set_next(task->next());
482
// max is the first element
483
assert(task == _first, "Sanity");
484
_first = task->next();
487
if (task->next() != nullptr) {
488
task->next()->set_prev(task->prev());
490
// max is the last element
491
assert(task == _last, "Sanity");
492
_last = task->prev();
498
void CompileQueue::remove_and_mark_stale(CompileTask* task) {
499
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
502
// Enqueue the task for reclamation (should be done outside MCQ lock)
503
task->set_next(_first_stale);
504
task->set_prev(nullptr);
508
// methods in the compile queue need to be marked as used on the stack
509
// so that they don't get reclaimed by Redefine Classes
510
void CompileQueue::mark_on_stack() {
511
CompileTask* task = _first;
512
while (task != nullptr) {
513
task->mark_on_stack();
519
CompileQueue* CompileBroker::compile_queue(int comp_level) {
520
if (is_c2_compile(comp_level)) return _c2_compile_queue;
521
if (is_c1_compile(comp_level)) return _c1_compile_queue;
525
CompileQueue* CompileBroker::c1_compile_queue() {
526
return _c1_compile_queue;
529
CompileQueue* CompileBroker::c2_compile_queue() {
530
return _c2_compile_queue;
533
void CompileBroker::print_compile_queues(outputStream* st) {
534
st->print_cr("Current compiles: ");
537
int buflen = sizeof(buf);
538
Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
541
if (_c1_compile_queue != nullptr) {
542
_c1_compile_queue->print(st);
544
if (_c2_compile_queue != nullptr) {
545
_c2_compile_queue->print(st);
549
void CompileQueue::print(outputStream* st) {
550
assert_locked_or_safepoint(MethodCompileQueue_lock);
551
st->print_cr("%s:", name());
552
CompileTask* task = _first;
553
if (task == nullptr) {
554
st->print_cr("Empty");
556
while (task != nullptr) {
557
task->print(st, nullptr, true, true);
564
void CompileQueue::print_tty() {
566
// Dump the compile queue into a buffer before locking the tty
570
tty->print("%s", ss.freeze());
574
CompilerCounters::CompilerCounters() {
575
_current_method[0] = '\0';
576
_compile_type = CompileBroker::no_compile;
579
#if INCLUDE_JFR && COMPILER2_OR_JVMCI
580
// It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
581
// in compiler/compilerEvent.cpp) and registers it with its serializer.
583
// c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
584
// so if c2 is used, it should be always registered first.
585
// This function is called during vm initialization.
586
static void register_jfr_phasetype_serializer(CompilerType compiler_type) {
588
static bool first_registration = true;
589
if (compiler_type == compiler_jvmci) {
590
CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false);
591
first_registration = false;
593
} else if (compiler_type == compiler_c2) {
594
assert(first_registration, "invariant"); // c2 must be registered first.
595
for (int i = 0; i < PHASE_NUM_TYPES; i++) {
596
const char* phase_name = CompilerPhaseTypeHelper::to_description((CompilerPhaseType) i);
597
CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false);
599
first_registration = false;
603
#endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
605
// ------------------------------------------------------------------
606
// CompileBroker::compilation_init
608
// Initialize the Compilation object
609
void CompileBroker::compilation_init(JavaThread* THREAD) {
610
// No need to initialize compilation system if we do not use it.
614
// Set the interface to the current compiler(s).
615
_c1_count = CompilationPolicy::c1_count();
616
_c2_count = CompilationPolicy::c2_count();
620
// This is creating a JVMCICompiler singleton.
621
JVMCICompiler* jvmci = new JVMCICompiler();
623
if (UseJVMCICompiler) {
624
_compilers[1] = jvmci;
625
if (FLAG_IS_DEFAULT(JVMCIThreads)) {
626
if (BootstrapJVMCI) {
627
// JVMCI will bootstrap so give it more threads
628
_c2_count = MIN2(32, os::active_processor_count());
631
_c2_count = JVMCIThreads;
633
if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
636
_c1_count = JVMCIHostThreads;
641
#endif // INCLUDE_JVMCI
645
_compilers[0] = new Compiler();
650
if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
652
_compilers[1] = new C2Compiler();
653
// Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
654
// idToPhase mapping for c2 is in opto/phasetype.hpp
655
JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
661
// Register after c2 registration.
662
// JVMCI CompilerPhaseType idToPhase mapping is dynamic.
664
JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
666
#endif // INCLUDE_JVMCI
668
if (CompilerOracle::should_collect_memstat()) {
669
CompilationMemoryStatistic::initialize();
672
// Start the compiler thread(s)
673
init_compiler_threads();
674
// totalTime performance counter is always created as it is required
675
// by the implementation of java.lang.management.CompilationMXBean.
677
// Ensure OOM leads to vm_exit_during_initialization.
679
_perf_total_compilation =
680
PerfDataManager::create_counter(JAVA_CI, "totalTime",
681
PerfData::U_Ticks, CHECK);
688
// create the jvmstat performance counters
689
_perf_osr_compilation =
690
PerfDataManager::create_counter(SUN_CI, "osrTime",
691
PerfData::U_Ticks, CHECK);
693
_perf_standard_compilation =
694
PerfDataManager::create_counter(SUN_CI, "standardTime",
695
PerfData::U_Ticks, CHECK);
697
_perf_total_bailout_count =
698
PerfDataManager::create_counter(SUN_CI, "totalBailouts",
699
PerfData::U_Events, CHECK);
701
_perf_total_invalidated_count =
702
PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
703
PerfData::U_Events, CHECK);
705
_perf_total_compile_count =
706
PerfDataManager::create_counter(SUN_CI, "totalCompiles",
707
PerfData::U_Events, CHECK);
708
_perf_total_osr_compile_count =
709
PerfDataManager::create_counter(SUN_CI, "osrCompiles",
710
PerfData::U_Events, CHECK);
712
_perf_total_standard_compile_count =
713
PerfDataManager::create_counter(SUN_CI, "standardCompiles",
714
PerfData::U_Events, CHECK);
716
_perf_sum_osr_bytes_compiled =
717
PerfDataManager::create_counter(SUN_CI, "osrBytes",
718
PerfData::U_Bytes, CHECK);
720
_perf_sum_standard_bytes_compiled =
721
PerfDataManager::create_counter(SUN_CI, "standardBytes",
722
PerfData::U_Bytes, CHECK);
724
_perf_sum_nmethod_size =
725
PerfDataManager::create_counter(SUN_CI, "nmethodSize",
726
PerfData::U_Bytes, CHECK);
728
_perf_sum_nmethod_code_size =
729
PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
730
PerfData::U_Bytes, CHECK);
733
PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
734
CompilerCounters::cmname_buffer_length,
737
_perf_last_failed_method =
738
PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
739
CompilerCounters::cmname_buffer_length,
742
_perf_last_invalidated_method =
743
PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
744
CompilerCounters::cmname_buffer_length,
747
_perf_last_compile_type =
748
PerfDataManager::create_variable(SUN_CI, "lastType",
750
(jlong)CompileBroker::no_compile,
753
_perf_last_compile_size =
754
PerfDataManager::create_variable(SUN_CI, "lastSize",
756
(jlong)CompileBroker::no_compile,
760
_perf_last_failed_type =
761
PerfDataManager::create_variable(SUN_CI, "lastFailedType",
763
(jlong)CompileBroker::no_compile,
766
_perf_last_invalidated_type =
767
PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
769
(jlong)CompileBroker::no_compile,
776
#if defined(ASSERT) && COMPILER2_OR_JVMCI
777
// Stress testing. Dedicated threads revert optimizations based on escape analysis concurrently to
778
// the running java application. Configured with vm options DeoptimizeObjectsALot*.
779
class DeoptimizeObjectsALotThread : public JavaThread {
781
static void deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS);
782
void deoptimize_objects_alot_loop_single();
783
void deoptimize_objects_alot_loop_all();
786
DeoptimizeObjectsALotThread() : JavaThread(&deopt_objs_alot_thread_entry) { }
788
bool is_hidden_from_external_view() const { return true; }
791
// Entry for DeoptimizeObjectsALotThread. The threads are started in
792
// CompileBroker::init_compiler_threads() iff DeoptimizeObjectsALot is enabled
793
void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) {
794
DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread);
795
bool enter_single_loop;
797
MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag);
798
static int single_thread_count = 0;
799
enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle;
801
if (enter_single_loop) {
802
dt->deoptimize_objects_alot_loop_single();
804
dt->deoptimize_objects_alot_loop_all();
808
// Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
809
// barrier targets a single thread which is selected round robin.
810
void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() {
813
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) {
814
{ // Begin new scope for escape barrier
815
HandleMarkCleaner hmc(this);
816
ResourceMark rm(this);
817
EscapeBarrier eb(true, this, deoptee_thread);
818
eb.deoptimize_objects(100);
820
// Now sleep after the escape barriers destructor resumed deoptee_thread.
821
sleep(DeoptimizeObjectsALotInterval);
826
// Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
827
// barrier targets all java threads in the vm at once.
828
void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() {
831
{ // Begin new scope for escape barrier
832
HandleMarkCleaner hmc(this);
833
ResourceMark rm(this);
834
EscapeBarrier eb(true, this);
835
eb.deoptimize_objects_all_threads();
837
// Now sleep after the escape barriers destructor resumed the java threads.
838
sleep(DeoptimizeObjectsALotInterval);
841
#endif // defined(ASSERT) && COMPILER2_OR_JVMCI
844
JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, JavaThread* THREAD) {
845
Handle thread_oop(THREAD, JNIHandles::resolve_non_null(thread_handle));
847
if (java_lang_Thread::thread(thread_oop()) != nullptr) {
848
assert(type == compiler_t, "should only happen with reused compiler threads");
849
// The compiler thread hasn't actually exited yet so don't try to reuse it
853
JavaThread* new_thread = nullptr;
856
assert(comp != nullptr, "Compiler instance missing.");
857
if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
858
CompilerCounters* counters = new CompilerCounters();
859
new_thread = new CompilerThread(queue, counters);
862
#if defined(ASSERT) && COMPILER2_OR_JVMCI
864
new_thread = new DeoptimizeObjectsALotThread();
868
ShouldNotReachHere();
871
// At this point the new CompilerThread data-races with this startup
872
// thread (which is the main thread and NOT the VM thread).
873
// This means Java bytecodes being executed at startup can
874
// queue compile jobs which will run at whatever default priority the
875
// newly created CompilerThread runs at.
878
// At this point it may be possible that no osthread was created for the
879
// JavaThread due to lack of resources. We will handle that failure below.
880
// Also check new_thread so that static analysis is happy.
881
if (new_thread != nullptr && new_thread->osthread() != nullptr) {
883
if (type == compiler_t) {
884
CompilerThread::cast(new_thread)->set_compiler(comp);
887
// Note that we cannot call os::set_priority because it expects Java
888
// priorities and we are *explicitly* using OS priorities so that it's
889
// possible to set the compiler thread priority higher than any Java
892
int native_prio = CompilerThreadPriority;
893
if (native_prio == -1) {
894
if (UseCriticalCompilerThreadPriority) {
895
native_prio = os::java_to_os_priority[CriticalPriority];
897
native_prio = os::java_to_os_priority[NearMaxPriority];
900
os::set_native_priority(new_thread, native_prio);
902
// Note that this only sets the JavaThread _priority field, which by
903
// definition is limited to Java priorities and not OS priorities.
904
JavaThread::start_internal_daemon(THREAD, new_thread, thread_oop, NearMaxPriority);
906
} else { // osthread initialization failure
907
if (UseDynamicNumberOfCompilerThreads && type == compiler_t
908
&& comp->num_compiler_threads() > 0) {
909
// The new thread is not known to Thread-SMR yet so we can just delete.
913
vm_exit_during_initialization("java.lang.OutOfMemoryError",
914
os::native_thread_creation_failed_msg());
918
os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
923
static bool trace_compiler_threads() {
924
LogTarget(Debug, jit, thread) lt;
925
return TraceCompilerThreads || lt.is_enabled();
928
static jobject create_compiler_thread(AbstractCompiler* compiler, int i, TRAPS) {
929
char name_buffer[256];
930
os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", compiler->name(), i);
931
Handle thread_oop = JavaThread::create_system_thread_object(name_buffer, CHECK_NULL);
932
return JNIHandles::make_global(thread_oop);
935
static void print_compiler_threads(stringStream& msg) {
936
if (TraceCompilerThreads) {
937
tty->print_cr("%7d %s", (int)tty->time_stamp().milliseconds(), msg.as_string());
939
LogTarget(Debug, jit, thread) lt;
940
if (lt.is_enabled()) {
942
ls.print_cr("%s", msg.as_string());
946
void CompileBroker::init_compiler_threads() {
947
// Ensure any exceptions lead to vm_exit_during_initialization.
950
assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
952
// Initialize the compilation queue
954
const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
955
_c2_compile_queue = new CompileQueue(name);
956
_compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
957
_compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
960
_c1_compile_queue = new CompileQueue("C1 compile queue");
961
_compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
962
_compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
965
for (int i = 0; i < _c2_count; i++) {
966
// Create a name for our thread.
967
jobject thread_handle = create_compiler_thread(_compilers[1], i, CHECK);
968
_compiler2_objects[i] = thread_handle;
969
_compiler2_logs[i] = nullptr;
971
if (!UseDynamicNumberOfCompilerThreads || i == 0) {
972
JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD);
973
assert(ct != nullptr, "should have been handled for initial thread");
974
_compilers[1]->set_num_compiler_threads(i + 1);
975
if (trace_compiler_threads()) {
977
ThreadsListHandle tlh; // name() depends on the TLH.
978
assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
980
msg.print("Added initial compiler thread %s", ct->name());
981
print_compiler_threads(msg);
986
for (int i = 0; i < _c1_count; i++) {
987
// Create a name for our thread.
988
jobject thread_handle = create_compiler_thread(_compilers[0], i, CHECK);
989
_compiler1_objects[i] = thread_handle;
990
_compiler1_logs[i] = nullptr;
992
if (!UseDynamicNumberOfCompilerThreads || i == 0) {
993
JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD);
994
assert(ct != nullptr, "should have been handled for initial thread");
995
_compilers[0]->set_num_compiler_threads(i + 1);
996
if (trace_compiler_threads()) {
998
ThreadsListHandle tlh; // name() depends on the TLH.
999
assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1001
msg.print("Added initial compiler thread %s", ct->name());
1002
print_compiler_threads(msg);
1008
PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
1011
#if defined(ASSERT) && COMPILER2_OR_JVMCI
1012
if (DeoptimizeObjectsALot) {
1013
// Initialize and start the object deoptimizer threads
1014
const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll;
1015
for (int count = 0; count < total_count; count++) {
1016
Handle thread_oop = JavaThread::create_system_thread_object("Deoptimize objects a lot single mode", CHECK);
1017
jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
1018
make_thread(deoptimizer_t, thread_handle, nullptr, nullptr, THREAD);
1021
#endif // defined(ASSERT) && COMPILER2_OR_JVMCI
1024
void CompileBroker::possibly_add_compiler_threads(JavaThread* THREAD) {
1026
julong free_memory = os::free_memory();
1027
// If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
1028
size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
1029
available_cc_p = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
1031
// Only do attempt to start additional threads if the lock is free.
1032
if (!CompileThread_lock->try_lock()) return;
1034
if (_c2_compile_queue != nullptr) {
1035
int old_c2_count = _compilers[1]->num_compiler_threads();
1036
int new_c2_count = MIN4(_c2_count,
1037
_c2_compile_queue->size() / 2,
1038
(int)(free_memory / (200*M)),
1039
(int)(available_cc_np / (128*K)));
1041
for (int i = old_c2_count; i < new_c2_count; i++) {
1043
if (UseJVMCICompiler && !UseJVMCINativeLibrary && _compiler2_objects[i] == nullptr) {
1044
// Native compiler threads as used in C1/C2 can reuse the j.l.Thread objects as their
1045
// existence is completely hidden from the rest of the VM (and those compiler threads can't
1046
// call Java code to do the creation anyway).
1048
// For pure Java JVMCI we have to create new j.l.Thread objects as they are visible and we
1049
// can see unexpected thread lifecycle transitions if we bind them to new JavaThreads. For
1050
// native library JVMCI it's preferred to use the C1/C2 strategy as this avoids unnecessary
1051
// coupling with Java.
1052
if (!THREAD->can_call_java()) break;
1053
char name_buffer[256];
1054
os::snprintf_checked(name_buffer, sizeof(name_buffer), "%s CompilerThread%d", _compilers[1]->name(), i);
1057
// We have to give up the lock temporarily for the Java calls.
1058
MutexUnlocker mu(CompileThread_lock);
1059
thread_oop = JavaThread::create_system_thread_object(name_buffer, THREAD);
1061
if (HAS_PENDING_EXCEPTION) {
1062
if (trace_compiler_threads()) {
1065
msg.print_cr("JVMCI compiler thread creation failed:");
1066
PENDING_EXCEPTION->print_on(&msg);
1067
print_compiler_threads(msg);
1069
CLEAR_PENDING_EXCEPTION;
1072
// Check if another thread has beaten us during the Java calls.
1073
if (_compilers[1]->num_compiler_threads() != i) break;
1074
jobject thread_handle = JNIHandles::make_global(thread_oop);
1075
assert(compiler2_object(i) == nullptr, "Old one must be released!");
1076
_compiler2_objects[i] = thread_handle;
1079
guarantee(compiler2_object(i) != nullptr, "Thread oop must exist");
1080
JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
1081
if (ct == nullptr) break;
1082
_compilers[1]->set_num_compiler_threads(i + 1);
1083
if (trace_compiler_threads()) {
1085
ThreadsListHandle tlh; // name() depends on the TLH.
1086
assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1088
msg.print("Added compiler thread %s (free memory: %dMB, available non-profiled code cache: %dMB)",
1089
ct->name(), (int)(free_memory/M), (int)(available_cc_np/M));
1090
print_compiler_threads(msg);
1095
if (_c1_compile_queue != nullptr) {
1096
int old_c1_count = _compilers[0]->num_compiler_threads();
1097
int new_c1_count = MIN4(_c1_count,
1098
_c1_compile_queue->size() / 4,
1099
(int)(free_memory / (100*M)),
1100
(int)(available_cc_p / (128*K)));
1102
for (int i = old_c1_count; i < new_c1_count; i++) {
1103
JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
1104
if (ct == nullptr) break;
1105
_compilers[0]->set_num_compiler_threads(i + 1);
1106
if (trace_compiler_threads()) {
1108
ThreadsListHandle tlh; // name() depends on the TLH.
1109
assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
1111
msg.print("Added compiler thread %s (free memory: %dMB, available profiled code cache: %dMB)",
1112
ct->name(), (int)(free_memory/M), (int)(available_cc_p/M));
1113
print_compiler_threads(msg);
1118
CompileThread_lock->unlock();
1123
* Set the methods on the stack as on_stack so that redefine classes doesn't
1124
* reclaim them. This method is executed at a safepoint.
1126
void CompileBroker::mark_on_stack() {
1127
assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1128
// Since we are at a safepoint, we do not need a lock to access
1129
// the compile queues.
1130
if (_c2_compile_queue != nullptr) {
1131
_c2_compile_queue->mark_on_stack();
1133
if (_c1_compile_queue != nullptr) {
1134
_c1_compile_queue->mark_on_stack();
1138
// ------------------------------------------------------------------
1139
// CompileBroker::compile_method
1141
// Request compilation of a method.
1142
void CompileBroker::compile_method_base(const methodHandle& method,
1145
const methodHandle& hot_method,
1147
CompileTask::CompileReason compile_reason,
1150
guarantee(!method->is_abstract(), "cannot compile abstract methods");
1151
assert(method->method_holder()->is_instance_klass(),
1153
assert(!method->method_holder()->is_not_initialized(),
1154
"method holder must be initialized");
1155
assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1157
if (CIPrintRequests) {
1158
tty->print("request: ");
1159
method->print_short_name(tty);
1160
if (osr_bci != InvocationEntryBci) {
1161
tty->print(" osr_bci: %d", osr_bci);
1163
tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1164
if (!hot_method.is_null()) {
1165
tty->print(" hot: ");
1166
if (hot_method() != method()) {
1167
hot_method->print_short_name(tty);
1175
// A request has been made for compilation. Before we do any
1176
// real work, check to see if the method has been compiled
1177
// in the meantime with a definitive result.
1178
if (compilation_is_complete(method, osr_bci, comp_level)) {
1183
if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1184
if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1185
// Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI.
1191
// If this method is already in the compile queue, then
1192
// we do not block the current thread.
1193
if (compilation_is_in_queue(method)) {
1194
// We may want to decay our counter a bit here to prevent
1195
// multiple denied requests for compilation. This is an
1196
// open compilation policy issue. Note: The other possibility,
1197
// in the case that this is a blocking compile request, is to have
1198
// all subsequent blocking requesters wait for completion of
1199
// ongoing compiles. Note that in this case we'll need a protocol
1200
// for freeing the associated compile tasks. [Or we could have
1201
// a single static monitor on which all these waiters sleep.]
1205
// Tiered policy requires MethodCounters to exist before adding a method to
1206
// the queue. Create if we don't have them yet.
1207
method->get_method_counters(thread);
1209
// Outputs from the following MutexLocker block:
1210
CompileTask* task = nullptr;
1211
CompileQueue* queue = compile_queue(comp_level);
1213
// Acquire our lock.
1215
MutexLocker locker(thread, MethodCompileQueue_lock);
1217
// Make sure the method has not slipped into the queues since
1218
// last we checked; note that those checks were "fast bail-outs".
1219
// Here we need to be more careful, see 14012000 below.
1220
if (compilation_is_in_queue(method)) {
1224
// We need to check again to see if the compilation has
1225
// completed. A previous compilation may have registered
1227
if (compilation_is_complete(method, osr_bci, comp_level)) {
1231
// We now know that this compilation is not pending, complete,
1232
// or prohibited. Assign a compile_id to this compilation
1233
// and check to see if it is in our [Start..Stop) range.
1234
int compile_id = assign_compile_id(method, osr_bci);
1235
if (compile_id == 0) {
1236
// The compilation falls outside the allowed range.
1241
if (UseJVMCICompiler && blocking) {
1242
// Don't allow blocking compiles for requests triggered by JVMCI.
1243
if (thread->is_Compiler_thread()) {
1247
// In libjvmci, JVMCI initialization should not deadlock with other threads
1248
if (!UseJVMCINativeLibrary) {
1249
// Don't allow blocking compiles if inside a class initializer or while performing class loading
1250
vframeStream vfst(JavaThread::cast(thread));
1251
for (; !vfst.at_end(); vfst.next()) {
1252
if (vfst.method()->is_static_initializer() ||
1253
(vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) &&
1254
vfst.method()->name() == vmSymbols::loadClass_name())) {
1260
// Don't allow blocking compilation requests to JVMCI
1261
// if JVMCI itself is not yet initialized
1262
if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1267
// Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1268
// to avoid deadlock between compiler thread(s) and threads run at shutdown
1269
// such as the DestroyJavaVM thread.
1270
if (JVMCI::in_shutdown()) {
1274
#endif // INCLUDE_JVMCI
1276
// We will enter the compilation in the queue.
1277
// 14012000: Note that this sets the queued_for_compile bits in
1278
// the target method. We can now reason that a method cannot be
1279
// queued for compilation more than once, as follows:
1280
// Before a thread queues a task for compilation, it first acquires
1281
// the compile queue lock, then checks if the method's queued bits
1282
// are set or it has already been compiled. Thus there can not be two
1283
// instances of a compilation task for the same method on the
1284
// compilation queue. Consider now the case where the compilation
1285
// thread has already removed a task for that method from the queue
1286
// and is in the midst of compiling it. In this case, the
1287
// queued_for_compile bits must be set in the method (and these
1288
// will be visible to the current thread, since the bits were set
1289
// under protection of the compile queue lock, which we hold now.
1290
// When the compilation completes, the compiler thread first sets
1291
// the compilation result and then clears the queued_for_compile
1292
// bits. Neither of these actions are protected by a barrier (or done
1293
// under the protection of a lock), so the only guarantee we have
1294
// (on machines with TSO (Total Store Order)) is that these values
1295
// will update in that order. As a result, the only combinations of
1296
// these bits that the current thread will see are, in temporal order:
1297
// <RESULT, QUEUE> :
1298
// <0, 1> : in compile queue, but not yet compiled
1299
// <1, 1> : compiled but queue bit not cleared
1300
// <1, 0> : compiled and queue bit cleared
1301
// Because we first check the queue bits then check the result bits,
1302
// we are assured that we cannot introduce a duplicate task.
1303
// Note that if we did the tests in the reverse order (i.e. check
1304
// result then check queued bit), we could get the result bit before
1305
// the compilation completed, and the queue bit after the compilation
1306
// completed, and end up introducing a "duplicate" (redundant) task.
1307
// In that case, the compiler thread should first check if a method
1308
// has already been compiled before trying to compile it.
1309
// NOTE: in the event that there are multiple compiler threads and
1310
// there is de-optimization/recompilation, things will get hairy,
1311
// and in that case it's best to protect both the testing (here) of
1312
// these bits, and their updating (here and elsewhere) under a
1314
task = create_compile_task(queue,
1316
osr_bci, comp_level,
1317
hot_method, hot_count, compile_reason,
1322
wait_for_completion(task);
1326
nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1328
const methodHandle& hot_method, int hot_count,
1329
CompileTask::CompileReason compile_reason,
1331
// Do nothing if compilebroker is not initialized or compiles are submitted on level none
1332
if (!_initialized || comp_level == CompLevel_none) {
1336
AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1337
assert(comp != nullptr, "Ensure we have a compiler");
1340
if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1341
// JVMCI compilation is not yet initializable.
1346
DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1347
// CompileBroker::compile_method can trap and can have pending async exception.
1348
nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1349
DirectivesStack::release(directive);
1353
nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1355
const methodHandle& hot_method, int hot_count,
1356
CompileTask::CompileReason compile_reason,
1357
DirectiveSet* directive,
1360
// make sure arguments make sense
1361
assert(method->method_holder()->is_instance_klass(), "not an instance method");
1362
assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1363
assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1364
assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1365
// return quickly if possible
1367
// lock, make sure that the compilation
1368
// isn't prohibited in a straightforward way.
1369
AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1370
if (comp == nullptr || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1374
if (osr_bci == InvocationEntryBci) {
1375
// standard compilation
1376
nmethod* method_code = method->code();
1377
if (method_code != nullptr) {
1378
if (compilation_is_complete(method, osr_bci, comp_level)) {
1382
if (method->is_not_compilable(comp_level)) {
1387
// We accept a higher level osr method
1388
nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1389
if (nm != nullptr) return nm;
1390
if (method->is_not_osr_compilable(comp_level)) return nullptr;
1393
assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1394
// some prerequisites that are compiler specific
1395
if (comp->is_c2() || comp->is_jvmci()) {
1396
InternalOOMEMark iom(THREAD);
1397
method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL);
1398
// Resolve all classes seen in the signature of the method
1399
// we are compiling.
1400
Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL);
1403
// If the method is native, do the lookup in the thread requesting
1404
// the compilation. Native lookups can load code, which is not
1405
// permitted during compilation.
1407
// Note: A native method implies non-osr compilation which is
1408
// checked with an assertion at the entry of this method.
1409
if (method->is_native() && !method->is_method_handle_intrinsic()) {
1410
address adr = NativeLookup::lookup(method, THREAD);
1411
if (HAS_PENDING_EXCEPTION) {
1412
// In case of an exception looking up the method, we just forget
1413
// about it. The interpreter will kick-in and throw the exception.
1414
method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1415
CLEAR_PENDING_EXCEPTION;
1418
assert(method->has_native_function(), "must have native code by now");
1421
// RedefineClasses() has replaced this method; just return
1422
if (method->is_old()) {
1426
// JVMTI -- post_compile_event requires jmethod_id() that may require
1427
// a lock the compiling thread can not acquire. Prefetch it here.
1428
if (JvmtiExport::should_post_compiled_method_load()) {
1429
method->jmethod_id();
1432
// do the compilation
1433
if (method->is_native()) {
1434
if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1435
#if defined(X86) && !defined(ZERO)
1436
// The following native methods:
1438
// java.lang.Float.intBitsToFloat
1439
// java.lang.Float.floatToRawIntBits
1440
// java.lang.Double.longBitsToDouble
1441
// java.lang.Double.doubleToRawLongBits
1443
// are called through the interpreter even if interpreter native stubs
1444
// are not preferred (i.e., calling through adapter handlers is preferred).
1445
// The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1446
// if the version of the methods from the native libraries is called.
1447
// As the interpreter and the C2-intrinsified version of the methods preserves
1448
// sNaNs, that would result in an inconsistent way of handling of sNaNs.
1450
(method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1451
method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1453
(method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1454
method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1457
#endif // X86 && !ZERO
1459
// To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1460
// pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1462
// Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1463
// in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls.
1464
AdapterHandlerLibrary::create_native_wrapper(method);
1469
// If the compiler is shut off due to code cache getting full
1470
// fail out now so blocking compiles dont hang the java thread
1471
if (!should_compile_new_jobs()) {
1474
bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1475
compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1478
// return requested nmethod
1479
// We accept a higher level osr method
1480
if (osr_bci == InvocationEntryBci) {
1481
return method->code();
1483
return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1487
// ------------------------------------------------------------------
1488
// CompileBroker::compilation_is_complete
1490
// See if compilation of this method is already complete.
1491
bool CompileBroker::compilation_is_complete(const methodHandle& method,
1494
bool is_osr = (osr_bci != standard_entry_bci);
1496
if (method->is_not_osr_compilable(comp_level)) {
1499
nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1500
return (result != nullptr);
1503
if (method->is_not_compilable(comp_level)) {
1506
nmethod* result = method->code();
1507
if (result == nullptr) return false;
1508
return comp_level == result->comp_level();
1515
* See if this compilation is already requested.
1517
* Implementation note: there is only a single "is in queue" bit
1518
* for each method. This means that the check below is overly
1519
* conservative in the sense that an osr compilation in the queue
1520
* will block a normal compilation from entering the queue (and vice
1521
* versa). This can be remedied by a full queue search to disambiguate
1522
* cases. If it is deemed profitable, this may be done.
1524
bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1525
return method->queued_for_compilation();
1528
// ------------------------------------------------------------------
1529
// CompileBroker::compilation_is_prohibited
1531
// See if this compilation is not allowed.
1532
bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1533
bool is_native = method->is_native();
1534
// Some compilers may not support the compilation of natives.
1535
AbstractCompiler *comp = compiler(comp_level);
1536
if (is_native && (!CICompileNatives || comp == nullptr)) {
1537
method->set_not_compilable_quietly("native methods not supported", comp_level);
1541
bool is_osr = (osr_bci != standard_entry_bci);
1542
// Some compilers may not support on stack replacement.
1543
if (is_osr && (!CICompileOSR || comp == nullptr)) {
1544
method->set_not_osr_compilable("OSR not supported", comp_level);
1548
// The method may be explicitly excluded by the user.
1550
if (excluded || (CompilerOracle::has_option_value(method, CompileCommandEnum::CompileThresholdScaling, scale) && scale == 0)) {
1551
bool quietly = CompilerOracle::be_quiet();
1552
if (PrintCompilation && !quietly) {
1553
// This does not happen quietly...
1555
tty->print("### Excluding %s:%s",
1556
method->is_native() ? "generation of native wrapper" : "compile",
1557
(method->is_static() ? " static" : ""));
1558
method->print_short_name(tty);
1561
method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1568
* Generate serialized IDs for compilation requests. If certain debugging flags are used
1569
* and the ID is not within the specified range, the method is not compiled and 0 is returned.
1570
* The function also allows to generate separate compilation IDs for OSR compilations.
1572
int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1574
bool is_osr = (osr_bci != standard_entry_bci);
1576
if (method->is_native()) {
1577
assert(!is_osr, "can't be osr");
1578
// Adapters, native wrappers and method handle intrinsics
1579
// should be generated always.
1580
return Atomic::add(CICountNative ? &_native_compilation_id : &_compilation_id, 1);
1581
} else if (CICountOSR && is_osr) {
1582
id = Atomic::add(&_osr_compilation_id, 1);
1583
if (CIStartOSR <= id && id < CIStopOSR) {
1587
id = Atomic::add(&_compilation_id, 1);
1588
if (CIStart <= id && id < CIStop) {
1593
// Method was not in the appropriate compilation range.
1594
method->set_not_compilable_quietly("Not in requested compile id range");
1597
// CICountOSR is a develop flag and set to 'false' by default. In a product built,
1598
// only _compilation_id is incremented.
1599
return Atomic::add(&_compilation_id, 1);
1603
// ------------------------------------------------------------------
1604
// CompileBroker::assign_compile_id_unlocked
1606
// Public wrapper for assign_compile_id that acquires the needed locks
1607
int CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1608
MutexLocker locker(thread, MethodCompileQueue_lock);
1609
return assign_compile_id(method, osr_bci);
1612
// ------------------------------------------------------------------
1613
// CompileBroker::create_compile_task
1615
// Create a CompileTask object representing the current request for
1616
// compilation. Add this task to the queue.
1617
CompileTask* CompileBroker::create_compile_task(CompileQueue* queue,
1619
const methodHandle& method,
1622
const methodHandle& hot_method,
1624
CompileTask::CompileReason compile_reason,
1626
CompileTask* new_task = CompileTask::allocate();
1627
new_task->initialize(compile_id, method, osr_bci, comp_level,
1628
hot_method, hot_count, compile_reason,
1630
queue->add(new_task);
1635
// The number of milliseconds to wait before checking if
1636
// JVMCI compilation has made progress.
1637
static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1639
// The number of JVMCI compilation progress checks that must fail
1640
// before unblocking a thread waiting for a blocking compilation.
1641
static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1644
* Waits for a JVMCI compiler to complete a given task. This thread
1645
* waits until either the task completes or it sees no JVMCI compilation
1646
* progress for N consecutive milliseconds where N is
1647
* JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1648
* JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1650
* @return true if this thread needs to free/recycle the task
1652
bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1653
assert(UseJVMCICompiler, "sanity");
1654
MonitorLocker ml(thread, task->lock());
1655
int progress_wait_attempts = 0;
1656
jint thread_jvmci_compilation_ticks = 0;
1657
jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks();
1658
while (!task->is_complete() && !is_compilation_disabled_forever() &&
1659
ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1660
JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state();
1663
if (jvmci_compile_state != nullptr) {
1664
jint ticks = jvmci_compile_state->compilation_ticks();
1665
progress = (ticks - thread_jvmci_compilation_ticks) != 0;
1666
JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks);
1667
thread_jvmci_compilation_ticks = ticks;
1669
// Still waiting on JVMCI compiler queue. This thread may be holding a lock
1670
// that all JVMCI compiler threads are blocked on. We use the global JVMCI
1671
// compilation ticks to determine whether JVMCI compilation
1672
// is still making progress through the JVMCI compiler queue.
1673
jint ticks = jvmci->global_compilation_ticks();
1674
progress = (ticks - global_jvmci_compilation_ticks) != 0;
1675
JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks);
1676
global_jvmci_compilation_ticks = ticks;
1680
if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1681
if (PrintCompilation) {
1682
task->print(tty, "wait for blocking compilation timed out");
1684
JVMCI_event_1("waiting on compilation %d timed out", task->compile_id());
1688
progress_wait_attempts = 0;
1691
task->clear_waiter();
1692
return task->is_complete();
1697
* Wait for the compilation task to complete.
1699
void CompileBroker::wait_for_completion(CompileTask* task) {
1700
if (CIPrintCompileQueue) {
1702
tty->print_cr("BLOCKING FOR COMPILE");
1705
assert(task->is_blocking(), "can only wait on blocking task");
1707
JavaThread* thread = JavaThread::current();
1709
methodHandle method(thread, task->method());
1712
AbstractCompiler* comp = compiler(task->comp_level());
1713
if (!UseJVMCINativeLibrary && comp->is_jvmci() && !task->should_wait_for_compilation()) {
1714
// It may return before compilation is completed.
1715
// Note that libjvmci should not pre-emptively unblock
1716
// a thread waiting for a compilation as it does not call
1717
// Java code and so is not deadlock prone like jarjvmci.
1718
free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1722
MonitorLocker ml(thread, task->lock());
1724
while (!task->is_complete() && !is_compilation_disabled_forever()) {
1730
if (is_compilation_disabled_forever()) {
1731
CompileTask::free(task);
1735
// It is harmless to check this status without the lock, because
1736
// completion is a stable property (until the task object is recycled).
1737
assert(task->is_complete(), "Compilation should have completed");
1739
// By convention, the waiter is responsible for recycling a
1740
// blocking CompileTask. Since there is only one waiter ever
1741
// waiting on a CompileTask, we know that no one else will
1742
// be using this CompileTask; we can free it.
1743
CompileTask::free(task);
1748
* Initialize compiler thread(s) + compiler object(s). The postcondition
1749
* of this function is that the compiler runtimes are initialized and that
1750
* compiler threads can start compiling.
1752
bool CompileBroker::init_compiler_runtime() {
1753
CompilerThread* thread = CompilerThread::current();
1754
AbstractCompiler* comp = thread->compiler();
1755
// Final sanity check - the compiler object must exist
1756
guarantee(comp != nullptr, "Compiler object must exist");
1759
// Must switch to native to allocate ci_env
1760
ThreadToNativeFromVM ttn(thread);
1761
ciEnv ci_env((CompileTask*)nullptr);
1762
// Cache Jvmti state
1763
ci_env.cache_jvmti_state();
1764
// Cache DTrace flags
1765
ci_env.cache_dtrace_flags();
1767
// Switch back to VM state to do compiler initialization
1768
ThreadInVMfromNative tv(thread);
1770
// Perform per-thread and global initializations
1774
if (comp->is_failed()) {
1775
disable_compilation_forever();
1776
// If compiler initialization failed, no compiler thread that is specific to a
1777
// particular compiler runtime will ever start to compile methods.
1778
shutdown_compiler_runtime(comp, thread);
1782
// C1 specific check
1783
if (comp->is_c1() && (thread->get_buffer_blob() == nullptr)) {
1784
warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1791
void CompileBroker::free_buffer_blob_if_allocated(CompilerThread* thread) {
1792
BufferBlob* blob = thread->get_buffer_blob();
1793
if (blob != nullptr) {
1795
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1796
CodeCache::free(blob);
1801
* If C1 and/or C2 initialization failed, we shut down all compilation.
1802
* We do this to keep things simple. This can be changed if it ever turns
1803
* out to be a problem.
1805
void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1806
free_buffer_blob_if_allocated(thread);
1808
if (comp->should_perform_shutdown()) {
1809
// There are two reasons for shutting down the compiler
1810
// 1) compiler runtime initialization failed
1811
// 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1812
warning("%s initialization failed. Shutting down all compilers", comp->name());
1814
// Only one thread per compiler runtime object enters here
1815
// Set state to shut down
1816
comp->set_shut_down();
1818
// Delete all queued compilation tasks to make compiler threads exit faster.
1819
if (_c1_compile_queue != nullptr) {
1820
_c1_compile_queue->free_all();
1823
if (_c2_compile_queue != nullptr) {
1824
_c2_compile_queue->free_all();
1827
// Set flags so that we continue execution with using interpreter only.
1828
UseCompiler = false;
1829
UseInterpreter = true;
1831
// We could delete compiler runtimes also. However, there are references to
1832
// the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then
1833
// fail. This can be done later if necessary.
1838
* Helper function to create new or reuse old CompileLog.
1840
CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1841
if (!LogCompilation) return nullptr;
1843
AbstractCompiler *compiler = ct->compiler();
1844
bool c1 = compiler->is_c1();
1845
jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1846
assert(compiler_objects != nullptr, "must be initialized at this point");
1847
CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1848
assert(logs != nullptr, "must be initialized at this point");
1849
int count = c1 ? _c1_count : _c2_count;
1851
// Find Compiler number by its threadObj.
1852
oop compiler_obj = ct->threadObj();
1853
int compiler_number = 0;
1855
for (; compiler_number < count; compiler_number++) {
1856
if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
1861
assert(found, "Compiler must exist at this point");
1863
// Determine pointer for this thread's log.
1864
CompileLog** log_ptr = &logs[compiler_number];
1866
// Return old one if it exists.
1867
CompileLog* log = *log_ptr;
1868
if (log != nullptr) {
1873
// Create a new one and remember it.
1874
init_compiler_thread_log();
1880
// ------------------------------------------------------------------
1881
// CompileBroker::compiler_thread_loop
1883
// The main loop run by a CompilerThread.
1884
void CompileBroker::compiler_thread_loop() {
1885
CompilerThread* thread = CompilerThread::current();
1886
CompileQueue* queue = thread->queue();
1887
// For the thread that initializes the ciObjectFactory
1888
// this resource mark holds all the shared objects
1891
// First thread to get here will initialize the compiler interface
1895
MutexLocker only_one (thread, CompileThread_lock);
1896
if (!ciObjectFactory::is_initialized()) {
1897
ciObjectFactory::initialize();
1902
CompileLog* log = get_log(thread);
1903
if (log != nullptr) {
1904
log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1906
os::current_thread_id(),
1907
os::current_process_id());
1912
// If compiler thread/runtime initialization fails, exit the compiler thread
1913
if (!init_compiler_runtime()) {
1917
thread->start_idle_timer();
1919
// Poll for new compilation tasks as long as the JVM runs. Compilation
1920
// should only be disabled if something went wrong while initializing the
1921
// compiler runtimes. This, in turn, should not happen. The only known case
1922
// when compiler runtime initialization fails is if there is not enough free
1923
// space in the code cache to generate the necessary stubs, etc.
1924
while (!is_compilation_disabled_forever()) {
1925
// We need this HandleMark to avoid leaking VM handles.
1926
HandleMark hm(thread);
1928
CompileTask* task = queue->get(thread);
1929
if (task == nullptr) {
1930
if (UseDynamicNumberOfCompilerThreads) {
1931
// Access compiler_count under lock to enforce consistency.
1932
MutexLocker only_one(CompileThread_lock);
1933
if (can_remove(thread, true)) {
1934
if (trace_compiler_threads()) {
1937
msg.print("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1938
thread->name(), thread->idle_time_millis());
1939
print_compiler_threads(msg);
1942
// Notify compiler that the compiler thread is about to stop
1943
thread->compiler()->stopping_compiler_thread(thread);
1945
free_buffer_blob_if_allocated(thread);
1946
return; // Stop this thread.
1950
// Assign the task to the current thread. Mark this compilation
1951
// thread as active for the profiler.
1952
// CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1953
// occurs after fetching the compile task off the queue.
1954
CompileTaskWrapper ctw(task);
1955
methodHandle method(thread, task->method());
1957
// Never compile a method if breakpoints are present in it
1958
if (method()->number_of_breakpoints() == 0) {
1959
// Compile the method.
1960
if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1961
invoke_compiler_on_method(task);
1962
thread->start_idle_timer();
1964
// After compilation is disabled, remove remaining methods from queue
1965
method->clear_queued_for_compilation();
1966
task->set_failure_reason("compilation is disabled");
1969
task->set_failure_reason("breakpoints are present");
1972
if (UseDynamicNumberOfCompilerThreads) {
1973
possibly_add_compiler_threads(thread);
1974
assert(!thread->has_pending_exception(), "should have been handled");
1979
// Shut down compiler runtime
1980
shutdown_compiler_runtime(thread->compiler(), thread);
1983
// ------------------------------------------------------------------
1984
// CompileBroker::init_compiler_thread_log
1986
// Set up state required by +LogCompilation.
1987
void CompileBroker::init_compiler_thread_log() {
1988
CompilerThread* thread = CompilerThread::current();
1989
char file_name[4*K];
1991
intx thread_id = os::current_thread_id();
1992
for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
1993
const char* dir = (try_temp_dir ? os::get_temp_directory() : nullptr);
1994
if (dir == nullptr) {
1995
jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
1996
thread_id, os::current_process_id());
1998
jio_snprintf(file_name, sizeof(file_name),
1999
"%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
2000
os::file_separator(), thread_id, os::current_process_id());
2003
fp = os::fopen(file_name, "wt");
2004
if (fp != nullptr) {
2005
if (LogCompilation && Verbose) {
2006
tty->print_cr("Opening compilation log %s", file_name);
2008
CompileLog* log = new(mtCompiler) CompileLog(file_name, fp, thread_id);
2009
if (log == nullptr) {
2013
thread->init_log(log);
2015
if (xtty != nullptr) {
2017
// Record any per thread log files
2018
xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
2023
warning("Cannot open log file: %s", file_name);
2026
void CompileBroker::log_metaspace_failure() {
2027
const char* message = "some methods may not be compiled because metaspace "
2029
if (CompilationLog::log() != nullptr) {
2030
CompilationLog::log()->log_metaspace_failure(message);
2032
if (PrintCompilation) {
2033
tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
2038
// ------------------------------------------------------------------
2039
// CompileBroker::set_should_block
2041
// Set _should_block.
2042
// Call this from the VM, with Threads_lock held and a safepoint requested.
2043
void CompileBroker::set_should_block() {
2044
assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2045
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
2047
if (PrintCompilation && (Verbose || WizardMode))
2048
tty->print_cr("notifying compiler thread pool to block");
2050
_should_block = true;
2053
// ------------------------------------------------------------------
2054
// CompileBroker::maybe_block
2056
// Call this from the compiler at convenient points, to poll for _should_block.
2057
void CompileBroker::maybe_block() {
2058
if (_should_block) {
2060
if (PrintCompilation && (Verbose || WizardMode))
2061
tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
2063
ThreadInVMfromNative tivfn(JavaThread::current());
2067
// wrapper for CodeCache::print_summary()
2068
static void codecache_print(bool detailed)
2071
// Dump code cache into a buffer before locking the tty,
2073
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2074
CodeCache::print_summary(&s, detailed);
2077
tty->print("%s", s.freeze());
2080
// wrapper for CodeCache::print_summary() using outputStream
2081
static void codecache_print(outputStream* out, bool detailed) {
2084
// Dump code cache into a buffer
2086
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2087
CodeCache::print_summary(&s, detailed);
2090
char* remaining_log = s.as_string();
2091
while (*remaining_log != '\0') {
2092
char* eol = strchr(remaining_log, '\n');
2093
if (eol == nullptr) {
2094
out->print_cr("%s", remaining_log);
2095
remaining_log = remaining_log + strlen(remaining_log);
2098
out->print_cr("%s", remaining_log);
2099
remaining_log = eol + 1;
2104
void CompileBroker::handle_compile_error(CompilerThread* thread, CompileTask* task, ciEnv* ci_env,
2105
int compilable, const char* failure_reason) {
2106
if (!AbortVMOnCompilationFailure) {
2109
if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2110
fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2112
if (compilable == ciEnv::MethodCompilable_never) {
2113
fatal("Never compilable: %s", failure_reason);
2117
static void post_compilation_event(EventCompilation& event, CompileTask* task) {
2118
assert(task != nullptr, "invariant");
2119
CompilerEvent::CompilationEvent::post(event,
2121
task->compiler()->type(),
2125
task->osr_bci() != CompileBroker::standard_entry_bci,
2126
task->nm_total_size(),
2127
task->num_inlined_bytecodes(),
2128
task->arena_bytes());
2131
int DirectivesStack::_depth = 0;
2132
CompilerDirectives* DirectivesStack::_top = nullptr;
2133
CompilerDirectives* DirectivesStack::_bottom = nullptr;
2135
// Acquires Compilation_lock and waits for it to be notified
2136
// as long as WhiteBox::compilation_locked is true.
2137
static void whitebox_lock_compilation() {
2138
MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2139
while (WhiteBox::compilation_locked) {
2144
// ------------------------------------------------------------------
2145
// CompileBroker::invoke_compiler_on_method
2149
void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2153
DirectiveSet* directive = task->directive();
2154
if (directive->PrintCompilationOption) {
2159
CompilerThread* thread = CompilerThread::current();
2160
ResourceMark rm(thread);
2162
if (CompilationLog::log() != nullptr) {
2163
CompilationLog::log()->log_compile(thread, task);
2167
int compile_id = task->compile_id();
2168
int osr_bci = task->osr_bci();
2169
bool is_osr = (osr_bci != standard_entry_bci);
2170
bool should_log = (thread->log() != nullptr);
2171
bool should_break = false;
2172
const int task_level = task->comp_level();
2173
AbstractCompiler* comp = task->compiler();
2175
// create the handle inside it's own block so it can't
2176
// accidentally be referenced once the thread transitions to
2177
// native. The NoHandleMark before the transition should catch
2178
// any cases where this occurs in the future.
2179
methodHandle method(thread, task->method());
2181
assert(!method->is_native(), "no longer compile natives");
2183
// Update compile information when using perfdata.
2185
update_compile_perf_data(thread, method, is_osr);
2188
DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2191
should_break = directive->BreakAtCompileOption || task->check_break_at_flags();
2192
if (should_log && !directive->LogOption) {
2196
// Allocate a new set of JNI handles.
2197
JNIHandleMark jhm(thread);
2198
Method* target_handle = task->method();
2199
int compilable = ciEnv::MethodCompilable;
2200
const char* failure_reason = nullptr;
2201
bool failure_reason_on_C_heap = false;
2202
const char* retry_message = nullptr;
2205
if (UseJVMCICompiler && comp != nullptr && comp->is_jvmci()) {
2206
JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2208
TraceTime t1("compilation", &time);
2209
EventCompilation event;
2210
JVMCICompileState compile_state(task, jvmci);
2211
JVMCIRuntime *runtime = nullptr;
2213
if (JVMCI::in_shutdown()) {
2214
failure_reason = "in JVMCI shutdown";
2215
retry_message = "not retryable";
2216
compilable = ciEnv::MethodCompilable_never;
2217
} else if (compile_state.target_method_is_old()) {
2218
// Skip redefined methods
2219
failure_reason = "redefined method";
2220
retry_message = "not retryable";
2221
compilable = ciEnv::MethodCompilable_never;
2223
JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2224
if (env.init_error() != JNI_OK) {
2225
const char* msg = env.init_error_msg();
2226
failure_reason = os::strdup(err_msg("Error attaching to libjvmci (err: %d, %s)",
2227
env.init_error(), msg == nullptr ? "unknown" : msg), mtJVMCI);
2228
bool reason_on_C_heap = true;
2229
// In case of JNI_ENOMEM, there's a good chance a subsequent attempt to create libjvmci or attach to it
2230
// might succeed. Other errors most likely indicate a non-recoverable error in the JVMCI runtime.
2231
bool retryable = env.init_error() == JNI_ENOMEM;
2232
compile_state.set_failure(retryable, failure_reason, reason_on_C_heap);
2234
if (failure_reason == nullptr) {
2235
if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2236
// Must switch to native to block
2237
ThreadToNativeFromVM ttn(thread);
2238
whitebox_lock_compilation();
2240
methodHandle method(thread, target_handle);
2241
runtime = env.runtime();
2242
runtime->compile_method(&env, jvmci, method, osr_bci);
2244
failure_reason = compile_state.failure_reason();
2245
failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2246
if (!compile_state.retryable()) {
2247
retry_message = "not retryable";
2248
compilable = ciEnv::MethodCompilable_not_at_tier;
2250
if (!task->is_success()) {
2251
assert(failure_reason != nullptr, "must specify failure_reason");
2255
if (!task->is_success() && !JVMCI::in_shutdown()) {
2256
handle_compile_error(thread, task, nullptr, compilable, failure_reason);
2258
if (event.should_commit()) {
2259
post_compilation_event(event, task);
2262
if (runtime != nullptr) {
2263
runtime->post_compile(thread);
2266
#endif // INCLUDE_JVMCI
2269
ThreadToNativeFromVM ttn(thread);
2273
ci_env.set_break_at_compile(true);
2276
ci_env.set_log(thread->log());
2278
assert(thread->env() == &ci_env, "set by ci_env");
2279
// The thread-env() field is cleared in ~CompileTaskWrapper.
2281
// Cache Jvmti state
2282
bool method_is_old = ci_env.cache_jvmti_state();
2284
// Skip redefined methods
2285
if (method_is_old) {
2286
ci_env.record_method_not_compilable("redefined method", true);
2289
// Cache DTrace flags
2290
ci_env.cache_dtrace_flags();
2292
ciMethod* target = ci_env.get_method_from_handle(target_handle);
2294
TraceTime t1("compilation", &time);
2295
EventCompilation event;
2297
if (comp == nullptr) {
2298
ci_env.record_method_not_compilable("no compiler");
2299
} else if (!ci_env.failing()) {
2300
if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2301
whitebox_lock_compilation();
2303
comp->compile_method(&ci_env, target, osr_bci, true, directive);
2305
/* Repeat compilation without installing code for profiling purposes */
2306
int repeat_compilation_count = directive->RepeatCompilationOption;
2307
while (repeat_compilation_count > 0) {
2308
ResourceMark rm(thread);
2309
task->print_ul("NO CODE INSTALLED");
2310
comp->compile_method(&ci_env, target, osr_bci, false, directive);
2311
repeat_compilation_count--;
2315
DirectivesStack::release(directive);
2317
if (!ci_env.failing() && !task->is_success()) {
2318
assert(ci_env.failure_reason() != nullptr, "expect failure reason");
2319
assert(false, "compiler should always document failure: %s", ci_env.failure_reason());
2320
// The compiler elected, without comment, not to register a result.
2321
// Do not attempt further compilations of this method.
2322
ci_env.record_method_not_compilable("compile failed");
2325
// Copy this bit to the enclosing block:
2326
compilable = ci_env.compilable();
2328
if (ci_env.failing()) {
2329
// Duplicate the failure reason string, so that it outlives ciEnv
2330
failure_reason = os::strdup(ci_env.failure_reason(), mtCompiler);
2331
failure_reason_on_C_heap = true;
2332
retry_message = ci_env.retry_message();
2333
ci_env.report_failure(failure_reason);
2336
if (ci_env.failing()) {
2337
handle_compile_error(thread, task, &ci_env, compilable, failure_reason);
2339
if (event.should_commit()) {
2340
post_compilation_event(event, task);
2344
if (failure_reason != nullptr) {
2345
task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2346
if (CompilationLog::log() != nullptr) {
2347
CompilationLog::log()->log_failure(thread, task, failure_reason, retry_message);
2349
if (PrintCompilation) {
2350
FormatBufferResource msg = retry_message != nullptr ?
2351
FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2352
FormatBufferResource("COMPILE SKIPPED: %s", failure_reason);
2353
task->print(tty, msg);
2357
methodHandle method(thread, task->method());
2359
DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2361
collect_statistics(thread, time, task);
2363
if (PrintCompilation && PrintCompilation2) {
2364
tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp
2365
tty->print("%4d ", compile_id); // print compilation number
2366
tty->print("%s ", (is_osr ? "%" : " "));
2367
if (task->is_success()) {
2368
tty->print("size: %d(%d) ", task->nm_total_size(), task->nm_insts_size());
2370
tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2373
Log(compilation, codecache) log;
2374
if (log.is_debug()) {
2375
LogStream ls(log.debug());
2376
codecache_print(&ls, /* detailed= */ false);
2378
if (PrintCodeCacheOnCompilation) {
2379
codecache_print(/* detailed= */ false);
2381
// Disable compilation, if required.
2382
switch (compilable) {
2383
case ciEnv::MethodCompilable_never:
2385
method->set_not_osr_compilable_quietly("MethodCompilable_never");
2387
method->set_not_compilable_quietly("MethodCompilable_never");
2389
case ciEnv::MethodCompilable_not_at_tier:
2391
method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2393
method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2397
// Note that the queued_for_compilation bits are cleared without
2398
// protection of a mutex. [They were set by the requester thread,
2399
// when adding the task to the compile queue -- at which time the
2400
// compile queue lock was held. Subsequently, we acquired the compile
2401
// queue lock to get this task off the compile queue; thus (to belabour
2402
// the point somewhat) our clearing of the bits must be occurring
2403
// only after the setting of the bits. See also 14012000 above.
2404
method->clear_queued_for_compilation();
2408
* The CodeCache is full. Print warning and disable compilation.
2409
* Schedule code cache cleaning so compilation can continue later.
2410
* This function needs to be called only from CodeCache::allocate(),
2411
* since we currently handle a full code cache uniformly.
2413
void CompileBroker::handle_full_code_cache(CodeBlobType code_blob_type) {
2414
UseInterpreter = true;
2415
if (UseCompiler || AlwaysCompileLoopMethods ) {
2416
if (xtty != nullptr) {
2418
// Dump code cache state into a buffer before locking the tty,
2419
// because log_state() will use locks causing lock conflicts.
2420
CodeCache::log_state(&s);
2421
// Lock to prevent tearing
2423
xtty->begin_elem("code_cache_full");
2424
xtty->print("%s", s.freeze());
2430
if (ExitOnFullCodeCache) {
2431
codecache_print(/* detailed= */ true);
2432
before_exit(JavaThread::current());
2433
exit_globals(); // will delete tty
2437
if (UseCodeCacheFlushing) {
2438
// Since code cache is full, immediately stop new compiles
2439
if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2440
log_info(codecache)("Code cache is full - disabling compilation");
2443
disable_compilation_forever();
2446
CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2450
// ------------------------------------------------------------------
2451
// CompileBroker::update_compile_perf_data
2453
// Record this compilation for debugging purposes.
2454
void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2456
char* method_name = method->name()->as_C_string();
2457
char current_method[CompilerCounters::cmname_buffer_length];
2458
size_t maxLen = CompilerCounters::cmname_buffer_length;
2460
const char* class_name = method->method_holder()->name()->as_C_string();
2462
size_t s1len = strlen(class_name);
2463
size_t s2len = strlen(method_name);
2465
// check if we need to truncate the string
2466
if (s1len + s2len + 2 > maxLen) {
2468
// the strategy is to lop off the leading characters of the
2469
// class name and the trailing characters of the method name.
2471
if (s2len + 2 > maxLen) {
2472
// lop of the entire class name string, let snprintf handle
2473
// truncation of the method name.
2474
class_name += s1len; // null string
2477
// lop off the extra characters from the front of the class name
2478
class_name += ((s1len + s2len + 2) - maxLen);
2482
jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2484
int last_compile_type = normal_compile;
2485
if (CICountOSR && is_osr) {
2486
last_compile_type = osr_compile;
2487
} else if (CICountNative && method->is_native()) {
2488
last_compile_type = native_compile;
2491
CompilerCounters* counters = thread->counters();
2492
counters->set_current_method(current_method);
2493
counters->set_compile_type((jlong) last_compile_type);
2496
// ------------------------------------------------------------------
2497
// CompileBroker::collect_statistics
2499
// Collect statistics about the compilation.
2501
void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2502
bool success = task->is_success();
2503
methodHandle method (thread, task->method());
2504
int compile_id = task->compile_id();
2505
bool is_osr = (task->osr_bci() != standard_entry_bci);
2506
const int comp_level = task->comp_level();
2507
CompilerCounters* counters = thread->counters();
2509
MutexLocker locker(CompileStatistics_lock);
2511
// _perf variables are production performance counters which are
2512
// updated regardless of the setting of the CITime and CITimeEach flags
2515
// account all time, including bailouts and failures in this counter;
2516
// C1 and C2 counters are counting both successful and unsuccessful compiles
2517
_t_total_compilation.add(time);
2520
_total_bailout_count++;
2522
_perf_last_failed_method->set_value(counters->current_method());
2523
_perf_last_failed_type->set_value(counters->compile_type());
2524
_perf_total_bailout_count->inc();
2526
_t_bailedout_compilation.add(time);
2527
} else if (!task->is_success()) {
2529
_perf_last_invalidated_method->set_value(counters->current_method());
2530
_perf_last_invalidated_type->set_value(counters->compile_type());
2531
_perf_total_invalidated_count->inc();
2533
_total_invalidated_count++;
2534
_t_invalidated_compilation.add(time);
2536
// Compilation succeeded
2538
// update compilation ticks - used by the implementation of
2539
// java.lang.management.CompilationMXBean
2540
_perf_total_compilation->inc(time.ticks());
2541
_peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2544
int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2546
_t_osr_compilation.add(time);
2547
_sum_osr_bytes_compiled += bytes_compiled;
2549
_t_standard_compilation.add(time);
2550
_sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2553
// Collect statistic per compilation level
2554
if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) {
2555
CompilerStatistics* stats = &_stats_per_level[comp_level-1];
2557
stats->_osr.update(time, bytes_compiled);
2559
stats->_standard.update(time, bytes_compiled);
2561
stats->_nmethods_size += task->nm_total_size();
2562
stats->_nmethods_code_size += task->nm_insts_size();
2564
assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level);
2567
// Collect statistic per compiler
2568
AbstractCompiler* comp = compiler(comp_level);
2570
CompilerStatistics* stats = comp->stats();
2572
stats->_osr.update(time, bytes_compiled);
2574
stats->_standard.update(time, bytes_compiled);
2576
stats->_nmethods_size += task->nm_total_size();
2577
stats->_nmethods_code_size += task->nm_insts_size();
2578
} else { // if (!comp)
2579
assert(false, "Compiler object must exist");
2584
// save the name of the last method compiled
2585
_perf_last_method->set_value(counters->current_method());
2586
_perf_last_compile_type->set_value(counters->compile_type());
2587
_perf_last_compile_size->set_value(method->code_size() +
2588
task->num_inlined_bytecodes());
2590
_perf_osr_compilation->inc(time.ticks());
2591
_perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2593
_perf_standard_compilation->inc(time.ticks());
2594
_perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2599
double compile_time = time.seconds();
2600
double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time;
2601
tty->print_cr("%3d seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)",
2602
compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2605
// Collect counts of successful compilations
2606
_sum_nmethod_size += task->nm_total_size();
2607
_sum_nmethod_code_size += task->nm_insts_size();
2608
_total_compile_count++;
2611
_perf_sum_nmethod_size->inc( task->nm_total_size());
2612
_perf_sum_nmethod_code_size->inc(task->nm_insts_size());
2613
_perf_total_compile_count->inc();
2617
if (UsePerfData) _perf_total_osr_compile_count->inc();
2618
_total_osr_compile_count++;
2620
if (UsePerfData) _perf_total_standard_compile_count->inc();
2621
_total_standard_compile_count++;
2624
// set the current method for the thread to null
2625
if (UsePerfData) counters->set_current_method("");
2628
const char* CompileBroker::compiler_name(int comp_level) {
2629
AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2630
if (comp == nullptr) {
2631
return "no compiler";
2633
return (comp->name());
2637
jlong CompileBroker::total_compilation_ticks() {
2638
return _perf_total_compilation != nullptr ? _perf_total_compilation->get_value() : 0;
2641
void CompileBroker::print_times(const char* name, CompilerStatistics* stats) {
2642
tty->print_cr(" %s {speed: %6.3f bytes/s; standard: %6.3f s, %u bytes, %u methods; osr: %6.3f s, %u bytes, %u methods; nmethods_size: %u bytes; nmethods_code_size: %u bytes}",
2643
name, stats->bytes_per_second(),
2644
stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2645
stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2646
stats->_nmethods_size, stats->_nmethods_code_size);
2649
void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2653
tty->print_cr("Individual compiler times (for compiled methods only)");
2654
tty->print_cr("------------------------------------------------");
2657
for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2658
AbstractCompiler* comp = _compilers[i];
2659
if (comp != nullptr) {
2660
print_times(comp->name(), comp->stats());
2665
tty->print_cr("Individual compilation Tier times (for compiled methods only)");
2666
tty->print_cr("------------------------------------------------");
2669
char tier_name[256];
2670
for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
2671
CompilerStatistics* stats = &_stats_per_level[tier-1];
2672
os::snprintf_checked(tier_name, sizeof(tier_name), "Tier%d", tier);
2673
print_times(tier_name, stats);
2681
elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2682
elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2683
elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2685
uint standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2686
uint osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2688
uint standard_compile_count = CompileBroker::_total_standard_compile_count;
2689
uint osr_compile_count = CompileBroker::_total_osr_compile_count;
2690
uint total_compile_count = CompileBroker::_total_compile_count;
2691
uint total_bailout_count = CompileBroker::_total_bailout_count;
2692
uint total_invalidated_count = CompileBroker::_total_invalidated_count;
2694
uint nmethods_code_size = CompileBroker::_sum_nmethod_code_size;
2695
uint nmethods_size = CompileBroker::_sum_nmethod_size;
2698
tty->print_cr("Accumulated compiler times");
2699
tty->print_cr("----------------------------------------------------------");
2700
//0000000000111111111122222222223333333333444444444455555555556666666666
2701
//0123456789012345678901234567890123456789012345678901234567890123456789
2702
tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds());
2703
tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s",
2704
standard_compilation.seconds(),
2705
standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count);
2706
tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s",
2707
CompileBroker::_t_bailedout_compilation.seconds(),
2708
total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count);
2709
tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s",
2710
osr_compilation.seconds(),
2711
osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count);
2712
tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s",
2713
CompileBroker::_t_invalidated_compilation.seconds(),
2714
total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count);
2716
AbstractCompiler *comp = compiler(CompLevel_simple);
2717
if (comp != nullptr) {
2719
comp->print_timers();
2721
comp = compiler(CompLevel_full_optimization);
2722
if (comp != nullptr) {
2724
comp->print_timers();
2728
JVMCICompiler *jvmci_comp = JVMCICompiler::instance(false, JavaThread::current_or_null());
2729
if (jvmci_comp != nullptr && jvmci_comp != comp) {
2731
jvmci_comp->print_timers();
2737
tty->print_cr(" Total compiled methods : %8u methods", total_compile_count);
2738
tty->print_cr(" Standard compilation : %8u methods", standard_compile_count);
2739
tty->print_cr(" On stack replacement : %8u methods", osr_compile_count);
2740
uint tcb = osr_bytes_compiled + standard_bytes_compiled;
2741
tty->print_cr(" Total compiled bytecodes : %8u bytes", tcb);
2742
tty->print_cr(" Standard compilation : %8u bytes", standard_bytes_compiled);
2743
tty->print_cr(" On stack replacement : %8u bytes", osr_bytes_compiled);
2744
double tcs = total_compilation.seconds();
2745
uint bps = tcs == 0.0 ? 0 : (uint)(tcb / tcs);
2746
tty->print_cr(" Average compilation speed : %8u bytes/s", bps);
2748
tty->print_cr(" nmethod code size : %8u bytes", nmethods_code_size);
2749
tty->print_cr(" nmethod total size : %8u bytes", nmethods_size);
2752
// Print general/accumulated JIT information.
2753
void CompileBroker::print_info(outputStream *out) {
2754
if (out == nullptr) out = tty;
2756
out->print_cr("======================");
2757
out->print_cr(" General JIT info ");
2758
out->print_cr("======================");
2760
out->print_cr(" JIT is : %7s", should_compile_new_jobs() ? "on" : "off");
2761
out->print_cr(" Compiler threads : %7d", (int)CICompilerCount);
2763
out->print_cr("CodeCache overview");
2764
out->print_cr("--------------------------------------------------------");
2766
out->print_cr(" Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2767
out->print_cr(" Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2768
out->print_cr(" Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2772
// Note: tty_lock must not be held upon entry to this function.
2773
// Print functions called from herein do "micro-locking" on tty_lock.
2774
// That's a tradeoff which keeps together important blocks of output.
2775
// At the same time, continuous tty_lock hold time is kept in check,
2776
// preventing concurrently printing threads from stalling a long time.
2777
void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
2779
TimeStamp ts_global;
2782
bool allFun = !strcmp(function, "all");
2783
bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2784
bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2785
bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2786
bool methodCount = !strcmp(function, "MethodCount") || allFun;
2787
bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2788
bool methodAge = !strcmp(function, "MethodAge") || allFun;
2789
bool methodNames = !strcmp(function, "MethodNames") || allFun;
2790
bool discard = !strcmp(function, "discard") || allFun;
2792
if (out == nullptr) {
2796
if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2797
out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2802
ts_total.update(); // record starting point
2808
// We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2809
// That prevents other threads from destroying (making inconsistent) our view on the CodeHeap.
2810
// When we request individual parts of the analysis via the jcmd interface, it is possible
2811
// that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2812
// updated the aggregated data. We will then see a modified, but again consistent, view
2813
// on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold
2814
// a lock across user interaction.
2816
// We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock.
2817
// CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time,
2818
// leading to an unnecessarily long hold time of the other locks we acquired before.
2819
ts.update(); // record starting point
2820
MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag);
2821
out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2823
// Holding the CodeCache_lock protects from concurrent alterations of the CodeCache.
2824
// Unfortunately, such protection is not sufficient:
2825
// When a new nmethod is created via ciEnv::register_method(), the
2826
// Compile_lock is taken first. After some initializations,
2827
// nmethod::new_nmethod() takes over, grabbing the CodeCache_lock
2828
// immediately (after finalizing the oop references). To lock out concurrent
2829
// modifiers, we have to grab both locks as well in the described sequence.
2831
// If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock
2832
// for the entire duration of aggregation and printing. That makes sure we see
2833
// a consistent picture and do not run into issues caused by concurrent alterations.
2834
bool should_take_Compile_lock = !SafepointSynchronize::is_at_safepoint() &&
2835
!Compile_lock->owned_by_self();
2836
bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() &&
2837
!CodeCache_lock->owned_by_self();
2838
bool take_global_lock_1 = allFun && should_take_Compile_lock;
2839
bool take_global_lock_2 = allFun && should_take_CodeCache_lock;
2840
bool take_function_lock_1 = !allFun && should_take_Compile_lock;
2841
bool take_function_lock_2 = !allFun && should_take_CodeCache_lock;
2842
bool take_global_locks = take_global_lock_1 || take_global_lock_2;
2843
bool take_function_locks = take_function_lock_1 || take_function_lock_2;
2845
ts_global.update(); // record starting point
2847
ConditionalMutexLocker mu1(Compile_lock, take_global_lock_1, Mutex::_safepoint_check_flag);
2848
ConditionalMutexLocker mu2(CodeCache_lock, take_global_lock_2, Mutex::_no_safepoint_check_flag);
2849
if (take_global_locks) {
2850
out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2851
ts_global.update(); // record starting point
2855
ts.update(); // record starting point
2856
ConditionalMutexLocker mu11(Compile_lock, take_function_lock_1, Mutex::_safepoint_check_flag);
2857
ConditionalMutexLocker mu22(CodeCache_lock, take_function_lock_2, Mutex::_no_safepoint_check_flag);
2858
if (take_function_locks) {
2859
out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2862
ts.update(); // record starting point
2863
CodeCache::aggregate(out, granularity);
2864
if (take_function_locks) {
2865
out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2869
if (usedSpace) CodeCache::print_usedSpace(out);
2870
if (freeSpace) CodeCache::print_freeSpace(out);
2871
if (methodCount) CodeCache::print_count(out);
2872
if (methodSpace) CodeCache::print_space(out);
2873
if (methodAge) CodeCache::print_age(out);
2876
// print_names() can only be used safely if the locks have been continuously held
2877
// since aggregation begin. That is true only for function "all".
2878
CodeCache::print_names(out);
2880
out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'");
2883
if (discard) CodeCache::discard(out);
2885
if (take_global_locks) {
2886
out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2888
out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());