jdk

Форк
0
/
os_bsd_x86.cpp 
919 строк · 33.1 Кб
1
/*
2
 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
3
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
 *
5
 * This code is free software; you can redistribute it and/or modify it
6
 * under the terms of the GNU General Public License version 2 only, as
7
 * published by the Free Software Foundation.
8
 *
9
 * This code is distributed in the hope that it will be useful, but WITHOUT
10
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12
 * version 2 for more details (a copy is included in the LICENSE file that
13
 * accompanied this code).
14
 *
15
 * You should have received a copy of the GNU General Public License version
16
 * 2 along with this work; if not, write to the Free Software Foundation,
17
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
 *
19
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
 * or visit www.oracle.com if you need additional information or have any
21
 * questions.
22
 *
23
 */
24

25
// no precompiled headers
26
#include "asm/macroAssembler.hpp"
27
#include "classfile/vmSymbols.hpp"
28
#include "code/codeCache.hpp"
29
#include "code/vtableStubs.hpp"
30
#include "interpreter/interpreter.hpp"
31
#include "jvm.h"
32
#include "logging/log.hpp"
33
#include "memory/allocation.inline.hpp"
34
#include "os_bsd.hpp"
35
#include "os_posix.hpp"
36
#include "prims/jniFastGetField.hpp"
37
#include "prims/jvm_misc.hpp"
38
#include "runtime/arguments.hpp"
39
#include "runtime/frame.inline.hpp"
40
#include "runtime/interfaceSupport.inline.hpp"
41
#include "runtime/java.hpp"
42
#include "runtime/javaCalls.hpp"
43
#include "runtime/javaThread.hpp"
44
#include "runtime/mutexLocker.hpp"
45
#include "runtime/osThread.hpp"
46
#include "runtime/safepointMechanism.hpp"
47
#include "runtime/sharedRuntime.hpp"
48
#include "runtime/stubRoutines.hpp"
49
#include "runtime/timer.hpp"
50
#include "signals_posix.hpp"
51
#include "utilities/align.hpp"
52
#include "utilities/events.hpp"
53
#include "utilities/vmError.hpp"
54

55
// put OS-includes here
56
# include <sys/types.h>
57
# include <sys/mman.h>
58
# include <pthread.h>
59
# include <signal.h>
60
# include <errno.h>
61
# include <dlfcn.h>
62
# include <stdlib.h>
63
# include <stdio.h>
64
# include <unistd.h>
65
# include <sys/resource.h>
66
# include <sys/stat.h>
67
# include <sys/time.h>
68
# include <sys/utsname.h>
69
# include <sys/socket.h>
70
# include <sys/wait.h>
71
# include <pwd.h>
72
# include <poll.h>
73
#ifndef __OpenBSD__
74
# include <ucontext.h>
75
#endif
76

77
#if !defined(__APPLE__) && !defined(__NetBSD__)
78
# include <pthread_np.h>
79
#endif
80

81
// needed by current_stack_base_and_size() workaround for Mavericks
82
#if defined(__APPLE__)
83
# include <errno.h>
84
# include <sys/types.h>
85
# include <sys/sysctl.h>
86
# define DEFAULT_MAIN_THREAD_STACK_PAGES 2048
87
# define OS_X_10_9_0_KERNEL_MAJOR_VERSION 13
88
#endif
89

90
#ifdef AMD64
91
#define SPELL_REG_SP "rsp"
92
#define SPELL_REG_FP "rbp"
93
#else
94
#define SPELL_REG_SP "esp"
95
#define SPELL_REG_FP "ebp"
96
#endif // AMD64
97

98
#ifdef __FreeBSD__
99
# define context_trapno uc_mcontext.mc_trapno
100
# ifdef AMD64
101
#  define context_pc uc_mcontext.mc_rip
102
#  define context_sp uc_mcontext.mc_rsp
103
#  define context_fp uc_mcontext.mc_rbp
104
#  define context_rip uc_mcontext.mc_rip
105
#  define context_rsp uc_mcontext.mc_rsp
106
#  define context_rbp uc_mcontext.mc_rbp
107
#  define context_rax uc_mcontext.mc_rax
108
#  define context_rbx uc_mcontext.mc_rbx
109
#  define context_rcx uc_mcontext.mc_rcx
110
#  define context_rdx uc_mcontext.mc_rdx
111
#  define context_rsi uc_mcontext.mc_rsi
112
#  define context_rdi uc_mcontext.mc_rdi
113
#  define context_r8  uc_mcontext.mc_r8
114
#  define context_r9  uc_mcontext.mc_r9
115
#  define context_r10 uc_mcontext.mc_r10
116
#  define context_r11 uc_mcontext.mc_r11
117
#  define context_r12 uc_mcontext.mc_r12
118
#  define context_r13 uc_mcontext.mc_r13
119
#  define context_r14 uc_mcontext.mc_r14
120
#  define context_r15 uc_mcontext.mc_r15
121
#  define context_flags uc_mcontext.mc_flags
122
#  define context_err uc_mcontext.mc_err
123
# else
124
#  define context_pc uc_mcontext.mc_eip
125
#  define context_sp uc_mcontext.mc_esp
126
#  define context_fp uc_mcontext.mc_ebp
127
#  define context_eip uc_mcontext.mc_eip
128
#  define context_esp uc_mcontext.mc_esp
129
#  define context_eax uc_mcontext.mc_eax
130
#  define context_ebx uc_mcontext.mc_ebx
131
#  define context_ecx uc_mcontext.mc_ecx
132
#  define context_edx uc_mcontext.mc_edx
133
#  define context_ebp uc_mcontext.mc_ebp
134
#  define context_esi uc_mcontext.mc_esi
135
#  define context_edi uc_mcontext.mc_edi
136
#  define context_eflags uc_mcontext.mc_eflags
137
#  define context_trapno uc_mcontext.mc_trapno
138
# endif
139
#endif
140

141
#ifdef __APPLE__
142
# if __DARWIN_UNIX03 && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5)
143
  // 10.5 UNIX03 member name prefixes
144
  #define DU3_PREFIX(s, m) __ ## s.__ ## m
145
# else
146
  #define DU3_PREFIX(s, m) s ## . ## m
147
# endif
148

149
# ifdef AMD64
150
#  define context_pc context_rip
151
#  define context_sp context_rsp
152
#  define context_fp context_rbp
153
#  define context_rip uc_mcontext->DU3_PREFIX(ss,rip)
154
#  define context_rsp uc_mcontext->DU3_PREFIX(ss,rsp)
155
#  define context_rax uc_mcontext->DU3_PREFIX(ss,rax)
156
#  define context_rbx uc_mcontext->DU3_PREFIX(ss,rbx)
157
#  define context_rcx uc_mcontext->DU3_PREFIX(ss,rcx)
158
#  define context_rdx uc_mcontext->DU3_PREFIX(ss,rdx)
159
#  define context_rbp uc_mcontext->DU3_PREFIX(ss,rbp)
160
#  define context_rsi uc_mcontext->DU3_PREFIX(ss,rsi)
161
#  define context_rdi uc_mcontext->DU3_PREFIX(ss,rdi)
162
#  define context_r8  uc_mcontext->DU3_PREFIX(ss,r8)
163
#  define context_r9  uc_mcontext->DU3_PREFIX(ss,r9)
164
#  define context_r10 uc_mcontext->DU3_PREFIX(ss,r10)
165
#  define context_r11 uc_mcontext->DU3_PREFIX(ss,r11)
166
#  define context_r12 uc_mcontext->DU3_PREFIX(ss,r12)
167
#  define context_r13 uc_mcontext->DU3_PREFIX(ss,r13)
168
#  define context_r14 uc_mcontext->DU3_PREFIX(ss,r14)
169
#  define context_r15 uc_mcontext->DU3_PREFIX(ss,r15)
170
#  define context_flags uc_mcontext->DU3_PREFIX(ss,rflags)
171
#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
172
#  define context_err uc_mcontext->DU3_PREFIX(es,err)
173
# else
174
#  define context_pc context_eip
175
#  define context_sp context_esp
176
#  define context_fp context_ebp
177
#  define context_eip uc_mcontext->DU3_PREFIX(ss,eip)
178
#  define context_esp uc_mcontext->DU3_PREFIX(ss,esp)
179
#  define context_eax uc_mcontext->DU3_PREFIX(ss,eax)
180
#  define context_ebx uc_mcontext->DU3_PREFIX(ss,ebx)
181
#  define context_ecx uc_mcontext->DU3_PREFIX(ss,ecx)
182
#  define context_edx uc_mcontext->DU3_PREFIX(ss,edx)
183
#  define context_ebp uc_mcontext->DU3_PREFIX(ss,ebp)
184
#  define context_esi uc_mcontext->DU3_PREFIX(ss,esi)
185
#  define context_edi uc_mcontext->DU3_PREFIX(ss,edi)
186
#  define context_eflags uc_mcontext->DU3_PREFIX(ss,eflags)
187
#  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
188
# endif
189
#endif
190

191
#ifdef __OpenBSD__
192
# define context_trapno sc_trapno
193
# ifdef AMD64
194
#  define context_pc sc_rip
195
#  define context_sp sc_rsp
196
#  define context_fp sc_rbp
197
#  define context_rip sc_rip
198
#  define context_rsp sc_rsp
199
#  define context_rbp sc_rbp
200
#  define context_rax sc_rax
201
#  define context_rbx sc_rbx
202
#  define context_rcx sc_rcx
203
#  define context_rdx sc_rdx
204
#  define context_rsi sc_rsi
205
#  define context_rdi sc_rdi
206
#  define context_r8  sc_r8
207
#  define context_r9  sc_r9
208
#  define context_r10 sc_r10
209
#  define context_r11 sc_r11
210
#  define context_r12 sc_r12
211
#  define context_r13 sc_r13
212
#  define context_r14 sc_r14
213
#  define context_r15 sc_r15
214
#  define context_flags sc_rflags
215
#  define context_err sc_err
216
# else
217
#  define context_pc sc_eip
218
#  define context_sp sc_esp
219
#  define context_fp sc_ebp
220
#  define context_eip sc_eip
221
#  define context_esp sc_esp
222
#  define context_eax sc_eax
223
#  define context_ebx sc_ebx
224
#  define context_ecx sc_ecx
225
#  define context_edx sc_edx
226
#  define context_ebp sc_ebp
227
#  define context_esi sc_esi
228
#  define context_edi sc_edi
229
#  define context_eflags sc_eflags
230
#  define context_trapno sc_trapno
231
# endif
232
#endif
233

234
#ifdef __NetBSD__
235
# define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
236
# ifdef AMD64
237
#  define __register_t __greg_t
238
#  define context_pc uc_mcontext.__gregs[_REG_RIP]
239
#  define context_sp uc_mcontext.__gregs[_REG_URSP]
240
#  define context_fp uc_mcontext.__gregs[_REG_RBP]
241
#  define context_rip uc_mcontext.__gregs[_REG_RIP]
242
#  define context_rsp uc_mcontext.__gregs[_REG_URSP]
243
#  define context_rax uc_mcontext.__gregs[_REG_RAX]
244
#  define context_rbx uc_mcontext.__gregs[_REG_RBX]
245
#  define context_rcx uc_mcontext.__gregs[_REG_RCX]
246
#  define context_rdx uc_mcontext.__gregs[_REG_RDX]
247
#  define context_rbp uc_mcontext.__gregs[_REG_RBP]
248
#  define context_rsi uc_mcontext.__gregs[_REG_RSI]
249
#  define context_rdi uc_mcontext.__gregs[_REG_RDI]
250
#  define context_r8  uc_mcontext.__gregs[_REG_R8]
251
#  define context_r9  uc_mcontext.__gregs[_REG_R9]
252
#  define context_r10 uc_mcontext.__gregs[_REG_R10]
253
#  define context_r11 uc_mcontext.__gregs[_REG_R11]
254
#  define context_r12 uc_mcontext.__gregs[_REG_R12]
255
#  define context_r13 uc_mcontext.__gregs[_REG_R13]
256
#  define context_r14 uc_mcontext.__gregs[_REG_R14]
257
#  define context_r15 uc_mcontext.__gregs[_REG_R15]
258
#  define context_flags uc_mcontext.__gregs[_REG_RFL]
259
#  define context_err uc_mcontext.__gregs[_REG_ERR]
260
# else
261
#  define context_pc uc_mcontext.__gregs[_REG_EIP]
262
#  define context_sp uc_mcontext.__gregs[_REG_UESP]
263
#  define context_fp uc_mcontext.__gregs[_REG_EBP]
264
#  define context_eip uc_mcontext.__gregs[_REG_EIP]
265
#  define context_esp uc_mcontext.__gregs[_REG_UESP]
266
#  define context_eax uc_mcontext.__gregs[_REG_EAX]
267
#  define context_ebx uc_mcontext.__gregs[_REG_EBX]
268
#  define context_ecx uc_mcontext.__gregs[_REG_ECX]
269
#  define context_edx uc_mcontext.__gregs[_REG_EDX]
270
#  define context_ebp uc_mcontext.__gregs[_REG_EBP]
271
#  define context_esi uc_mcontext.__gregs[_REG_ESI]
272
#  define context_edi uc_mcontext.__gregs[_REG_EDI]
273
#  define context_eflags uc_mcontext.__gregs[_REG_EFL]
274
#  define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
275
# endif
276
#endif
277

278
address os::current_stack_pointer() {
279
#if defined(__clang__) || defined(__llvm__)
280
  void *esp;
281
  __asm__("mov %%" SPELL_REG_SP ", %0":"=r"(esp));
282
  return (address) esp;
283
#else
284
  register void *esp __asm__ (SPELL_REG_SP);
285
  return (address) esp;
286
#endif
287
}
288

289
char* os::non_memory_address_word() {
290
  // Must never look like an address returned by reserve_memory,
291
  // even in its subfields (as defined by the CPU immediate fields,
292
  // if the CPU splits constants across multiple instructions).
293

294
  return (char*) -1;
295
}
296

297
address os::Posix::ucontext_get_pc(const ucontext_t * uc) {
298
  return (address)uc->context_pc;
299
}
300

301
void os::Posix::ucontext_set_pc(ucontext_t * uc, address pc) {
302
  uc->context_pc = (intptr_t)pc ;
303
}
304

305
intptr_t* os::Bsd::ucontext_get_sp(const ucontext_t * uc) {
306
  return (intptr_t*)uc->context_sp;
307
}
308

309
intptr_t* os::Bsd::ucontext_get_fp(const ucontext_t * uc) {
310
  return (intptr_t*)uc->context_fp;
311
}
312

313
address os::fetch_frame_from_context(const void* ucVoid,
314
                    intptr_t** ret_sp, intptr_t** ret_fp) {
315

316
  address  epc;
317
  const ucontext_t* uc = (const ucontext_t*)ucVoid;
318

319
  if (uc != nullptr) {
320
    epc = os::Posix::ucontext_get_pc(uc);
321
    if (ret_sp) *ret_sp = os::Bsd::ucontext_get_sp(uc);
322
    if (ret_fp) *ret_fp = os::Bsd::ucontext_get_fp(uc);
323
  } else {
324
    epc = nullptr;
325
    if (ret_sp) *ret_sp = (intptr_t *)nullptr;
326
    if (ret_fp) *ret_fp = (intptr_t *)nullptr;
327
  }
328

329
  return epc;
330
}
331

332
frame os::fetch_frame_from_context(const void* ucVoid) {
333
  intptr_t* sp;
334
  intptr_t* fp;
335
  address epc = fetch_frame_from_context(ucVoid, &sp, &fp);
336
  return frame(sp, fp, epc);
337
}
338

339
frame os::fetch_compiled_frame_from_context(const void* ucVoid) {
340
  const ucontext_t* uc = (const ucontext_t*)ucVoid;
341
  frame fr = os::fetch_frame_from_context(uc);
342
  // in compiled code, the stack banging is performed just after the return pc
343
  // has been pushed on the stack
344
  return frame(fr.sp() + 1, fr.fp(), (address)*(fr.sp()));
345
}
346

347
// By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
348
// turned off by -fomit-frame-pointer,
349
frame os::get_sender_for_C_frame(frame* fr) {
350
  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
351
}
352

353
static intptr_t* _get_previous_fp() {
354
#if defined(__clang__) || defined(__llvm__)
355
  intptr_t **ebp;
356
  __asm__("mov %%" SPELL_REG_FP ", %0":"=r"(ebp));
357
#else
358
  register intptr_t **ebp __asm__ (SPELL_REG_FP);
359
#endif
360
  // ebp is for this frame (_get_previous_fp). We want the ebp for the
361
  // caller of os::current_frame*(), so go up two frames. However, for
362
  // optimized builds, _get_previous_fp() will be inlined, so only go
363
  // up 1 frame in that case.
364
#ifdef _NMT_NOINLINE_
365
  return **(intptr_t***)ebp;
366
#else
367
  return *ebp;
368
#endif
369
}
370

371

372
frame os::current_frame() {
373
  intptr_t* fp = _get_previous_fp();
374
  frame myframe((intptr_t*)os::current_stack_pointer(),
375
                (intptr_t*)fp,
376
                CAST_FROM_FN_PTR(address, os::current_frame));
377
  if (os::is_first_C_frame(&myframe)) {
378
    // stack is not walkable
379
    return frame();
380
  } else {
381
    return os::get_sender_for_C_frame(&myframe);
382
  }
383
}
384

385
// From IA32 System Programming Guide
386
enum {
387
  trap_page_fault = 0xE
388
};
389

390
bool PosixSignals::pd_hotspot_signal_handler(int sig, siginfo_t* info,
391
                                             ucontext_t* uc, JavaThread* thread) {
392
  // decide if this trap can be handled by a stub
393
  address stub = nullptr;
394

395
  address pc          = nullptr;
396

397
  //%note os_trap_1
398
  if (info != nullptr && uc != nullptr && thread != nullptr) {
399
    pc = (address) os::Posix::ucontext_get_pc(uc);
400

401
    // Handle ALL stack overflow variations here
402
    if (sig == SIGSEGV || sig == SIGBUS) {
403
      address addr = (address) info->si_addr;
404

405
      // check if fault address is within thread stack
406
      if (thread->is_in_full_stack(addr)) {
407
        // stack overflow
408
        if (os::Posix::handle_stack_overflow(thread, addr, pc, uc, &stub)) {
409
          return true; // continue
410
        }
411
      }
412
    }
413

414
    if ((sig == SIGSEGV || sig == SIGBUS) && VM_Version::is_cpuinfo_segv_addr(pc)) {
415
      // Verify that OS save/restore AVX registers.
416
      stub = VM_Version::cpuinfo_cont_addr();
417
    }
418

419
#if !defined(PRODUCT) && defined(_LP64)
420
    if ((sig == SIGSEGV || sig == SIGBUS) && VM_Version::is_cpuinfo_segv_addr_apx(pc)) {
421
      // Verify that OS save/restore APX registers.
422
      stub = VM_Version::cpuinfo_cont_addr_apx();
423
      VM_Version::clear_apx_test_state();
424
    }
425
#endif
426

427
    // We test if stub is already set (by the stack overflow code
428
    // above) so it is not overwritten by the code that follows. This
429
    // check is not required on other platforms, because on other
430
    // platforms we check for SIGSEGV only or SIGBUS only, where here
431
    // we have to check for both SIGSEGV and SIGBUS.
432
    if (thread->thread_state() == _thread_in_Java && stub == nullptr) {
433
      // Java thread running in Java code => find exception handler if any
434
      // a fault inside compiled code, the interpreter, or a stub
435

436
      if ((sig == SIGSEGV || sig == SIGBUS) && SafepointMechanism::is_poll_address((address)info->si_addr)) {
437
        stub = SharedRuntime::get_poll_stub(pc);
438
#if defined(__APPLE__)
439
      // 32-bit Darwin reports a SIGBUS for nearly all memory access exceptions.
440
      // 64-bit Darwin may also use a SIGBUS (seen with compressed oops).
441
      // Catching SIGBUS here prevents the implicit SIGBUS null check below from
442
      // being called, so only do so if the implicit null check is not necessary.
443
      } else if (sig == SIGBUS && !MacroAssembler::uses_implicit_null_check(info->si_addr)) {
444
#else
445
      } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
446
#endif
447
        // BugId 4454115: A read from a MappedByteBuffer can fault
448
        // here if the underlying file has been truncated.
449
        // Do not crash the VM in such a case.
450
        CodeBlob* cb = CodeCache::find_blob(pc);
451
        nmethod* nm = (cb != nullptr) ? cb->as_nmethod_or_null() : nullptr;
452
        bool is_unsafe_memory_access = thread->doing_unsafe_access() && UnsafeMemoryAccess::contains_pc(pc);
453
        if ((nm != nullptr && nm->has_unsafe_access()) || is_unsafe_memory_access) {
454
          address next_pc = Assembler::locate_next_instruction(pc);
455
          if (is_unsafe_memory_access) {
456
            next_pc = UnsafeMemoryAccess::page_error_continue_pc(pc);
457
          }
458
          stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
459
        }
460
      } else
461
#ifdef AMD64
462
      if (sig == SIGFPE &&
463
          (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV
464
           // Workaround for macOS ARM incorrectly reporting FPE_FLTINV for "div by 0"
465
           // instead of the expected FPE_FLTDIV when running x86_64 binary under Rosetta emulation
466
           MACOS_ONLY(|| (VM_Version::is_cpu_emulated() && info->si_code == FPE_FLTINV)))) {
467
        stub =
468
          SharedRuntime::
469
          continuation_for_implicit_exception(thread,
470
                                              pc,
471
                                              SharedRuntime::
472
                                              IMPLICIT_DIVIDE_BY_ZERO);
473
#ifdef __APPLE__
474
      } else if (sig == SIGFPE && info->si_code == FPE_NOOP) {
475
        int op = pc[0];
476

477
        // Skip REX
478
        if ((pc[0] & 0xf0) == 0x40) {
479
          op = pc[1];
480
        } else {
481
          op = pc[0];
482
        }
483

484
        // Check for IDIV
485
        if (op == 0xF7) {
486
          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO);
487
        } else {
488
          // TODO: handle more cases if we are using other x86 instructions
489
          //   that can generate SIGFPE signal.
490
          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
491
          fatal("please update this code.");
492
        }
493
#endif /* __APPLE__ */
494

495
#else
496
      if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
497
        // HACK: si_code does not work on bsd 2.2.12-20!!!
498
        int op = pc[0];
499
        if (op == 0xDB) {
500
          // FIST
501
          // TODO: The encoding of D2I in x86_32.ad can cause an exception
502
          // prior to the fist instruction if there was an invalid operation
503
          // pending. We want to dismiss that exception. From the win_32
504
          // side it also seems that if it really was the fist causing
505
          // the exception that we do the d2i by hand with different
506
          // rounding. Seems kind of weird.
507
          // NOTE: that we take the exception at the NEXT floating point instruction.
508
          assert(pc[0] == 0xDB, "not a FIST opcode");
509
          assert(pc[1] == 0x14, "not a FIST opcode");
510
          assert(pc[2] == 0x24, "not a FIST opcode");
511
          return true;
512
        } else if (op == 0xF7) {
513
          // IDIV
514
          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
515
        } else {
516
          // TODO: handle more cases if we are using other x86 instructions
517
          //   that can generate SIGFPE signal on bsd.
518
          tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
519
          fatal("please update this code.");
520
        }
521
#endif // AMD64
522
      } else if ((sig == SIGSEGV || sig == SIGBUS) &&
523
                 MacroAssembler::uses_implicit_null_check(info->si_addr)) {
524
          // Determination of interpreter/vtable stub/compiled code null exception
525
          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
526
      }
527
    } else if ((thread->thread_state() == _thread_in_vm ||
528
                thread->thread_state() == _thread_in_native) &&
529
               sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
530
               thread->doing_unsafe_access()) {
531
        address next_pc = Assembler::locate_next_instruction(pc);
532
        if (UnsafeMemoryAccess::contains_pc(pc)) {
533
          next_pc = UnsafeMemoryAccess::page_error_continue_pc(pc);
534
        }
535
        stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
536
    }
537

538
    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
539
    // and the heap gets shrunk before the field access.
540
    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
541
      address addr = JNI_FastGetField::find_slowcase_pc(pc);
542
      if (addr != (address)-1) {
543
        stub = addr;
544
      }
545
    }
546
  }
547

548
#ifndef AMD64
549
  // Execution protection violation
550
  //
551
  // This should be kept as the last step in the triage.  We don't
552
  // have a dedicated trap number for a no-execute fault, so be
553
  // conservative and allow other handlers the first shot.
554
  //
555
  // Note: We don't test that info->si_code == SEGV_ACCERR here.
556
  // this si_code is so generic that it is almost meaningless; and
557
  // the si_code for this condition may change in the future.
558
  // Furthermore, a false-positive should be harmless.
559
  if (UnguardOnExecutionViolation > 0 &&
560
      stub == nullptr &&
561
      (sig == SIGSEGV || sig == SIGBUS) &&
562
      uc->context_trapno == trap_page_fault) {
563
    size_t page_size = os::vm_page_size();
564
    address addr = (address) info->si_addr;
565
    address pc = os::Posix::ucontext_get_pc(uc);
566
    // Make sure the pc and the faulting address are sane.
567
    //
568
    // If an instruction spans a page boundary, and the page containing
569
    // the beginning of the instruction is executable but the following
570
    // page is not, the pc and the faulting address might be slightly
571
    // different - we still want to unguard the 2nd page in this case.
572
    //
573
    // 15 bytes seems to be a (very) safe value for max instruction size.
574
    bool pc_is_near_addr =
575
      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
576
    bool instr_spans_page_boundary =
577
      (align_down((intptr_t) pc ^ (intptr_t) addr,
578
                       (intptr_t) page_size) > 0);
579

580
    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
581
      static volatile address last_addr =
582
        (address) os::non_memory_address_word();
583

584
      // In conservative mode, don't unguard unless the address is in the VM
585
      if (addr != last_addr &&
586
          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
587

588
        // Set memory to RWX and retry
589
        address page_start = align_down(addr, page_size);
590
        bool res = os::protect_memory((char*) page_start, page_size,
591
                                      os::MEM_PROT_RWX);
592

593
        log_debug(os)("Execution protection violation "
594
                      "at " INTPTR_FORMAT
595
                      ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
596
                      p2i(page_start), (res ? "success" : "failed"), errno);
597
        stub = pc;
598

599
        // Set last_addr so if we fault again at the same address, we don't end
600
        // up in an endless loop.
601
        //
602
        // There are two potential complications here.  Two threads trapping at
603
        // the same address at the same time could cause one of the threads to
604
        // think it already unguarded, and abort the VM.  Likely very rare.
605
        //
606
        // The other race involves two threads alternately trapping at
607
        // different addresses and failing to unguard the page, resulting in
608
        // an endless loop.  This condition is probably even more unlikely than
609
        // the first.
610
        //
611
        // Although both cases could be avoided by using locks or thread local
612
        // last_addr, these solutions are unnecessary complication: this
613
        // handler is a best-effort safety net, not a complete solution.  It is
614
        // disabled by default and should only be used as a workaround in case
615
        // we missed any no-execute-unsafe VM code.
616

617
        last_addr = addr;
618
      }
619
    }
620
  }
621
#endif // !AMD64
622

623
  if (stub != nullptr) {
624
    // save all thread context in case we need to restore it
625
    if (thread != nullptr) thread->set_saved_exception_pc(pc);
626

627
    os::Posix::ucontext_set_pc(uc, stub);
628
    return true;
629
  }
630

631
  return false;
632
}
633

634
// From solaris_i486.s ported to bsd_i486.s
635
extern "C" void fixcw();
636

637
void os::Bsd::init_thread_fpu_state(void) {
638
#ifndef AMD64
639
  // Set fpu to 53 bit precision. This happens too early to use a stub.
640
  fixcw();
641
#endif // !AMD64
642
}
643

644
juint os::cpu_microcode_revision() {
645
  juint result = 0;
646
  char data[8];
647
  size_t sz = sizeof(data);
648
  int ret = sysctlbyname("machdep.cpu.microcode_version", data, &sz, nullptr, 0);
649
  if (ret == 0) {
650
    if (sz == 4) result = *((juint*)data);
651
    if (sz == 8) result = *((juint*)data + 1); // upper 32-bits
652
  }
653
  return result;
654
}
655

656
////////////////////////////////////////////////////////////////////////////////
657
// thread stack
658

659
// Minimum usable stack sizes required to get to user code. Space for
660
// HotSpot guard pages is added later.
661
size_t os::_compiler_thread_min_stack_allowed = 48 * K;
662
size_t os::_java_thread_min_stack_allowed = 48 * K;
663
#ifdef _LP64
664
size_t os::_vm_internal_thread_min_stack_allowed = 64 * K;
665
#else
666
size_t os::_vm_internal_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
667
#endif // _LP64
668

669
#ifndef AMD64
670
#ifdef __GNUC__
671
#define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
672
#endif
673
#endif // AMD64
674

675
// return default stack size for thr_type
676
size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
677
  // default stack size (compiler thread needs larger stack)
678
#ifdef AMD64
679
  size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
680
#else
681
  size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
682
#endif // AMD64
683
  return s;
684
}
685

686

687
// Java thread:
688
//
689
//   Low memory addresses
690
//    +------------------------+
691
//    |                        |\  Java thread created by VM does not have glibc
692
//    |    glibc guard page    | - guard, attached Java thread usually has
693
//    |                        |/  1 glibc guard page.
694
// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
695
//    |                        |\
696
//    |  HotSpot Guard Pages   | - red, yellow and reserved pages
697
//    |                        |/
698
//    +------------------------+ StackOverflow::stack_reserved_zone_base()
699
//    |                        |\
700
//    |      Normal Stack      | -
701
//    |                        |/
702
// P2 +------------------------+ Thread::stack_base()
703
//
704
// Non-Java thread:
705
//
706
//   Low memory addresses
707
//    +------------------------+
708
//    |                        |\
709
//    |  glibc guard page      | - usually 1 page
710
//    |                        |/
711
// P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
712
//    |                        |\
713
//    |      Normal Stack      | -
714
//    |                        |/
715
// P2 +------------------------+ Thread::stack_base()
716
//
717
// ** P1 (aka bottom) and size are the address and stack size
718
//    returned from pthread_attr_getstack().
719
// ** P2 (aka stack top or base) = P1 + size
720

721
void os::current_stack_base_and_size(address* base, size_t* size) {
722
  address bottom;
723
#ifdef __APPLE__
724
  pthread_t self = pthread_self();
725
  *base = (address) pthread_get_stackaddr_np(self);
726
  *size = pthread_get_stacksize_np(self);
727
  // workaround for OS X 10.9.0 (Mavericks)
728
  // pthread_get_stacksize_np returns 128 pages even though the actual size is 2048 pages
729
  if (pthread_main_np() == 1) {
730
    // At least on Mac OS 10.12 we have observed stack sizes not aligned
731
    // to pages boundaries. This can be provoked by e.g. setrlimit() (ulimit -s xxxx in the
732
    // shell). Apparently Mac OS actually rounds upwards to next multiple of page size,
733
    // however, we round downwards here to be on the safe side.
734
    *size = align_down(*size, getpagesize());
735

736
    if ((*size) < (DEFAULT_MAIN_THREAD_STACK_PAGES * (size_t)getpagesize())) {
737
      char kern_osrelease[256];
738
      size_t kern_osrelease_size = sizeof(kern_osrelease);
739
      int ret = sysctlbyname("kern.osrelease", kern_osrelease, &kern_osrelease_size, nullptr, 0);
740
      if (ret == 0) {
741
        // get the major number, atoi will ignore the minor amd micro portions of the version string
742
        if (atoi(kern_osrelease) >= OS_X_10_9_0_KERNEL_MAJOR_VERSION) {
743
          *size = (DEFAULT_MAIN_THREAD_STACK_PAGES*getpagesize());
744
        }
745
      }
746
    }
747
  }
748
  bottom = *base - *size;
749
#elif defined(__OpenBSD__)
750
  stack_t ss;
751
  int rslt = pthread_stackseg_np(pthread_self(), &ss);
752

753
  if (rslt != 0)
754
    fatal("pthread_stackseg_np failed with error = %d", rslt);
755

756
  *base = (address) ss.ss_sp;
757
  *size = ss.ss_size;
758
  bottom = *base - *size;
759
#else
760
  pthread_attr_t attr;
761

762
  int rslt = pthread_attr_init(&attr);
763

764
  // JVM needs to know exact stack location, abort if it fails
765
  if (rslt != 0)
766
    fatal("pthread_attr_init failed with error = %d", rslt);
767

768
  rslt = pthread_attr_get_np(pthread_self(), &attr);
769

770
  if (rslt != 0)
771
    fatal("pthread_attr_get_np failed with error = %d", rslt);
772

773
  if (pthread_attr_getstackaddr(&attr, (void **)&bottom) != 0 ||
774
      pthread_attr_getstacksize(&attr, size) != 0) {
775
    fatal("Can not locate current stack attributes!");
776
  }
777

778
  *base = bottom + *size;
779

780
  pthread_attr_destroy(&attr);
781
#endif
782
  assert(os::current_stack_pointer() >= bottom &&
783
         os::current_stack_pointer() < *base, "just checking");
784
}
785

786
/////////////////////////////////////////////////////////////////////////////
787
// helper functions for fatal error handler
788

789
void os::print_context(outputStream *st, const void *context) {
790
  if (context == nullptr) return;
791

792
  const ucontext_t *uc = (const ucontext_t*)context;
793

794
  st->print_cr("Registers:");
795
#ifdef AMD64
796
  st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->context_rax);
797
  st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->context_rbx);
798
  st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->context_rcx);
799
  st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->context_rdx);
800
  st->cr();
801
  st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->context_rsp);
802
  st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->context_rbp);
803
  st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->context_rsi);
804
  st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->context_rdi);
805
  st->cr();
806
  st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->context_r8);
807
  st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->context_r9);
808
  st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->context_r10);
809
  st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->context_r11);
810
  st->cr();
811
  st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->context_r12);
812
  st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->context_r13);
813
  st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->context_r14);
814
  st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->context_r15);
815
  st->cr();
816
  st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->context_rip);
817
  st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->context_flags);
818
  st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->context_err);
819
  st->cr();
820
  st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->context_trapno);
821
#else
822
  st->print(  "EAX=" INTPTR_FORMAT, (intptr_t)uc->context_eax);
823
  st->print(", EBX=" INTPTR_FORMAT, (intptr_t)uc->context_ebx);
824
  st->print(", ECX=" INTPTR_FORMAT, (intptr_t)uc->context_ecx);
825
  st->print(", EDX=" INTPTR_FORMAT, (intptr_t)uc->context_edx);
826
  st->cr();
827
  st->print(  "ESP=" INTPTR_FORMAT, (intptr_t)uc->context_esp);
828
  st->print(", EBP=" INTPTR_FORMAT, (intptr_t)uc->context_ebp);
829
  st->print(", ESI=" INTPTR_FORMAT, (intptr_t)uc->context_esi);
830
  st->print(", EDI=" INTPTR_FORMAT, (intptr_t)uc->context_edi);
831
  st->cr();
832
  st->print(  "EIP=" INTPTR_FORMAT, (intptr_t)uc->context_eip);
833
  st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->context_eflags);
834
#endif // AMD64
835
  st->cr();
836
  st->cr();
837
}
838

839
void os::print_tos_pc(outputStream *st, const void *context) {
840
  if (context == nullptr) return;
841

842
  const ucontext_t* uc = (const ucontext_t*)context;
843

844
  address sp = (address)os::Bsd::ucontext_get_sp(uc);
845
  print_tos(st, sp);
846
  st->cr();
847

848
  // Note: it may be unsafe to inspect memory near pc. For example, pc may
849
  // point to garbage if entry point in an nmethod is corrupted. Leave
850
  // this at the end, and hope for the best.
851
  address pc = os::Posix::ucontext_get_pc(uc);
852
  print_instructions(st, pc);
853
  st->cr();
854
}
855

856
void os::print_register_info(outputStream *st, const void *context, int& continuation) {
857
  const int register_count = AMD64_ONLY(16) NOT_AMD64(8);
858
  int n = continuation;
859
  assert(n >= 0 && n <= register_count, "Invalid continuation value");
860
  if (context == nullptr || n == register_count) {
861
    return;
862
  }
863

864
  const ucontext_t *uc = (const ucontext_t*)context;
865
  while (n < register_count) {
866
    // Update continuation with next index before printing location
867
    continuation = n + 1;
868
# define CASE_PRINT_REG(n, str, id) case n: st->print(str); print_location(st, uc->context_##id);
869
  switch (n) {
870
#ifdef AMD64
871
    CASE_PRINT_REG( 0, "RAX=", rax); break;
872
    CASE_PRINT_REG( 1, "RBX=", rbx); break;
873
    CASE_PRINT_REG( 2, "RCX=", rcx); break;
874
    CASE_PRINT_REG( 3, "RDX=", rdx); break;
875
    CASE_PRINT_REG( 4, "RSP=", rsp); break;
876
    CASE_PRINT_REG( 5, "RBP=", rbp); break;
877
    CASE_PRINT_REG( 6, "RSI=", rsi); break;
878
    CASE_PRINT_REG( 7, "RDI=", rdi); break;
879
    CASE_PRINT_REG( 8, "R8 =", r8); break;
880
    CASE_PRINT_REG( 9, "R9 =", r9); break;
881
    CASE_PRINT_REG(10, "R10=", r10); break;
882
    CASE_PRINT_REG(11, "R11=", r11); break;
883
    CASE_PRINT_REG(12, "R12=", r12); break;
884
    CASE_PRINT_REG(13, "R13=", r13); break;
885
    CASE_PRINT_REG(14, "R14=", r14); break;
886
    CASE_PRINT_REG(15, "R15=", r15); break;
887
#else
888
    CASE_PRINT_REG(0, "EAX=", eax); break;
889
    CASE_PRINT_REG(1, "EBX=", ebx); break;
890
    CASE_PRINT_REG(2, "ECX=", ecx); break;
891
    CASE_PRINT_REG(3, "EDX=", edx); break;
892
    CASE_PRINT_REG(4, "ESP=", esp); break;
893
    CASE_PRINT_REG(5, "EBP=", ebp); break;
894
    CASE_PRINT_REG(6, "ESI=", esi); break;
895
    CASE_PRINT_REG(7, "EDI=", edi); break;
896
#endif // AMD64
897
    }
898
# undef CASE_PRINT_REG
899
    ++n;
900
  }
901
}
902

903
void os::setup_fpu() {
904
#ifndef AMD64
905
  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
906
  __asm__ volatile (  "fldcw (%0)" :
907
                      : "r" (fpu_cntrl) : "memory");
908
#endif // !AMD64
909
}
910

911
#ifndef PRODUCT
912
void os::verify_stack_alignment() {
913
}
914
#endif
915

916
int os::extra_bang_size_in_bytes() {
917
  // JDK-8050147 requires the full cache line bang for x86.
918
  return VM_Version::L1_line_size();
919
}
920

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.