jdk

Форк
0
/
dict2.cpp 
356 строк · 14.2 Кб
1
/*
2
 * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
 *
5
 * This code is free software; you can redistribute it and/or modify it
6
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.
8
 *
9
 * This code is distributed in the hope that it will be useful, but WITHOUT
10
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12
 * version 2 for more details (a copy is included in the LICENSE file that
13
 * accompanied this code).
14
 *
15
 * You should have received a copy of the GNU General Public License version
16
 * 2 along with this work; if not, write to the Free Software Foundation,
17
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
 *
19
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
 * or visit www.oracle.com if you need additional information or have any
21
 * questions.
22
 *
23
 */
24

25
// Dictionaries - An Abstract Data Type
26

27
#include "adlc.hpp"
28

29
// #include "dict.hpp"
30

31

32
//------------------------------data-----------------------------------------
33
// String hash tables
34
#define MAXID 20
35
static char initflag = 0;       // True after 1st initialization
36
static char shft[MAXID + 1] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7};
37
static short xsum[MAXID];
38

39
//------------------------------bucket---------------------------------------
40
class bucket {
41
public:
42
  int          _cnt, _max;      // Size of bucket
43
  const void **_keyvals;        // Array of keys and values
44
};
45

46
//------------------------------Dict-----------------------------------------
47
// The dictionary is kept has a hash table.  The hash table is a even power
48
// of two, for nice modulo operations.  Each bucket in the hash table points
49
// to a linear list of key-value pairs; each key & value is just a (void *).
50
// The list starts with a count.  A hash lookup finds the list head, then a
51
// simple linear scan finds the key.  If the table gets too full, it's
52
// doubled in size; the total amount of EXTRA times all hash functions are
53
// computed for the doubling is no more than the current size - thus the
54
// doubling in size costs no more than a constant factor in speed.
55
Dict::Dict(CmpKey initcmp, Hash inithash) : _hash(inithash), _cmp(initcmp), _arena(nullptr) {
56
  init();
57
}
58

59
Dict::Dict(CmpKey initcmp, Hash inithash, AdlArena *arena) : _hash(inithash), _cmp(initcmp), _arena(arena) {
60
  init();
61
}
62

63
void Dict::init() {
64
  int i;
65

66
  // Precompute table of null character hashes
67
  if (!initflag) {              // Not initializated yet?
68
    xsum[0] = (short) ((1 << shft[0]) + 1);  // Initialize
69
    for( i = 1; i < MAXID; i++) {
70
      xsum[i] = (short) ((1 << shft[i]) + 1 + xsum[i-1]);
71
    }
72
    initflag = 1;               // Never again
73
  }
74

75
  _size = 16;                   // Size is a power of 2
76
  _cnt = 0;                     // Dictionary is empty
77
  _bin = (bucket*)_arena->AmallocWords(sizeof(bucket) * _size);
78
  memset(_bin, 0, sizeof(bucket) * _size);
79
}
80

81
//------------------------------~Dict------------------------------------------
82
// Delete an existing dictionary.
83
Dict::~Dict() {
84
}
85

86
//------------------------------Clear----------------------------------------
87
// Zap to empty; ready for re-use
88
void Dict::Clear() {
89
  _cnt = 0;                     // Empty contents
90
  for( int i=0; i<_size; i++ )
91
    _bin[i]._cnt = 0;           // Empty buckets, but leave allocated
92
  // Leave _size & _bin alone, under the assumption that dictionary will
93
  // grow to this size again.
94
}
95

96
//------------------------------doubhash---------------------------------------
97
// Double hash table size.  If can't do so, just suffer.  If can, then run
98
// thru old hash table, moving things to new table.  Note that since hash
99
// table doubled, exactly 1 new bit is exposed in the mask - so everything
100
// in the old table ends up on 1 of two lists in the new table; a hi and a
101
// lo list depending on the value of the bit.
102
void Dict::doubhash(void) {
103
  int oldsize = _size;
104
  _size <<= 1;                  // Double in size
105
  _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*oldsize, sizeof(bucket)*_size );
106
  memset( &_bin[oldsize], 0, oldsize*sizeof(bucket) );
107
  // Rehash things to spread into new table
108
  for( int i=0; i < oldsize; i++) { // For complete OLD table do
109
    bucket *b = &_bin[i];       // Handy shortcut for _bin[i]
110
    if( !b->_keyvals ) continue;        // Skip empties fast
111

112
    bucket *nb = &_bin[i+oldsize];  // New bucket shortcut
113
    int j = b->_max;                // Trim new bucket to nearest power of 2
114
    while( j > b->_cnt ) j >>= 1;   // above old bucket _cnt
115
    if( !j ) j = 1;             // Handle zero-sized buckets
116
    nb->_max = j<<1;
117
    // Allocate worst case space for key-value pairs
118
    nb->_keyvals = (const void**)_arena->AmallocWords( sizeof(void *)*nb->_max*2 );
119
    int nbcnt = 0;
120

121
    for( j=0; j<b->_cnt; j++ ) {  // Rehash all keys in this bucket
122
      const void *key = b->_keyvals[j+j];
123
      if( (_hash( key ) & (_size-1)) != i ) { // Moving to hi bucket?
124
        nb->_keyvals[nbcnt+nbcnt] = key;
125
        nb->_keyvals[nbcnt+nbcnt+1] = b->_keyvals[j+j+1];
126
        nb->_cnt = nbcnt = nbcnt+1;
127
        b->_cnt--;              // Remove key/value from lo bucket
128
        b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
129
        b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
130
        j--;                    // Hash compacted element also
131
      }
132
    } // End of for all key-value pairs in bucket
133
  } // End of for all buckets
134

135

136
}
137

138
//------------------------------Dict-----------------------------------------
139
// Deep copy a dictionary.
140
Dict::Dict( const Dict &d ) : _size(d._size), _cnt(d._cnt), _hash(d._hash),_cmp(d._cmp), _arena(d._arena) {
141
  _bin = (bucket*)_arena->AmallocWords(sizeof(bucket)*_size);
142
  memcpy( _bin, d._bin, sizeof(bucket)*_size );
143
  for( int i=0; i<_size; i++ ) {
144
    if( !_bin[i]._keyvals ) continue;
145
    _bin[i]._keyvals=(const void**)_arena->AmallocWords( sizeof(void *)*_bin[i]._max*2);
146
    memcpy( _bin[i]._keyvals, d._bin[i]._keyvals,_bin[i]._cnt*2*sizeof(void*));
147
  }
148
}
149

150
//------------------------------Dict-----------------------------------------
151
// Deep copy a dictionary.
152
Dict &Dict::operator =( const Dict &d ) {
153
  if( _size < d._size ) {       // If must have more buckets
154
    _arena = d._arena;
155
    _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*_size, sizeof(bucket)*d._size );
156
    memset( &_bin[_size], 0, (d._size-_size)*sizeof(bucket) );
157
    _size = d._size;
158
  }
159
  for( int i=0; i<_size; i++ ) // All buckets are empty
160
    _bin[i]._cnt = 0;           // But leave bucket allocations alone
161
  _cnt = d._cnt;
162
  *(Hash*)(&_hash) = d._hash;
163
  *(CmpKey*)(&_cmp) = d._cmp;
164
  for(int k=0; k<_size; k++ ) {
165
    bucket *b = &d._bin[k];     // Shortcut to source bucket
166
    for( int j=0; j<b->_cnt; j++ )
167
      Insert( b->_keyvals[j+j], b->_keyvals[j+j+1] );
168
  }
169
  return *this;
170
}
171

172
//------------------------------Insert---------------------------------------
173
// Insert or replace a key/value pair in the given dictionary.  If the
174
// dictionary is too full, it's size is doubled.  The prior value being
175
// replaced is returned (null if this is a 1st insertion of that key).  If
176
// an old value is found, it's swapped with the prior key-value pair on the
177
// list.  This moves a commonly searched-for value towards the list head.
178
const void *Dict::Insert(const void *key, const void *val) {
179
  int hash = _hash( key );      // Get hash key
180
  int i = hash & (_size-1);     // Get hash key, corrected for size
181
  bucket *b = &_bin[i];         // Handy shortcut
182
  for( int j=0; j<b->_cnt; j++ )
183
    if( !_cmp(key,b->_keyvals[j+j]) ) {
184
      const void *prior = b->_keyvals[j+j+1];
185
      b->_keyvals[j+j  ] = key; // Insert current key-value
186
      b->_keyvals[j+j+1] = val;
187
      return prior;             // Return prior
188
    }
189

190
  if( ++_cnt > _size ) {        // Hash table is full
191
    doubhash();                 // Grow whole table if too full
192
    i = hash & (_size-1);       // Rehash
193
    b = &_bin[i];               // Handy shortcut
194
  }
195
  if( b->_cnt == b->_max ) {    // Must grow bucket?
196
    if( !b->_keyvals ) {
197
      b->_max = 2;              // Initial bucket size
198
      b->_keyvals = (const void**)_arena->AmallocWords( sizeof(void *)*b->_max*2 );
199
    } else {
200
      b->_keyvals = (const void**)_arena->Arealloc( b->_keyvals, sizeof(void *)*b->_max*2, sizeof(void *)*b->_max*4 );
201
      b->_max <<= 1;            // Double bucket
202
    }
203
  }
204
  b->_keyvals[b->_cnt+b->_cnt  ] = key;
205
  b->_keyvals[b->_cnt+b->_cnt+1] = val;
206
  b->_cnt++;
207
  return nullptr;               // Nothing found prior
208
}
209

210
//------------------------------Delete---------------------------------------
211
// Find & remove a value from dictionary. Return old value.
212
const void *Dict::Delete(void *key) {
213
  int i = _hash( key ) & (_size-1);     // Get hash key, corrected for size
214
  bucket *b = &_bin[i];         // Handy shortcut
215
  for( int j=0; j<b->_cnt; j++ )
216
    if( !_cmp(key,b->_keyvals[j+j]) ) {
217
      const void *prior = b->_keyvals[j+j+1];
218
      b->_cnt--;                // Remove key/value from lo bucket
219
      b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
220
      b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
221
      _cnt--;                   // One less thing in table
222
      return prior;
223
    }
224
  return nullptr;
225
}
226

227
//------------------------------FindDict-------------------------------------
228
// Find a key-value pair in the given dictionary.  If not found, return null.
229
// If found, move key-value pair towards head of list.
230
const void *Dict::operator [](const void *key) const {
231
  int i = _hash( key ) & (_size-1);     // Get hash key, corrected for size
232
  bucket *b = &_bin[i];         // Handy shortcut
233
  for( int j=0; j<b->_cnt; j++ )
234
    if( !_cmp(key,b->_keyvals[j+j]) )
235
      return b->_keyvals[j+j+1];
236
  return nullptr;
237
}
238

239
//------------------------------CmpDict--------------------------------------
240
// CmpDict compares two dictionaries; they must have the same keys (their
241
// keys must match using CmpKey) and they must have the same values (pointer
242
// comparison).  If so 1 is returned, if not 0 is returned.
243
int Dict::operator ==(const Dict &d2) const {
244
  if( _cnt != d2._cnt ) return 0;
245
  if( _hash != d2._hash ) return 0;
246
  if( _cmp != d2._cmp ) return 0;
247
  for( int i=0; i < _size; i++) {       // For complete hash table do
248
    bucket *b = &_bin[i];       // Handy shortcut
249
    if( b->_cnt != d2._bin[i]._cnt ) return 0;
250
    if( memcmp(b->_keyvals, d2._bin[i]._keyvals, b->_cnt*2*sizeof(void*) ) )
251
      return 0;                 // Key-value pairs must match
252
  }
253
  return 1;                     // All match, is OK
254
}
255

256

257
//------------------------------print----------------------------------------
258
static void printvoid(const void* x) { printf("%p", x);  }
259
void Dict::print() {
260
  print(printvoid, printvoid);
261
}
262
void Dict::print(PrintKeyOrValue print_key, PrintKeyOrValue print_value) {
263
  for( int i=0; i < _size; i++) {       // For complete hash table do
264
    bucket *b = &_bin[i];       // Handy shortcut
265
    for( int j=0; j<b->_cnt; j++ ) {
266
      print_key(  b->_keyvals[j+j  ]);
267
      printf(" -> ");
268
      print_value(b->_keyvals[j+j+1]);
269
      printf("\n");
270
    }
271
  }
272
}
273

274
//------------------------------Hashing Functions----------------------------
275
// Convert string to hash key.  This algorithm implements a universal hash
276
// function with the multipliers frozen (ok, so it's not universal).  The
277
// multipliers (and allowable characters) are all odd, so the resultant sum
278
// is odd - guaranteed not divisible by any power of two, so the hash tables
279
// can be any power of two with good results.  Also, I choose multipliers
280
// that have only 2 bits set (the low is always set to be odd) so
281
// multiplication requires only shifts and adds.  Characters are required to
282
// be in the range 0-127 (I double & add 1 to force oddness).  Keys are
283
// limited to MAXID characters in length.  Experimental evidence on 150K of
284
// C text shows excellent spreading of values for any size hash table.
285
int hashstr(const void *t) {
286
  char c, k = 0;
287
  int sum = 0;
288
  const char *s = (const char *)t;
289

290
  while (((c = s[k]) != '\0') && (k < MAXID-1)) { // Get characters till nul
291
    c = (char) ((c << 1) + 1);    // Characters are always odd!
292
    sum += c + (c << shft[k++]);  // Universal hash function
293
  }
294
  assert(k < (MAXID), "Exceeded maximum name length");
295
  return (int)((sum+xsum[k]) >> 1); // Hash key, un-modulo'd table size
296
}
297

298
//------------------------------hashptr--------------------------------------
299
// Slimey cheap hash function; no guaranteed performance.  Better than the
300
// default for pointers, especially on MS-DOS machines.
301
int hashptr(const void *key) {
302
#ifdef __TURBOC__
303
    return (int)((intptr_t)key >> 16);
304
#else  // __TURBOC__
305
    return (int)((intptr_t)key >> 2);
306
#endif
307
}
308

309
// Slimey cheap hash function; no guaranteed performance.
310
int hashkey(const void *key) {
311
  return (int)((intptr_t)key);
312
}
313

314
//------------------------------Key Comparator Functions---------------------
315
int cmpstr(const void *k1, const void *k2) {
316
  return strcmp((const char *)k1,(const char *)k2);
317
}
318

319
// Cheap key comparator.
320
int cmpkey(const void *key1, const void *key2) {
321
  if (key1 == key2) return 0;
322
  intptr_t delta = (intptr_t)key1 - (intptr_t)key2;
323
  if (delta > 0) return 1;
324
  return -1;
325
}
326

327
//=============================================================================
328
//------------------------------reset------------------------------------------
329
// Create an iterator and initialize the first variables.
330
void DictI::reset( const Dict *dict ) {
331
  _d = dict;                    // The dictionary
332
  _i = (int)-1;         // Before the first bin
333
  _j = 0;                       // Nothing left in the current bin
334
  ++(*this);                    // Step to first real value
335
}
336

337
//------------------------------next-------------------------------------------
338
// Find the next key-value pair in the dictionary, or return a null key and
339
// value.
340
void DictI::operator ++(void) {
341
  if( _j-- ) {                  // Still working in current bin?
342
    _key   = _d->_bin[_i]._keyvals[_j+_j];
343
    _value = _d->_bin[_i]._keyvals[_j+_j+1];
344
    return;
345
  }
346

347
  while( ++_i < _d->_size ) {   // Else scan for non-zero bucket
348
    _j = _d->_bin[_i]._cnt;
349
    if( !_j ) continue;
350
    _j--;
351
    _key   = _d->_bin[_i]._keyvals[_j+_j];
352
    _value = _d->_bin[_i]._keyvals[_j+_j+1];
353
    return;
354
  }
355
  _key = _value = nullptr;
356
}
357

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.