2
* Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
25
#include "precompiled.hpp"
26
#include "ci/ciArrayKlass.hpp"
27
#include "ci/ciEnv.hpp"
28
#include "ci/ciKlass.hpp"
29
#include "ci/ciMethod.hpp"
30
#include "classfile/javaClasses.inline.hpp"
31
#include "classfile/vmClasses.hpp"
32
#include "code/dependencies.hpp"
33
#include "compiler/compileLog.hpp"
34
#include "compiler/compileBroker.hpp"
35
#include "compiler/compileTask.hpp"
36
#include "memory/resourceArea.hpp"
37
#include "oops/klass.hpp"
38
#include "oops/oop.inline.hpp"
39
#include "oops/method.inline.hpp"
40
#include "oops/objArrayKlass.hpp"
41
#include "runtime/flags/flagSetting.hpp"
42
#include "runtime/handles.hpp"
43
#include "runtime/handles.inline.hpp"
44
#include "runtime/javaThread.inline.hpp"
45
#include "runtime/jniHandles.inline.hpp"
46
#include "runtime/mutexLocker.hpp"
47
#include "runtime/perfData.hpp"
48
#include "runtime/vmThread.hpp"
49
#include "utilities/copy.hpp"
53
static bool must_be_in_vm() {
54
Thread* thread = Thread::current();
55
if (thread->is_Java_thread()) {
56
return JavaThread::cast(thread)->thread_state() == _thread_in_vm;
58
return true; // Could be VMThread or GC thread
63
bool Dependencies::_verify_in_progress = false; // don't -Xlog:dependencies
65
void Dependencies::initialize(ciEnv* env) {
66
Arena* arena = env->arena();
67
_oop_recorder = env->oop_recorder();
69
_dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
71
_using_dep_values = false;
73
DEBUG_ONLY(_deps[end_marker] = nullptr);
74
for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
75
_deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, nullptr);
77
_content_bytes = nullptr;
78
_size_in_bytes = (size_t)-1;
80
assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
83
void Dependencies::assert_evol_method(ciMethod* m) {
84
assert_common_1(evol_method, m);
87
void Dependencies::assert_leaf_type(ciKlass* ctxk) {
88
if (ctxk->is_array_klass()) {
89
// As a special case, support this assertion on an array type,
90
// which reduces to an assertion on its element type.
91
// Note that this cannot be done with assertions that
92
// relate to concreteness or abstractness.
93
ciType* elemt = ctxk->as_array_klass()->base_element_type();
94
if (!elemt->is_instance_klass()) return; // Ex: int[][]
95
ctxk = elemt->as_instance_klass();
96
//if (ctxk->is_final()) return; // Ex: String[][]
99
assert_common_1(leaf_type, ctxk);
102
void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
103
check_ctxk_abstract(ctxk);
104
assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
107
void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
109
check_unique_method(ctxk, uniqm);
110
assert_common_2(unique_concrete_method_2, ctxk, uniqm);
113
void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm, ciKlass* resolved_klass, ciMethod* resolved_method) {
115
check_unique_method(ctxk, uniqm);
116
assert_common_4(unique_concrete_method_4, ctxk, uniqm, resolved_klass, resolved_method);
119
void Dependencies::assert_unique_implementor(ciInstanceKlass* ctxk, ciInstanceKlass* uniqk) {
121
check_unique_implementor(ctxk, uniqk);
122
assert_common_2(unique_implementor, ctxk, uniqk);
125
void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
127
assert_common_1(no_finalizable_subclasses, ctxk);
130
void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
131
assert_common_2(call_site_target_value, call_site, method_handle);
136
Dependencies::Dependencies(Arena* arena, OopRecorder* oop_recorder, CompileLog* log) {
137
_oop_recorder = oop_recorder;
139
_dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
140
_using_dep_values = true;
141
DEBUG_ONLY(_dep_values[end_marker] = nullptr);
142
for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
143
_dep_values[i] = new(arena) GrowableArray<DepValue>(arena, 10, 0, DepValue());
145
_content_bytes = nullptr;
146
_size_in_bytes = (size_t)-1;
148
assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
151
void Dependencies::assert_evol_method(Method* m) {
152
assert_common_1(evol_method, DepValue(_oop_recorder, m));
155
void Dependencies::assert_has_no_finalizable_subclasses(Klass* ctxk) {
157
assert_common_1(no_finalizable_subclasses, DepValue(_oop_recorder, ctxk));
160
void Dependencies::assert_leaf_type(Klass* ctxk) {
161
if (ctxk->is_array_klass()) {
162
// As a special case, support this assertion on an array type,
163
// which reduces to an assertion on its element type.
164
// Note that this cannot be done with assertions that
165
// relate to concreteness or abstractness.
166
BasicType elemt = ArrayKlass::cast(ctxk)->element_type();
167
if (is_java_primitive(elemt)) return; // Ex: int[][]
168
ctxk = ObjArrayKlass::cast(ctxk)->bottom_klass();
169
//if (ctxk->is_final()) return; // Ex: String[][]
172
assert_common_1(leaf_type, DepValue(_oop_recorder, ctxk));
175
void Dependencies::assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck) {
176
check_ctxk_abstract(ctxk);
177
DepValue ctxk_dv(_oop_recorder, ctxk);
178
DepValue conck_dv(_oop_recorder, conck, &ctxk_dv);
179
assert_common_2(abstract_with_unique_concrete_subtype, ctxk_dv, conck_dv);
182
void Dependencies::assert_unique_implementor(InstanceKlass* ctxk, InstanceKlass* uniqk) {
184
assert(ctxk->is_interface(), "not an interface");
185
assert(ctxk->implementor() == uniqk, "not a unique implementor");
186
assert_common_2(unique_implementor, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqk));
189
void Dependencies::assert_unique_concrete_method(Klass* ctxk, Method* uniqm) {
191
check_unique_method(ctxk, uniqm);
192
assert_common_2(unique_concrete_method_2, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqm));
195
void Dependencies::assert_call_site_target_value(oop call_site, oop method_handle) {
196
assert_common_2(call_site_target_value, DepValue(_oop_recorder, JNIHandles::make_local(call_site)), DepValue(_oop_recorder, JNIHandles::make_local(method_handle)));
199
#endif // INCLUDE_JVMCI
202
// Helper function. If we are adding a new dep. under ctxk2,
203
// try to find an old dep. under a broader* ctxk1. If there is
205
bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
206
int ctxk_i, ciKlass* ctxk2) {
207
ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
208
if (ctxk2->is_subtype_of(ctxk1)) {
209
return true; // success, and no need to change
210
} else if (ctxk1->is_subtype_of(ctxk2)) {
211
// new context class fully subsumes previous one
212
deps->at_put(ctxk_i, ctxk2);
219
void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
220
assert(dep_args(dept) == 1, "sanity");
221
log_dependency(dept, x);
222
GrowableArray<ciBaseObject*>* deps = _deps[dept];
224
// see if the same (or a similar) dep is already recorded
225
if (note_dep_seen(dept, x)) {
226
assert(deps->find(x) >= 0, "sanity");
232
void Dependencies::assert_common_2(DepType dept,
233
ciBaseObject* x0, ciBaseObject* x1) {
234
assert(dep_args(dept) == 2, "sanity");
235
log_dependency(dept, x0, x1);
236
GrowableArray<ciBaseObject*>* deps = _deps[dept];
238
// see if the same (or a similar) dep is already recorded
239
bool has_ctxk = has_explicit_context_arg(dept);
241
assert(dep_context_arg(dept) == 0, "sanity");
242
if (note_dep_seen(dept, x1)) {
243
// look in this bucket for redundant assertions
244
const int stride = 2;
245
for (int i = deps->length(); (i -= stride) >= 0; ) {
246
ciBaseObject* y1 = deps->at(i+1);
247
if (x1 == y1) { // same subject; check the context
248
if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
255
bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries
256
bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
257
if (dep_seen_x0 && dep_seen_x1) {
258
// look in this bucket for redundant assertions
259
const int stride = 2;
260
for (int i = deps->length(); (i -= stride) >= 0; ) {
261
ciBaseObject* y0 = deps->at(i+0);
262
ciBaseObject* y1 = deps->at(i+1);
263
if (x0 == y0 && x1 == y1) {
270
// append the assertion in the correct bucket:
275
void Dependencies::assert_common_4(DepType dept,
276
ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2, ciBaseObject* x3) {
277
assert(has_explicit_context_arg(dept), "sanity");
278
assert(dep_context_arg(dept) == 0, "sanity");
279
assert(dep_args(dept) == 4, "sanity");
280
log_dependency(dept, ctxk, x1, x2, x3);
281
GrowableArray<ciBaseObject*>* deps = _deps[dept];
283
// see if the same (or a similar) dep is already recorded
284
bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
285
bool dep_seen_x2 = note_dep_seen(dept, x2); // records x2 for future queries
286
bool dep_seen_x3 = note_dep_seen(dept, x3); // records x3 for future queries
287
if (dep_seen_x1 && dep_seen_x2 && dep_seen_x3) {
288
// look in this bucket for redundant assertions
289
const int stride = 4;
290
for (int i = deps->length(); (i -= stride) >= 0; ) {
291
ciBaseObject* y1 = deps->at(i+1);
292
ciBaseObject* y2 = deps->at(i+2);
293
ciBaseObject* y3 = deps->at(i+3);
294
if (x1 == y1 && x2 == y2 && x3 == y3) { // same subjects; check the context
295
if (maybe_merge_ctxk(deps, i+0, ctxk)) {
301
// append the assertion in the correct bucket:
309
bool Dependencies::maybe_merge_ctxk(GrowableArray<DepValue>* deps,
310
int ctxk_i, DepValue ctxk2_dv) {
311
Klass* ctxk1 = deps->at(ctxk_i).as_klass(_oop_recorder);
312
Klass* ctxk2 = ctxk2_dv.as_klass(_oop_recorder);
313
if (ctxk2->is_subtype_of(ctxk1)) {
314
return true; // success, and no need to change
315
} else if (ctxk1->is_subtype_of(ctxk2)) {
316
// new context class fully subsumes previous one
317
deps->at_put(ctxk_i, ctxk2_dv);
324
void Dependencies::assert_common_1(DepType dept, DepValue x) {
325
assert(dep_args(dept) == 1, "sanity");
326
//log_dependency(dept, x);
327
GrowableArray<DepValue>* deps = _dep_values[dept];
329
// see if the same (or a similar) dep is already recorded
330
if (note_dep_seen(dept, x)) {
331
assert(deps->find(x) >= 0, "sanity");
337
void Dependencies::assert_common_2(DepType dept,
338
DepValue x0, DepValue x1) {
339
assert(dep_args(dept) == 2, "sanity");
340
//log_dependency(dept, x0, x1);
341
GrowableArray<DepValue>* deps = _dep_values[dept];
343
// see if the same (or a similar) dep is already recorded
344
bool has_ctxk = has_explicit_context_arg(dept);
346
assert(dep_context_arg(dept) == 0, "sanity");
347
if (note_dep_seen(dept, x1)) {
348
// look in this bucket for redundant assertions
349
const int stride = 2;
350
for (int i = deps->length(); (i -= stride) >= 0; ) {
351
DepValue y1 = deps->at(i+1);
352
if (x1 == y1) { // same subject; check the context
353
if (maybe_merge_ctxk(deps, i+0, x0)) {
360
bool dep_seen_x0 = note_dep_seen(dept, x0); // records x0 for future queries
361
bool dep_seen_x1 = note_dep_seen(dept, x1); // records x1 for future queries
362
if (dep_seen_x0 && dep_seen_x1) {
363
// look in this bucket for redundant assertions
364
const int stride = 2;
365
for (int i = deps->length(); (i -= stride) >= 0; ) {
366
DepValue y0 = deps->at(i+0);
367
DepValue y1 = deps->at(i+1);
368
if (x0 == y0 && x1 == y1) {
375
// append the assertion in the correct bucket:
379
#endif // INCLUDE_JVMCI
381
/// Support for encoding dependencies into an nmethod:
383
void Dependencies::copy_to(nmethod* nm) {
384
address beg = nm->dependencies_begin();
385
address end = nm->dependencies_end();
386
guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
387
(void)memcpy(beg, content_bytes(), size_in_bytes());
388
assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
391
static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
392
for (int i = 0; i < narg; i++) {
393
int diff = p1[i]->ident() - p2[i]->ident();
394
if (diff != 0) return diff;
398
static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
399
{ return sort_dep(p1, p2, 1); }
400
static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
401
{ return sort_dep(p1, p2, 2); }
402
static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
403
{ return sort_dep(p1, p2, 3); }
404
static int sort_dep_arg_4(ciBaseObject** p1, ciBaseObject** p2)
405
{ return sort_dep(p1, p2, 4); }
408
// metadata deps are sorted before object deps
409
static int sort_dep_value(Dependencies::DepValue* p1, Dependencies::DepValue* p2, int narg) {
410
for (int i = 0; i < narg; i++) {
411
int diff = p1[i].sort_key() - p2[i].sort_key();
412
if (diff != 0) return diff;
416
static int sort_dep_value_arg_1(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
417
{ return sort_dep_value(p1, p2, 1); }
418
static int sort_dep_value_arg_2(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
419
{ return sort_dep_value(p1, p2, 2); }
420
static int sort_dep_value_arg_3(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
421
{ return sort_dep_value(p1, p2, 3); }
422
#endif // INCLUDE_JVMCI
424
void Dependencies::sort_all_deps() {
426
if (_using_dep_values) {
427
for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
428
DepType dept = (DepType)deptv;
429
GrowableArray<DepValue>* deps = _dep_values[dept];
430
if (deps->length() <= 1) continue;
431
switch (dep_args(dept)) {
432
case 1: deps->sort(sort_dep_value_arg_1, 1); break;
433
case 2: deps->sort(sort_dep_value_arg_2, 2); break;
434
case 3: deps->sort(sort_dep_value_arg_3, 3); break;
435
default: ShouldNotReachHere(); break;
440
#endif // INCLUDE_JVMCI
441
for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
442
DepType dept = (DepType)deptv;
443
GrowableArray<ciBaseObject*>* deps = _deps[dept];
444
if (deps->length() <= 1) continue;
445
switch (dep_args(dept)) {
446
case 1: deps->sort(sort_dep_arg_1, 1); break;
447
case 2: deps->sort(sort_dep_arg_2, 2); break;
448
case 3: deps->sort(sort_dep_arg_3, 3); break;
449
case 4: deps->sort(sort_dep_arg_4, 4); break;
450
default: ShouldNotReachHere(); break;
455
size_t Dependencies::estimate_size_in_bytes() {
456
size_t est_size = 100;
458
if (_using_dep_values) {
459
for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
460
DepType dept = (DepType)deptv;
461
GrowableArray<DepValue>* deps = _dep_values[dept];
462
est_size += deps->length() * 2; // tags and argument(s)
466
#endif // INCLUDE_JVMCI
467
for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
468
DepType dept = (DepType)deptv;
469
GrowableArray<ciBaseObject*>* deps = _deps[dept];
470
est_size += deps->length()*2; // tags and argument(s)
475
ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
477
case unique_concrete_method_2:
478
case unique_concrete_method_4:
479
return x->as_metadata()->as_method()->holder();
481
return nullptr; // let nullptr be nullptr
485
Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
486
assert(must_be_in_vm(), "raw oops here");
488
case unique_concrete_method_2:
489
case unique_concrete_method_4:
490
assert(x->is_method(), "sanity");
491
return ((Method*)x)->method_holder();
493
return nullptr; // let nullptr be nullptr
497
void Dependencies::encode_content_bytes() {
500
// cast is safe, no deps can overflow INT_MAX
501
CompressedWriteStream bytes((int)estimate_size_in_bytes());
504
if (_using_dep_values) {
505
for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
506
DepType dept = (DepType)deptv;
507
GrowableArray<DepValue>* deps = _dep_values[dept];
508
if (deps->length() == 0) continue;
509
int stride = dep_args(dept);
510
int ctxkj = dep_context_arg(dept); // -1 if no context arg
511
assert(stride > 0, "sanity");
512
for (int i = 0; i < deps->length(); i += stride) {
513
jbyte code_byte = (jbyte)dept;
515
if (ctxkj >= 0 && ctxkj+1 < stride) {
516
Klass* ctxk = deps->at(i+ctxkj+0).as_klass(_oop_recorder);
517
DepValue x = deps->at(i+ctxkj+1); // following argument
518
if (ctxk == ctxk_encoded_as_null(dept, x.as_metadata(_oop_recorder))) {
519
skipj = ctxkj; // we win: maybe one less oop to keep track of
520
code_byte |= default_context_type_bit;
523
bytes.write_byte(code_byte);
524
for (int j = 0; j < stride; j++) {
525
if (j == skipj) continue;
526
DepValue v = deps->at(i+j);
528
bytes.write_int(idx);
533
#endif // INCLUDE_JVMCI
534
for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
535
DepType dept = (DepType)deptv;
536
GrowableArray<ciBaseObject*>* deps = _deps[dept];
537
if (deps->length() == 0) continue;
538
int stride = dep_args(dept);
539
int ctxkj = dep_context_arg(dept); // -1 if no context arg
540
assert(stride > 0, "sanity");
541
for (int i = 0; i < deps->length(); i += stride) {
542
jbyte code_byte = (jbyte)dept;
544
if (ctxkj >= 0 && ctxkj+1 < stride) {
545
ciKlass* ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
546
ciBaseObject* x = deps->at(i+ctxkj+1); // following argument
547
if (ctxk == ctxk_encoded_as_null(dept, x)) {
548
skipj = ctxkj; // we win: maybe one less oop to keep track of
549
code_byte |= default_context_type_bit;
552
bytes.write_byte(code_byte);
553
for (int j = 0; j < stride; j++) {
554
if (j == skipj) continue;
555
ciBaseObject* v = deps->at(i+j);
557
if (v->is_object()) {
558
idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
560
ciMetadata* meta = v->as_metadata();
561
idx = _oop_recorder->find_index(meta->constant_encoding());
563
bytes.write_int(idx);
571
// write a sentinel byte to mark the end
572
bytes.write_byte(end_marker);
574
// round it out to a word boundary
575
while (bytes.position() % sizeof(HeapWord) != 0) {
576
bytes.write_byte(end_marker);
579
// check whether the dept byte encoding really works
580
assert((jbyte)default_context_type_bit != 0, "byte overflow");
582
_content_bytes = bytes.buffer();
583
_size_in_bytes = bytes.position();
587
const char* Dependencies::_dep_name[TYPE_LIMIT] = {
591
"abstract_with_unique_concrete_subtype",
592
"unique_concrete_method_2",
593
"unique_concrete_method_4",
594
"unique_implementor",
595
"no_finalizable_subclasses",
596
"call_site_target_value"
599
int Dependencies::_dep_args[TYPE_LIMIT] = {
603
2, // abstract_with_unique_concrete_subtype ctxk, k
604
2, // unique_concrete_method_2 ctxk, m
605
4, // unique_concrete_method_4 ctxk, m, resolved_klass, resolved_method
606
2, // unique_implementor ctxk, implementor
607
1, // no_finalizable_subclasses ctxk
608
2 // call_site_target_value call_site, method_handle
611
const char* Dependencies::dep_name(Dependencies::DepType dept) {
612
if (!dept_in_mask(dept, all_types)) return "?bad-dep?";
613
return _dep_name[dept];
616
int Dependencies::dep_args(Dependencies::DepType dept) {
617
if (!dept_in_mask(dept, all_types)) return -1;
618
return _dep_args[dept];
621
void Dependencies::check_valid_dependency_type(DepType dept) {
622
guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, "invalid dependency type: %d", (int) dept);
625
Dependencies::DepType Dependencies::validate_dependencies(CompileTask* task, char** failure_detail) {
626
int klass_violations = 0;
627
DepType result = end_marker;
628
for (Dependencies::DepStream deps(this); deps.next(); ) {
629
Klass* witness = deps.check_dependency();
630
if (witness != nullptr) {
631
if (klass_violations == 0) {
632
result = deps.type();
633
if (failure_detail != nullptr && klass_violations == 0) {
634
// Use a fixed size buffer to prevent the string stream from
635
// resizing in the context of an inner resource mark.
636
char* buffer = NEW_RESOURCE_ARRAY(char, O_BUFLEN);
637
stringStream st(buffer, O_BUFLEN);
638
deps.print_dependency(&st, witness, true);
639
*failure_detail = st.as_string();
643
if (xtty == nullptr) {
644
// If we're not logging then a single violation is sufficient,
645
// otherwise we want to log all the dependences which were
655
// for the sake of the compiler log, print out current dependencies:
656
void Dependencies::log_all_dependencies() {
657
if (log() == nullptr) return;
659
for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
660
DepType dept = (DepType)deptv;
661
GrowableArray<ciBaseObject*>* deps = _deps[dept];
662
int deplen = deps->length();
666
int stride = dep_args(dept);
667
GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(stride);
668
for (int i = 0; i < deps->length(); i += stride) {
669
for (int j = 0; j < stride; j++) {
670
// flush out the identities before printing
671
ciargs->push(deps->at(i+j));
673
write_dependency_to(log(), dept, ciargs);
676
guarantee(deplen == deps->length(), "deps array cannot grow inside nested ResoureMark scope");
680
void Dependencies::write_dependency_to(CompileLog* log,
682
GrowableArray<DepArgument>* args,
684
if (log == nullptr) {
688
ciEnv* env = ciEnv::current();
689
GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(args->length());
690
for (GrowableArrayIterator<DepArgument> it = args->begin(); it != args->end(); ++it) {
691
DepArgument arg = *it;
693
ciargs->push(env->get_object(arg.oop_value()));
695
ciargs->push(env->get_metadata(arg.metadata_value()));
698
int argslen = ciargs->length();
699
Dependencies::write_dependency_to(log, dept, ciargs, witness);
700
guarantee(argslen == ciargs->length(), "ciargs array cannot grow inside nested ResoureMark scope");
703
void Dependencies::write_dependency_to(CompileLog* log,
705
GrowableArray<ciBaseObject*>* args,
707
if (log == nullptr) {
711
GrowableArray<int>* argids = new GrowableArray<int>(args->length());
712
for (GrowableArrayIterator<ciBaseObject*> it = args->begin(); it != args->end(); ++it) {
713
ciBaseObject* obj = *it;
714
if (obj->is_object()) {
715
argids->push(log->identify(obj->as_object()));
717
argids->push(log->identify(obj->as_metadata()));
720
if (witness != nullptr) {
721
log->begin_elem("dependency_failed");
723
log->begin_elem("dependency");
725
log->print(" type='%s'", dep_name(dept));
726
const int ctxkj = dep_context_arg(dept); // -1 if no context arg
727
if (ctxkj >= 0 && ctxkj < argids->length()) {
728
log->print(" ctxk='%d'", argids->at(ctxkj));
730
// write remaining arguments, if any.
731
for (int j = 0; j < argids->length(); j++) {
732
if (j == ctxkj) continue; // already logged
734
log->print( " x='%d'", argids->at(j));
736
log->print(" x%d='%d'", j, argids->at(j));
739
if (witness != nullptr) {
740
log->object("witness", witness);
746
void Dependencies::write_dependency_to(xmlStream* xtty,
748
GrowableArray<DepArgument>* args,
750
if (xtty == nullptr) {
753
Thread* thread = Thread::current();
754
HandleMark rm(thread);
756
int ctxkj = dep_context_arg(dept); // -1 if no context arg
757
if (witness != nullptr) {
758
xtty->begin_elem("dependency_failed");
760
xtty->begin_elem("dependency");
762
xtty->print(" type='%s'", dep_name(dept));
764
xtty->object("ctxk", args->at(ctxkj).metadata_value());
766
// write remaining arguments, if any.
767
for (int j = 0; j < args->length(); j++) {
768
if (j == ctxkj) continue; // already logged
769
DepArgument arg = args->at(j);
772
xtty->object("x", Handle(thread, arg.oop_value()));
774
xtty->object("x", arg.metadata_value());
778
os::snprintf_checked(xn, sizeof(xn), "x%d", j);
780
xtty->object(xn, Handle(thread, arg.oop_value()));
782
xtty->object(xn, arg.metadata_value());
786
if (witness != nullptr) {
787
xtty->object("witness", witness);
793
void Dependencies::print_dependency(DepType dept, GrowableArray<DepArgument>* args,
794
Klass* witness, outputStream* st) {
796
ttyLocker ttyl; // keep the following output all in one block
797
st->print_cr("%s of type %s",
798
(witness == nullptr)? "Dependency": "Failed dependency",
801
int ctxkj = dep_context_arg(dept); // -1 if no context arg
802
for (int j = 0; j < args->length(); j++) {
803
DepArgument arg = args->at(j);
804
bool put_star = false;
805
if (arg.is_null()) continue;
808
assert(arg.is_metadata(), "must be");
810
put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
811
} else if (arg.is_method()) {
813
put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value(), nullptr);
814
} else if (arg.is_klass()) {
819
st->print(" %s = %s", what, (put_star? "*": ""));
820
if (arg.is_klass()) {
821
st->print("%s", ((Klass*)arg.metadata_value())->external_name());
822
} else if (arg.is_method()) {
823
((Method*)arg.metadata_value())->print_value_on(st);
824
} else if (arg.is_oop()) {
825
arg.oop_value()->print_value_on(st);
827
ShouldNotReachHere(); // Provide impl for this type.
832
if (witness != nullptr) {
833
bool put_star = !Dependencies::is_concrete_klass(witness);
834
st->print_cr(" witness = %s%s",
836
witness->external_name());
840
void Dependencies::DepStream::log_dependency(Klass* witness) {
841
if (_deps == nullptr && xtty == nullptr) return; // fast cutout for runtime
843
const int nargs = argument_count();
844
GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
845
for (int j = 0; j < nargs; j++) {
846
if (is_oop_argument(j)) {
847
args->push(argument_oop(j));
849
args->push(argument(j));
852
int argslen = args->length();
853
if (_deps != nullptr && _deps->log() != nullptr) {
854
if (ciEnv::current() != nullptr) {
855
Dependencies::write_dependency_to(_deps->log(), type(), args, witness);
857
// Treat the CompileLog as an xmlstream instead
858
Dependencies::write_dependency_to((xmlStream*)_deps->log(), type(), args, witness);
861
Dependencies::write_dependency_to(xtty, type(), args, witness);
863
guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
866
void Dependencies::DepStream::print_dependency(outputStream* st, Klass* witness, bool verbose) {
868
int nargs = argument_count();
869
GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
870
for (int j = 0; j < nargs; j++) {
871
if (is_oop_argument(j)) {
872
args->push(argument_oop(j));
874
args->push(argument(j));
877
int argslen = args->length();
878
Dependencies::print_dependency(type(), args, witness, st);
880
if (_code != nullptr) {
881
st->print(" code: ");
882
_code->print_value_on(st);
886
guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
890
/// Dependency stream support (decodes dependencies from an nmethod):
893
void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
894
assert(must_be_in_vm(), "raw oops here");
895
_byte_limit = byte_limit;
896
_type = (DepType)(end_marker-1); // defeat "already at end" assert
897
assert((_code!=nullptr) + (_deps!=nullptr) == 1, "one or t'other");
901
bool Dependencies::DepStream::next() {
902
assert(_type != end_marker, "already at end");
903
if (_bytes.position() == 0 && _code != nullptr
904
&& _code->dependencies_size() == 0) {
905
// Method has no dependencies at all.
908
int code_byte = (_bytes.read_byte() & 0xFF);
909
if (code_byte == end_marker) {
910
DEBUG_ONLY(_type = end_marker);
913
int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
914
code_byte -= ctxk_bit;
915
DepType dept = (DepType)code_byte;
917
Dependencies::check_valid_dependency_type(dept);
918
int stride = _dep_args[dept];
919
assert(stride == dep_args(dept), "sanity");
922
skipj = 0; // currently the only context argument is at zero
923
assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
925
for (int j = 0; j < stride; j++) {
926
_xi[j] = (j == skipj)? 0: _bytes.read_int();
928
DEBUG_ONLY(_xi[stride] = -1); // help detect overruns
933
inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
934
Metadata* o = nullptr;
935
if (_code != nullptr) {
936
o = _code->metadata_at(i);
938
o = _deps->oop_recorder()->metadata_at(i);
943
inline oop Dependencies::DepStream::recorded_oop_at(int i) {
944
return (_code != nullptr)
946
: JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
949
Metadata* Dependencies::DepStream::argument(int i) {
950
Metadata* result = recorded_metadata_at(argument_index(i));
952
if (result == nullptr) { // Explicit context argument can be compressed
953
int ctxkj = dep_context_arg(type()); // -1 if no explicit context arg
954
if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
955
result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
959
assert(result == nullptr || result->is_klass() || result->is_method(), "must be");
964
* Returns a unique identifier for each dependency argument.
966
uintptr_t Dependencies::DepStream::get_identifier(int i) {
967
if (is_oop_argument(i)) {
968
return (uintptr_t)(oopDesc*)argument_oop(i);
970
return (uintptr_t)argument(i);
974
oop Dependencies::DepStream::argument_oop(int i) {
975
oop result = recorded_oop_at(argument_index(i));
976
assert(oopDesc::is_oop_or_null(result), "must be");
980
InstanceKlass* Dependencies::DepStream::context_type() {
981
assert(must_be_in_vm(), "raw oops here");
983
// Most dependencies have an explicit context type argument.
985
int ctxkj = dep_context_arg(type()); // -1 if no explicit context arg
987
Metadata* k = argument(ctxkj);
988
assert(k != nullptr && k->is_klass(), "type check");
989
return InstanceKlass::cast((Klass*)k);
993
// Some dependencies are using the klass of the first object
994
// argument as implicit context type.
996
int ctxkj = dep_implicit_context_arg(type());
998
Klass* k = argument_oop(ctxkj)->klass();
999
assert(k != nullptr, "type check");
1000
return InstanceKlass::cast(k);
1004
// And some dependencies don't have a context type at all,
1005
// e.g. evol_method.
1009
// ----------------- DependencySignature --------------------------------------
1010
bool DependencySignature::equals(DependencySignature const& s1, DependencySignature const& s2) {
1011
if ((s1.type() != s2.type()) || (s1.args_count() != s2.args_count())) {
1015
for (int i = 0; i < s1.args_count(); i++) {
1016
if (s1.arg(i) != s2.arg(i)) {
1023
/// Checking dependencies
1025
// This hierarchy walker inspects subtypes of a given type, trying to find a "bad" class which breaks a dependency.
1026
// Such a class is called a "witness" to the broken dependency.
1027
// While searching around, we ignore "participants", which are already known to the dependency.
1028
class AbstractClassHierarchyWalker {
1030
enum { PARTICIPANT_LIMIT = 3 };
1033
// if non-zero, tells how many witnesses to convert to participants
1034
uint _record_witnesses;
1036
// special classes which are not allowed to be witnesses:
1037
Klass* _participants[PARTICIPANT_LIMIT+1];
1038
uint _num_participants;
1041
uint _nof_requests; // one-shot walker
1044
static PerfCounter* _perf_find_witness_anywhere_calls_count;
1045
static PerfCounter* _perf_find_witness_anywhere_steps_count;
1046
static PerfCounter* _perf_find_witness_in_calls_count;
1049
virtual Klass* find_witness_in(KlassDepChange& changes) = 0;
1050
virtual Klass* find_witness_anywhere(InstanceKlass* context_type) = 0;
1052
AbstractClassHierarchyWalker(Klass* participant) : _record_witnesses(0), _num_participants(0)
1057
for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1058
_participants[i] = nullptr;
1060
if (participant != nullptr) {
1061
add_participant(participant);
1065
bool is_participant(Klass* k) {
1066
for (uint i = 0; i < _num_participants; i++) {
1067
if (_participants[i] == k) {
1074
bool record_witness(Klass* witness) {
1075
if (_record_witnesses > 0) {
1076
--_record_witnesses;
1077
add_participant(witness);
1078
return false; // not a witness
1080
return true; // is a witness
1084
class CountingClassHierarchyIterator : public ClassHierarchyIterator {
1088
CountingClassHierarchyIterator(InstanceKlass* root) : ClassHierarchyIterator(root), _nof_steps(0) {}
1092
ClassHierarchyIterator::next();
1095
~CountingClassHierarchyIterator() {
1097
_perf_find_witness_anywhere_steps_count->inc(_nof_steps);
1103
uint num_participants() { return _num_participants; }
1104
Klass* participant(uint n) {
1105
assert(n <= _num_participants, "oob");
1106
if (n < _num_participants) {
1107
return _participants[n];
1113
void add_participant(Klass* participant) {
1114
assert(!is_participant(participant), "sanity");
1115
assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
1116
uint np = _num_participants++;
1117
_participants[np] = participant;
1120
void record_witnesses(uint add) {
1121
if (add > PARTICIPANT_LIMIT) add = PARTICIPANT_LIMIT;
1122
assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
1123
_record_witnesses = add;
1126
Klass* find_witness(InstanceKlass* context_type, KlassDepChange* changes = nullptr);
1129
static void print_statistics();
1132
PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_calls_count = nullptr;
1133
PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_anywhere_steps_count = nullptr;
1134
PerfCounter* AbstractClassHierarchyWalker::_perf_find_witness_in_calls_count = nullptr;
1136
void AbstractClassHierarchyWalker::init() {
1139
_perf_find_witness_anywhere_calls_count =
1140
PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhere", PerfData::U_Events, CHECK);
1141
_perf_find_witness_anywhere_steps_count =
1142
PerfDataManager::create_counter(SUN_CI, "findWitnessAnywhereSteps", PerfData::U_Events, CHECK);
1143
_perf_find_witness_in_calls_count =
1144
PerfDataManager::create_counter(SUN_CI, "findWitnessIn", PerfData::U_Events, CHECK);
1148
Klass* AbstractClassHierarchyWalker::find_witness(InstanceKlass* context_type, KlassDepChange* changes) {
1149
// Current thread must be in VM (not native mode, as in CI):
1150
assert(must_be_in_vm(), "raw oops here");
1151
// Must not move the class hierarchy during this check:
1152
assert_locked_or_safepoint(Compile_lock);
1153
assert(_nof_requests++ == 0, "repeated requests are not supported");
1155
assert(changes == nullptr || changes->involves_context(context_type), "irrelevant dependency");
1157
// (Note: Interfaces do not have subclasses.)
1158
// If it is an interface, search its direct implementors.
1159
// (Their subclasses are additional indirect implementors. See InstanceKlass::add_implementor().)
1160
if (context_type->is_interface()) {
1161
int nof_impls = context_type->nof_implementors();
1162
if (nof_impls == 0) {
1163
return nullptr; // no implementors
1164
} else if (nof_impls == 1) { // unique implementor
1165
assert(context_type != context_type->implementor(), "not unique");
1166
context_type = context_type->implementor();
1167
} else { // nof_impls >= 2
1168
// Avoid this case: *I.m > { A.m, C }; B.m > C
1169
// Here, I.m has 2 concrete implementations, but m appears unique
1170
// as A.m, because the search misses B.m when checking C.
1171
// The inherited method B.m was getting missed by the walker
1172
// when interface 'I' was the starting point.
1173
// %%% Until this is fixed more systematically, bail out.
1174
return context_type;
1177
assert(!context_type->is_interface(), "no interfaces allowed");
1179
if (changes != nullptr) {
1181
_perf_find_witness_in_calls_count->inc();
1183
return find_witness_in(*changes);
1186
_perf_find_witness_anywhere_calls_count->inc();
1188
return find_witness_anywhere(context_type);
1192
class ConcreteSubtypeFinder : public AbstractClassHierarchyWalker {
1194
bool is_witness(Klass* k);
1197
virtual Klass* find_witness_in(KlassDepChange& changes);
1198
virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1201
ConcreteSubtypeFinder(Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) {}
1204
bool ConcreteSubtypeFinder::is_witness(Klass* k) {
1205
if (Dependencies::is_concrete_klass(k)) {
1206
return record_witness(k); // concrete subtype
1208
return false; // not a concrete class
1212
Klass* ConcreteSubtypeFinder::find_witness_in(KlassDepChange& changes) {
1213
// When looking for unexpected concrete types, do not look beneath expected ones:
1214
// * CX > CC > C' is OK, even if C' is new.
1215
// * CX > { CC, C' } is not OK if C' is new, and C' is the witness.
1216
Klass* new_type = changes.as_new_klass_change()->new_type();
1217
assert(!is_participant(new_type), "only old classes are participants");
1218
// If the new type is a subtype of a participant, we are done.
1219
for (uint i = 0; i < num_participants(); i++) {
1220
if (changes.involves_context(participant(i))) {
1221
// new guy is protected from this check by previous participant
1225
if (is_witness(new_type)) {
1228
// No witness found. The dependency remains unbroken.
1232
Klass* ConcreteSubtypeFinder::find_witness_anywhere(InstanceKlass* context_type) {
1233
for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1234
Klass* sub = iter.klass();
1235
// Do not report participant types.
1236
if (is_participant(sub)) {
1237
// Don't walk beneath a participant since it hides witnesses.
1238
iter.skip_subclasses();
1239
} else if (is_witness(sub)) {
1240
return sub; // found a witness
1243
// No witness found. The dependency remains unbroken.
1247
class ConcreteMethodFinder : public AbstractClassHierarchyWalker {
1252
// cache of method lookups
1253
Method* _found_methods[PARTICIPANT_LIMIT+1];
1255
bool is_witness(Klass* k);
1258
virtual Klass* find_witness_in(KlassDepChange& changes);
1259
virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1262
bool witnessed_reabstraction_in_supers(Klass* k);
1264
ConcreteMethodFinder(Method* m, Klass* participant = nullptr) : AbstractClassHierarchyWalker(participant) {
1265
assert(m != nullptr && m->is_method(), "sanity");
1267
_signature = m->signature();
1269
for (int i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1270
_found_methods[i] = nullptr;
1274
// Note: If n==num_participants, returns nullptr.
1275
Method* found_method(uint n) {
1276
assert(n <= num_participants(), "oob");
1277
Method* fm = _found_methods[n];
1278
assert(n == num_participants() || fm != nullptr, "proper usage");
1279
if (fm != nullptr && fm->method_holder() != participant(n)) {
1280
// Default methods from interfaces can be added to classes. In
1281
// that case the holder of the method is not the class but the
1282
// interface where it's defined.
1283
assert(fm->is_default_method(), "sanity");
1289
void add_participant(Klass* participant) {
1290
AbstractClassHierarchyWalker::add_participant(participant);
1291
_found_methods[num_participants()] = nullptr;
1294
bool record_witness(Klass* witness, Method* m) {
1295
_found_methods[num_participants()] = m;
1296
return AbstractClassHierarchyWalker::record_witness(witness);
1300
static PerfCounter* _perf_find_witness_anywhere_calls_count;
1301
static PerfCounter* _perf_find_witness_anywhere_steps_count;
1302
static PerfCounter* _perf_find_witness_in_calls_count;
1306
static void print_statistics();
1309
bool ConcreteMethodFinder::is_witness(Klass* k) {
1310
if (is_participant(k)) {
1311
return false; // do not report participant types
1313
if (k->is_instance_klass()) {
1314
InstanceKlass* ik = InstanceKlass::cast(k);
1315
// Search class hierarchy first, skipping private implementations
1316
// as they never override any inherited methods
1317
Method* m = ik->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1318
if (Dependencies::is_concrete_method(m, ik)) {
1319
return record_witness(k, m); // concrete method found
1321
// Check for re-abstraction of method
1322
if (!ik->is_interface() && m != nullptr && m->is_abstract()) {
1323
// Found a matching abstract method 'm' in the class hierarchy.
1324
// This is fine iff 'k' is an abstract class and all concrete subtypes
1325
// of 'k' override 'm' and are participates of the current search.
1326
ConcreteSubtypeFinder wf;
1327
for (uint i = 0; i < num_participants(); i++) {
1328
Klass* p = participant(i);
1329
wf.add_participant(p);
1331
Klass* w = wf.find_witness(ik);
1333
Method* wm = InstanceKlass::cast(w)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1334
if (!Dependencies::is_concrete_method(wm, w)) {
1335
// Found a concrete subtype 'w' which does not override abstract method 'm'.
1336
// Bail out because 'm' could be called with 'w' as receiver (leading to an
1337
// AbstractMethodError) and thus the method we are looking for is not unique.
1338
return record_witness(k, m);
1342
// Check interface defaults also, if any exist.
1343
Array<Method*>* default_methods = ik->default_methods();
1344
if (default_methods != nullptr) {
1345
Method* dm = ik->find_method(default_methods, _name, _signature);
1346
if (Dependencies::is_concrete_method(dm, nullptr)) {
1347
return record_witness(k, dm); // default method found
1350
return false; // no concrete method found
1353
return false; // no methods to find in an array type
1357
Klass* ConcreteMethodFinder::find_witness_in(KlassDepChange& changes) {
1358
// When looking for unexpected concrete methods, look beneath expected ones, to see if there are overrides.
1359
// * CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
1360
Klass* new_type = changes.as_new_klass_change()->new_type();
1361
assert(!is_participant(new_type), "only old classes are participants");
1362
if (is_witness(new_type)) {
1365
// No witness found, but is_witness() doesn't detect method re-abstraction in case of spot-checking.
1366
if (witnessed_reabstraction_in_supers(new_type)) {
1370
// No witness found. The dependency remains unbroken.
1374
bool ConcreteMethodFinder::witnessed_reabstraction_in_supers(Klass* k) {
1375
if (!k->is_instance_klass()) {
1376
return false; // no methods to find in an array type
1378
// Looking for a case when an abstract method is inherited into a concrete class.
1379
if (Dependencies::is_concrete_klass(k) && !k->is_interface()) {
1380
Method* m = InstanceKlass::cast(k)->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1382
return false; // no reabstraction possible: local method found
1384
for (InstanceKlass* super = k->java_super(); super != nullptr; super = super->java_super()) {
1385
m = super->find_instance_method(_name, _signature, Klass::PrivateLookupMode::skip);
1386
if (m != nullptr) { // inherited method found
1387
if (m->is_abstract() || m->is_overpass()) {
1388
return record_witness(super, m); // abstract method found
1401
Klass* ConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) {
1402
// Walk hierarchy under a context type, looking for unexpected types.
1403
for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1404
Klass* sub = iter.klass();
1405
if (is_witness(sub)) {
1406
return sub; // found a witness
1409
// No witness found. The dependency remains unbroken.
1413
// For some method m and some class ctxk (subclass of method holder),
1414
// enumerate all distinct overrides of m in concrete subclasses of ctxk.
1415
// It relies on vtable/itable information to perform method selection on each linked subclass
1416
// and ignores all non yet linked ones (speculatively treat them as "effectively abstract").
1417
class LinkedConcreteMethodFinder : public AbstractClassHierarchyWalker {
1419
InstanceKlass* _resolved_klass; // resolved class (JVMS-5.4.3.1)
1420
InstanceKlass* _declaring_klass; // the holder of resolved method (JVMS-5.4.3.3)
1421
int _vtable_index; // vtable/itable index of the resolved method
1422
bool _do_itable_lookup; // choose between itable and vtable lookup logic
1424
// cache of method lookups
1425
Method* _found_methods[PARTICIPANT_LIMIT+1];
1427
bool is_witness(Klass* k);
1428
Method* select_method(InstanceKlass* recv_klass);
1429
static int compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method, bool& is_itable_index);
1430
static bool is_concrete_klass(InstanceKlass* ik);
1432
void add_participant(Method* m, Klass* participant) {
1433
uint np = num_participants();
1434
AbstractClassHierarchyWalker::add_participant(participant);
1435
assert(np + 1 == num_participants(), "sanity");
1436
_found_methods[np] = m; // record the method for the participant
1439
bool record_witness(Klass* witness, Method* m) {
1440
for (uint i = 0; i < num_participants(); i++) {
1441
if (found_method(i) == m) {
1442
return false; // already recorded
1445
// Record not yet seen method.
1446
_found_methods[num_participants()] = m;
1447
return AbstractClassHierarchyWalker::record_witness(witness);
1450
void initialize(Method* participant) {
1451
for (uint i = 0; i < PARTICIPANT_LIMIT+1; i++) {
1452
_found_methods[i] = nullptr;
1454
if (participant != nullptr) {
1455
add_participant(participant, participant->method_holder());
1460
virtual Klass* find_witness_in(KlassDepChange& changes);
1461
virtual Klass* find_witness_anywhere(InstanceKlass* context_type);
1464
// In order to perform method selection, the following info is needed:
1465
// (1) interface or virtual call;
1466
// (2) vtable/itable index;
1467
// (3) declaring class (in case of interface call).
1469
// It is prepared based on the results of method resolution: resolved class and resolved method (as specified in JVMS-5.4.3.3).
1470
// Optionally, a method which was previously determined as a unique target (uniqm) is added as a participant
1471
// to enable dependency spot-checking and speed up the search.
1472
LinkedConcreteMethodFinder(InstanceKlass* resolved_klass, Method* resolved_method, Method* uniqm = nullptr) : AbstractClassHierarchyWalker(nullptr) {
1473
assert(resolved_klass->is_linked(), "required");
1474
assert(resolved_method->method_holder()->is_linked(), "required");
1475
assert(!resolved_method->can_be_statically_bound(), "no vtable index available");
1477
_resolved_klass = resolved_klass;
1478
_declaring_klass = resolved_method->method_holder();
1479
_vtable_index = compute_vtable_index(resolved_klass, resolved_method,
1480
_do_itable_lookup); // out parameter
1481
assert(_vtable_index >= 0, "invalid vtable index");
1486
// Note: If n==num_participants, returns nullptr.
1487
Method* found_method(uint n) {
1488
assert(n <= num_participants(), "oob");
1489
assert(participant(n) != nullptr || n == num_participants(), "proper usage");
1490
return _found_methods[n];
1494
Klass* LinkedConcreteMethodFinder::find_witness_in(KlassDepChange& changes) {
1495
Klass* type = changes.type();
1497
assert(!is_participant(type), "only old classes are participants");
1499
if (is_witness(type)) {
1502
return nullptr; // No witness found. The dependency remains unbroken.
1505
Klass* LinkedConcreteMethodFinder::find_witness_anywhere(InstanceKlass* context_type) {
1506
for (CountingClassHierarchyIterator iter(context_type); !iter.done(); iter.next()) {
1507
Klass* sub = iter.klass();
1508
if (is_witness(sub)) {
1511
if (sub->is_instance_klass() && !InstanceKlass::cast(sub)->is_linked()) {
1512
iter.skip_subclasses(); // ignore not yet linked classes
1515
return nullptr; // No witness found. The dependency remains unbroken.
1518
bool LinkedConcreteMethodFinder::is_witness(Klass* k) {
1519
if (is_participant(k)) {
1520
return false; // do not report participant types
1521
} else if (k->is_instance_klass()) {
1522
InstanceKlass* ik = InstanceKlass::cast(k);
1523
if (is_concrete_klass(ik)) {
1524
Method* m = select_method(ik);
1525
return record_witness(ik, m);
1527
return false; // ignore non-concrete holder class
1530
return false; // no methods to find in an array type
1534
Method* LinkedConcreteMethodFinder::select_method(InstanceKlass* recv_klass) {
1535
Method* selected_method = nullptr;
1536
if (_do_itable_lookup) {
1537
assert(_declaring_klass->is_interface(), "sanity");
1538
bool implements_interface; // initialized by method_at_itable_or_null()
1539
selected_method = recv_klass->method_at_itable_or_null(_declaring_klass, _vtable_index,
1540
implements_interface); // out parameter
1541
assert(implements_interface, "not implemented");
1543
selected_method = recv_klass->method_at_vtable(_vtable_index);
1545
return selected_method; // nullptr when corresponding slot is empty (AbstractMethodError case)
1548
int LinkedConcreteMethodFinder::compute_vtable_index(InstanceKlass* resolved_klass, Method* resolved_method,
1550
bool& is_itable_index) {
1551
if (resolved_klass->is_interface() && resolved_method->has_itable_index()) {
1552
is_itable_index = true;
1553
return resolved_method->itable_index();
1555
// Check for default or miranda method first.
1556
InstanceKlass* declaring_klass = resolved_method->method_holder();
1557
if (!resolved_klass->is_interface() && declaring_klass->is_interface()) {
1558
is_itable_index = false;
1559
return resolved_klass->vtable_index_of_interface_method(resolved_method);
1561
// At this point we are sure that resolved_method is virtual and not
1562
// a default or miranda method; therefore, it must have a valid vtable index.
1563
assert(resolved_method->has_vtable_index(), "");
1564
is_itable_index = false;
1565
return resolved_method->vtable_index();
1568
bool LinkedConcreteMethodFinder::is_concrete_klass(InstanceKlass* ik) {
1569
if (!Dependencies::is_concrete_klass(ik)) {
1570
return false; // not concrete
1572
if (ik->is_interface()) {
1573
return false; // interfaces aren't concrete
1575
if (!ik->is_linked()) {
1576
return false; // not yet linked classes don't have instances
1582
// Assert that m is inherited into ctxk, without intervening overrides.
1583
// (May return true even if this is not true, in corner cases where we punt.)
1584
bool Dependencies::verify_method_context(InstanceKlass* ctxk, Method* m) {
1585
if (m->is_private()) {
1586
return false; // Quick lose. Should not happen.
1588
if (m->method_holder() == ctxk) {
1589
return true; // Quick win.
1591
if (!(m->is_public() || m->is_protected())) {
1592
// The override story is complex when packages get involved.
1593
return true; // Must punt the assertion to true.
1595
Method* lm = ctxk->lookup_method(m->name(), m->signature());
1596
if (lm == nullptr) {
1597
// It might be an interface method
1598
lm = ctxk->lookup_method_in_ordered_interfaces(m->name(), m->signature());
1601
// Method m is inherited into ctxk.
1604
if (lm != nullptr) {
1605
if (!(lm->is_public() || lm->is_protected())) {
1606
// Method is [package-]private, so the override story is complex.
1607
return true; // Must punt the assertion to true.
1609
if (lm->is_static()) {
1610
// Static methods don't override non-static so punt
1613
if (!Dependencies::is_concrete_method(lm, ctxk) &&
1614
!Dependencies::is_concrete_method(m, ctxk)) {
1615
// They are both non-concrete
1616
if (lm->method_holder()->is_subtype_of(m->method_holder())) {
1617
// Method m is overridden by lm, but both are non-concrete.
1620
if (lm->method_holder()->is_interface() && m->method_holder()->is_interface() &&
1621
ctxk->is_subtype_of(m->method_holder()) && ctxk->is_subtype_of(lm->method_holder())) {
1622
// Interface method defined in multiple super interfaces
1628
tty->print_cr("Dependency method not found in the associated context:");
1629
tty->print_cr(" context = %s", ctxk->external_name());
1630
tty->print( " method = "); m->print_short_name(tty); tty->cr();
1631
if (lm != nullptr) {
1632
tty->print( " found = "); lm->print_short_name(tty); tty->cr();
1638
bool Dependencies::is_concrete_klass(Klass* k) {
1639
if (k->is_abstract()) return false;
1640
// %%% We could treat classes which are concrete but
1641
// have not yet been instantiated as virtually abstract.
1642
// This would require a deoptimization barrier on first instantiation.
1643
//if (k->is_not_instantiated()) return false;
1647
bool Dependencies::is_concrete_method(Method* m, Klass* k) {
1648
// nullptr is not a concrete method.
1652
// Statics are irrelevant to virtual call sites.
1653
if (m->is_static()) {
1656
// Abstract methods are not concrete.
1657
if (m->is_abstract()) {
1660
// Overpass (error) methods are not concrete if k is abstract.
1661
if (m->is_overpass() && k != nullptr) {
1662
return !k->is_abstract();
1664
// Note "true" is conservative answer: overpass clause is false if k == nullptr,
1665
// implies return true if answer depends on overpass clause.
1669
Klass* Dependencies::find_finalizable_subclass(InstanceKlass* ik) {
1670
for (ClassHierarchyIterator iter(ik); !iter.done(); iter.next()) {
1671
Klass* sub = iter.klass();
1672
if (sub->has_finalizer() && !sub->is_interface()) {
1676
return nullptr; // not found
1679
bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
1680
if (k->is_abstract()) return false;
1681
// We could also return false if k does not yet appear to be
1682
// instantiated, if the VM version supports this distinction also.
1683
//if (k->is_not_instantiated()) return false;
1687
bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
1688
return k->has_finalizable_subclass();
1691
// Any use of the contents (bytecodes) of a method must be
1692
// marked by an "evol_method" dependency, if those contents
1693
// can change. (Note: A method is always dependent on itself.)
1694
Klass* Dependencies::check_evol_method(Method* m) {
1695
assert(must_be_in_vm(), "raw oops here");
1696
// Did somebody do a JVMTI RedefineClasses while our backs were turned?
1697
// Or is there a now a breakpoint?
1698
// (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
1700
|| m->number_of_breakpoints() > 0) {
1701
return m->method_holder();
1707
// This is a strong assertion: It is that the given type
1708
// has no subtypes whatever. It is most useful for
1709
// optimizing checks on reflected types or on array types.
1710
// (Checks on types which are derived from real instances
1711
// can be optimized more strongly than this, because we
1712
// know that the checked type comes from a concrete type,
1713
// and therefore we can disregard abstract types.)
1714
Klass* Dependencies::check_leaf_type(InstanceKlass* ctxk) {
1715
assert(must_be_in_vm(), "raw oops here");
1716
assert_locked_or_safepoint(Compile_lock);
1717
Klass* sub = ctxk->subklass();
1718
if (sub != nullptr) {
1720
} else if (ctxk->nof_implementors() != 0) {
1721
// if it is an interface, it must be unimplemented
1722
// (if it is not an interface, nof_implementors is always zero)
1723
InstanceKlass* impl = ctxk->implementor();
1724
assert(impl != nullptr, "must be set");
1731
// Test the assertion that conck is the only concrete subtype* of ctxk.
1732
// The type conck itself is allowed to have have further concrete subtypes.
1733
// This allows the compiler to narrow occurrences of ctxk by conck,
1734
// when dealing with the types of actual instances.
1735
Klass* Dependencies::check_abstract_with_unique_concrete_subtype(InstanceKlass* ctxk,
1737
NewKlassDepChange* changes) {
1738
ConcreteSubtypeFinder wf(conck);
1739
Klass* k = wf.find_witness(ctxk, changes);
1744
// Find the unique concrete proper subtype of ctxk, or nullptr if there
1745
// is more than one concrete proper subtype. If there are no concrete
1746
// proper subtypes, return ctxk itself, whether it is concrete or not.
1747
// The returned subtype is allowed to have have further concrete subtypes.
1748
// That is, return CC1 for CX > CC1 > CC2, but nullptr for CX > { CC1, CC2 }.
1749
Klass* Dependencies::find_unique_concrete_subtype(InstanceKlass* ctxk) {
1750
ConcreteSubtypeFinder wf(ctxk); // Ignore ctxk when walking.
1751
wf.record_witnesses(1); // Record one other witness when walking.
1752
Klass* wit = wf.find_witness(ctxk);
1753
if (wit != nullptr) return nullptr; // Too many witnesses.
1754
Klass* conck = wf.participant(0);
1755
if (conck == nullptr) {
1756
return ctxk; // Return ctxk as a flag for "no subtypes".
1759
// Make sure the dependency mechanism will pass this discovery:
1760
if (VerifyDependencies) {
1761
// Turn off dependency tracing while actually testing deps.
1762
FlagSetting fs(_verify_in_progress, true);
1763
if (!Dependencies::is_concrete_klass(ctxk)) {
1764
guarantee(nullptr == (void *)
1765
check_abstract_with_unique_concrete_subtype(ctxk, conck),
1774
// Try to determine whether root method in some context is concrete or not based on the information about the unique method
1775
// in that context. It exploits the fact that concrete root method is always inherited into the context when there's a unique method.
1776
// Hence, unique method holder is always a supertype of the context class when root method is concrete.
1777
// Examples for concrete_root_method
1780
// CX (ctxk) uniqm is inherited into context.
1782
// CX (ctxk) (CX.m uniqm) here uniqm is defined in ctxk.
1783
// Examples for !concrete_root_method
1786
// C (C.m uniqm) uniqm is in subtype of ctxk.
1787
bool Dependencies::is_concrete_root_method(Method* uniqm, InstanceKlass* ctxk) {
1788
if (uniqm == nullptr) {
1789
return false; // match Dependencies::is_concrete_method() behavior
1791
// Theoretically, the "direction" of subtype check matters here.
1792
// On one hand, in case of interface context with a single implementor, uniqm can be in a superclass of the implementor which
1793
// is not related to context class.
1794
// On another hand, uniqm could come from an interface unrelated to the context class, but right now it is not possible:
1795
// it is required that uniqm->method_holder() is the participant (uniqm->method_holder() <: ctxk), hence a default method
1796
// can't be used as unique.
1797
if (ctxk->is_interface()) {
1798
InstanceKlass* implementor = ctxk->implementor();
1799
assert(implementor != ctxk, "single implementor only"); // should have been invalidated earlier
1802
InstanceKlass* holder = uniqm->method_holder();
1803
assert(!holder->is_interface(), "no default methods allowed");
1804
assert(ctxk->is_subclass_of(holder) || holder->is_subclass_of(ctxk), "not related");
1805
return ctxk->is_subclass_of(holder);
1808
// If a class (or interface) has a unique concrete method uniqm, return nullptr.
1809
// Otherwise, return a class that contains an interfering method.
1810
Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk,
1812
NewKlassDepChange* changes) {
1813
ConcreteMethodFinder wf(uniqm, uniqm->method_holder());
1814
Klass* k = wf.find_witness(ctxk, changes);
1818
if (!Dependencies::is_concrete_root_method(uniqm, ctxk) || changes != nullptr) {
1819
Klass* conck = find_witness_AME(ctxk, uniqm, changes);
1820
if (conck != nullptr) {
1821
// Found a concrete subtype 'conck' which does not override abstract root method.
1828
Klass* Dependencies::check_unique_implementor(InstanceKlass* ctxk, Klass* uniqk, NewKlassDepChange* changes) {
1829
assert(ctxk->is_interface(), "sanity");
1830
assert(ctxk->nof_implementors() > 0, "no implementors");
1831
if (ctxk->nof_implementors() == 1) {
1832
assert(ctxk->implementor() == uniqk, "sanity");
1835
return ctxk; // no unique implementor
1839
// There are two version of checks.
1840
// 1) Spot checking version(Classload time). Newly added class is checked for AME.
1841
// Checks whether abstract/overpass method is inherited into/declared in newly added concrete class.
1842
// 2) Compile time analysis for abstract/overpass(abstract klass) root_m. The non uniqm subtrees are checked for concrete classes.
1843
Klass* Dependencies::find_witness_AME(InstanceKlass* ctxk, Method* m, KlassDepChange* changes) {
1845
if (changes != nullptr) {
1846
// Spot checking version.
1847
ConcreteMethodFinder wf(m);
1848
Klass* new_type = changes->as_new_klass_change()->new_type();
1849
if (wf.witnessed_reabstraction_in_supers(new_type)) {
1853
// Note: It is required that uniqm->method_holder() is the participant (see ClassHierarchyWalker::found_method()).
1854
ConcreteSubtypeFinder wf(m->method_holder());
1855
Klass* conck = wf.find_witness(ctxk);
1856
if (conck != nullptr) {
1857
Method* cm = InstanceKlass::cast(conck)->find_instance_method(m->name(), m->signature(), Klass::PrivateLookupMode::skip);
1858
if (!Dependencies::is_concrete_method(cm, conck)) {
1867
// This function is used by find_unique_concrete_method(non vtable based)
1868
// to check whether subtype method overrides the base method.
1869
static bool overrides(Method* sub_m, Method* base_m) {
1870
assert(base_m != nullptr, "base method should be non null");
1871
if (sub_m == nullptr) {
1875
* If base_m is public or protected then sub_m always overrides.
1876
* If base_m is !public, !protected and !private (i.e. base_m is package private)
1877
* then sub_m should be in the same package as that of base_m.
1878
* For package private base_m this is conservative approach as it allows only subset of all allowed cases in
1879
* the jvm specification.
1881
if (base_m->is_public() || base_m->is_protected() ||
1882
base_m->method_holder()->is_same_class_package(sub_m->method_holder())) {
1888
// Find the set of all non-abstract methods under ctxk that match m.
1889
// (The method m must be defined or inherited in ctxk.)
1890
// Include m itself in the set, unless it is abstract.
1891
// If this set has exactly one element, return that element.
1892
Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass** participant) {
1893
// Return nullptr if m is marked old; must have been a redefined method.
1897
if (m->is_default_method()) {
1898
return nullptr; // not supported
1900
assert(verify_method_context(ctxk, m), "proper context");
1901
ConcreteMethodFinder wf(m);
1902
wf.record_witnesses(1);
1903
Klass* wit = wf.find_witness(ctxk);
1904
if (wit != nullptr) return nullptr; // Too many witnesses.
1905
Method* fm = wf.found_method(0); // Will be nullptr if num_parts == 0.
1906
if (participant != nullptr) {
1907
(*participant) = wf.participant(0);
1909
if (!Dependencies::is_concrete_method(fm, nullptr)) {
1910
fm = nullptr; // ignore abstract methods
1912
if (Dependencies::is_concrete_method(m, ctxk)) {
1913
if (fm == nullptr) {
1914
// It turns out that m was always the only implementation.
1916
} else if (fm != m) {
1917
// Two conflicting implementations after all.
1918
// (This can happen if m is inherited into ctxk and fm overrides it.)
1921
} else if (Dependencies::find_witness_AME(ctxk, fm) != nullptr) {
1922
// Found a concrete subtype which does not override abstract root method.
1924
} else if (!overrides(fm, m)) {
1925
// Found method doesn't override abstract root method.
1928
assert(Dependencies::is_concrete_root_method(fm, ctxk) == Dependencies::is_concrete_method(m, ctxk), "mismatch");
1930
// Make sure the dependency mechanism will pass this discovery:
1931
if (VerifyDependencies && fm != nullptr) {
1932
guarantee(nullptr == (void *)check_unique_concrete_method(ctxk, fm),
1939
// If a class (or interface) has a unique concrete method uniqm, return nullptr.
1940
// Otherwise, return a class that contains an interfering method.
1941
Klass* Dependencies::check_unique_concrete_method(InstanceKlass* ctxk,
1943
Klass* resolved_klass,
1944
Method* resolved_method,
1945
KlassDepChange* changes) {
1946
assert(!ctxk->is_interface() || ctxk == resolved_klass, "sanity");
1947
assert(!resolved_method->can_be_statically_bound() || resolved_method == uniqm, "sanity");
1948
assert(resolved_klass->is_subtype_of(resolved_method->method_holder()), "sanity");
1950
if (!InstanceKlass::cast(resolved_klass)->is_linked() ||
1951
!resolved_method->method_holder()->is_linked() ||
1952
resolved_method->can_be_statically_bound()) {
1953
// Dependency is redundant, but benign. Just keep it to avoid unnecessary recompilation.
1954
return nullptr; // no vtable index available
1957
LinkedConcreteMethodFinder mf(InstanceKlass::cast(resolved_klass), resolved_method, uniqm);
1958
return mf.find_witness(ctxk, changes);
1961
// Find the set of all non-abstract methods under ctxk that match m.
1962
// (The method m must be defined or inherited in ctxk.)
1963
// Include m itself in the set, unless it is abstract.
1964
// If this set has exactly one element, return that element.
1965
// Not yet linked subclasses of ctxk are ignored since they don't have any instances yet.
1966
// Additionally, resolved_klass and resolved_method complete the description of the call site being analyzed.
1967
Method* Dependencies::find_unique_concrete_method(InstanceKlass* ctxk, Method* m, Klass* resolved_klass, Method* resolved_method) {
1968
// Return nullptr if m is marked old; must have been a redefined method.
1972
if (!InstanceKlass::cast(resolved_klass)->is_linked() ||
1973
!resolved_method->method_holder()->is_linked() ||
1974
resolved_method->can_be_statically_bound()) {
1975
return m; // nothing to do: no witness under ctxk
1977
LinkedConcreteMethodFinder wf(InstanceKlass::cast(resolved_klass), resolved_method);
1978
assert(Dependencies::verify_method_context(ctxk, m), "proper context");
1979
wf.record_witnesses(1);
1980
Klass* wit = wf.find_witness(ctxk);
1981
if (wit != nullptr) {
1982
return nullptr; // Too many witnesses.
1984
// p == nullptr when no participants are found (wf.num_participants() == 0).
1985
// fm == nullptr case has 2 meanings:
1986
// * when p == nullptr: no method found;
1987
// * when p != nullptr: AbstractMethodError-throwing method found.
1988
// Also, found method should always be accompanied by a participant class.
1989
Klass* p = wf.participant(0);
1990
Method* fm = wf.found_method(0);
1991
assert(fm == nullptr || p != nullptr, "no participant");
1992
// Normalize all error-throwing cases to nullptr.
1993
if (fm == Universe::throw_illegal_access_error() ||
1994
fm == Universe::throw_no_such_method_error() ||
1995
!Dependencies::is_concrete_method(fm, p)) {
1996
fm = nullptr; // error-throwing method
1998
if (Dependencies::is_concrete_method(m, ctxk)) {
2000
// It turns out that m was always the only implementation.
2001
assert(fm == nullptr, "sanity");
2006
// Make sure the dependency mechanism will pass this discovery:
2007
if (VerifyDependencies && fm != nullptr) {
2008
guarantee(nullptr == check_unique_concrete_method(ctxk, fm, resolved_klass, resolved_method),
2012
assert(fm == nullptr || !fm->is_abstract(), "sanity");
2013
// Old CHA conservatively reports concrete methods in abstract classes
2014
// irrespective of whether they have concrete subclasses or not.
2015
// Also, abstract root method case is not fully supported.
2017
Klass* uniqp = nullptr;
2018
Method* uniqm = Dependencies::find_unique_concrete_method(ctxk, m, &uniqp);
2019
assert(uniqm == nullptr || uniqm == fm ||
2021
uniqm->method_holder()->is_abstract() ||
2022
(fm == nullptr && uniqm != nullptr && uniqp != nullptr && !InstanceKlass::cast(uniqp)->is_linked()),
2028
Klass* Dependencies::check_has_no_finalizable_subclasses(InstanceKlass* ctxk, NewKlassDepChange* changes) {
2029
InstanceKlass* search_at = ctxk;
2030
if (changes != nullptr) {
2031
search_at = changes->new_type(); // just look at the new bit
2033
return find_finalizable_subclass(search_at);
2036
Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
2037
assert(call_site != nullptr, "sanity");
2038
assert(method_handle != nullptr, "sanity");
2039
assert(call_site->is_a(vmClasses::CallSite_klass()), "sanity");
2041
if (changes == nullptr) {
2042
// Validate all CallSites
2043
if (java_lang_invoke_CallSite::target(call_site) != method_handle)
2044
return call_site->klass(); // assertion failed
2046
// Validate the given CallSite
2047
if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
2048
assert(method_handle != changes->method_handle(), "must be");
2049
return call_site->klass(); // assertion failed
2052
return nullptr; // assertion still valid
2055
void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
2056
if (_verify_in_progress) return; // don't log
2057
if (witness != nullptr) {
2058
LogTarget(Debug, dependencies) lt;
2059
if (lt.is_enabled()) {
2061
print_dependency(&ls, witness, /*verbose=*/ true);
2063
// The following is a no-op unless logging is enabled:
2064
log_dependency(witness);
2068
Klass* Dependencies::DepStream::check_new_klass_dependency(NewKlassDepChange* changes) {
2069
assert_locked_or_safepoint(Compile_lock);
2070
Dependencies::check_valid_dependency_type(type());
2072
Klass* witness = nullptr;
2075
witness = check_evol_method(method_argument(0));
2078
witness = check_leaf_type(context_type());
2080
case abstract_with_unique_concrete_subtype:
2081
witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
2083
case unique_concrete_method_2:
2084
witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
2086
case unique_concrete_method_4:
2087
witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes);
2089
case unique_implementor:
2090
witness = check_unique_implementor(context_type(), type_argument(1), changes);
2092
case no_finalizable_subclasses:
2093
witness = check_has_no_finalizable_subclasses(context_type(), changes);
2099
trace_and_log_witness(witness);
2103
Klass* Dependencies::DepStream::check_klass_init_dependency(KlassInitDepChange* changes) {
2104
assert_locked_or_safepoint(Compile_lock);
2105
Dependencies::check_valid_dependency_type(type());
2107
// No new types added. Only unique_concrete_method_4 is sensitive to class initialization changes.
2108
Klass* witness = nullptr;
2110
case unique_concrete_method_4:
2111
witness = check_unique_concrete_method(context_type(), method_argument(1), type_argument(2), method_argument(3), changes);
2117
trace_and_log_witness(witness);
2121
Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
2122
assert_locked_or_safepoint(Compile_lock);
2123
Dependencies::check_valid_dependency_type(type());
2125
if (changes != nullptr) {
2126
if (changes->is_klass_init_change()) {
2127
return check_klass_init_dependency(changes->as_klass_init_change());
2129
return check_new_klass_dependency(changes->as_new_klass_change());
2132
Klass* witness = check_new_klass_dependency(nullptr);
2133
// check_klass_init_dependency duplicates check_new_klass_dependency checks when class hierarchy change info is absent.
2134
assert(witness != nullptr || check_klass_init_dependency(nullptr) == nullptr, "missed dependency");
2139
Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
2140
assert_locked_or_safepoint(Compile_lock);
2141
Dependencies::check_valid_dependency_type(type());
2143
Klass* witness = nullptr;
2145
case call_site_target_value:
2146
witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
2152
trace_and_log_witness(witness);
2157
Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
2158
// Handle klass dependency
2159
if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
2160
return check_klass_dependency(changes.as_klass_change());
2162
// Handle CallSite dependency
2163
if (changes.is_call_site_change())
2164
return check_call_site_dependency(changes.as_call_site_change());
2166
// irrelevant dependency; skip it
2171
void DepChange::print() { print_on(tty); }
2173
void DepChange::print_on(outputStream* st) {
2174
int nsup = 0, nint = 0;
2175
for (ContextStream str(*this); str.next(); ) {
2176
InstanceKlass* k = str.klass();
2177
switch (str.change_type()) {
2178
case Change_new_type:
2179
st->print_cr(" dependee = %s", k->external_name());
2181
case Change_new_sub:
2185
st->print_cr(" context super = %s", k->external_name());
2188
case Change_new_impl:
2192
st->print_cr(" context interface = %s", k->external_name());
2199
if (nsup + nint != 0) {
2200
st->print_cr(" context supers = %d, interfaces = %d", nsup, nint);
2204
void DepChange::ContextStream::start() {
2205
InstanceKlass* type = (_changes.is_klass_change() ? _changes.as_klass_change()->type() : (InstanceKlass*) nullptr);
2206
_change_type = (type == nullptr ? NO_CHANGE : Start_Klass);
2213
bool DepChange::ContextStream::next() {
2214
switch (_change_type) {
2215
case Start_Klass: // initial state; _klass is the new type
2216
_ti_base = _klass->transitive_interfaces();
2218
_change_type = Change_new_type;
2220
case Change_new_type:
2222
_change_type = Change_new_sub;
2223
case Change_new_sub:
2224
// 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
2226
_klass = _klass->java_super();
2227
if (_klass != nullptr) {
2231
// else set up _ti_limit and fall through:
2232
_ti_limit = (_ti_base == nullptr) ? 0 : _ti_base->length();
2233
_change_type = Change_new_impl;
2234
case Change_new_impl:
2235
if (_ti_index < _ti_limit) {
2236
_klass = _ti_base->at(_ti_index++);
2240
_change_type = NO_CHANGE; // iterator is exhausted
2244
ShouldNotReachHere();
2249
void KlassDepChange::initialize() {
2250
// entire transaction must be under this lock:
2251
assert_lock_strong(Compile_lock);
2253
// Mark all dependee and all its superclasses
2254
// Mark transitive interfaces
2255
for (ContextStream str(*this); str.next(); ) {
2256
InstanceKlass* d = str.klass();
2257
assert(!d->is_marked_dependent(), "checking");
2258
d->set_is_marked_dependent(true);
2262
KlassDepChange::~KlassDepChange() {
2263
// Unmark all dependee and all its superclasses
2264
// Unmark transitive interfaces
2265
for (ContextStream str(*this); str.next(); ) {
2266
InstanceKlass* d = str.klass();
2267
d->set_is_marked_dependent(false);
2271
bool KlassDepChange::involves_context(Klass* k) {
2272
if (k == nullptr || !k->is_instance_klass()) {
2275
InstanceKlass* ik = InstanceKlass::cast(k);
2276
bool is_contained = ik->is_marked_dependent();
2277
assert(is_contained == type()->is_subtype_of(k),
2278
"correct marking of potential context types");
2279
return is_contained;
2282
void Dependencies::print_statistics() {
2283
AbstractClassHierarchyWalker::print_statistics();
2286
void AbstractClassHierarchyWalker::print_statistics() {
2288
jlong deps_find_witness_calls = _perf_find_witness_anywhere_calls_count->get_value();
2289
jlong deps_find_witness_steps = _perf_find_witness_anywhere_steps_count->get_value();
2290
jlong deps_find_witness_singles = _perf_find_witness_in_calls_count->get_value();
2293
tty->print_cr("Dependency check (find_witness) "
2294
"calls=" JLONG_FORMAT ", steps=" JLONG_FORMAT " (avg=%.1f), singles=" JLONG_FORMAT,
2295
deps_find_witness_calls,
2296
deps_find_witness_steps,
2297
(double)deps_find_witness_steps / deps_find_witness_calls,
2298
deps_find_witness_singles);
2299
if (xtty != nullptr) {
2300
xtty->elem("deps_find_witness calls='" JLONG_FORMAT "' steps='" JLONG_FORMAT "' singles='" JLONG_FORMAT "'",
2301
deps_find_witness_calls,
2302
deps_find_witness_steps,
2303
deps_find_witness_singles);
2308
CallSiteDepChange::CallSiteDepChange(Handle call_site, Handle method_handle) :
2309
_call_site(call_site),
2310
_method_handle(method_handle) {
2311
assert(_call_site()->is_a(vmClasses::CallSite_klass()), "must be");
2312
assert(_method_handle.is_null() || _method_handle()->is_a(vmClasses::MethodHandle_klass()), "must be");
2315
void dependencies_init() {
2316
AbstractClassHierarchyWalker::init();