2
* Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
25
#include "precompiled.hpp"
26
#include "compiler/compiler_globals.hpp"
27
#include "interp_masm_x86.hpp"
28
#include "interpreter/interpreter.hpp"
29
#include "interpreter/interpreterRuntime.hpp"
30
#include "logging/log.hpp"
31
#include "oops/arrayOop.hpp"
32
#include "oops/markWord.hpp"
33
#include "oops/methodData.hpp"
34
#include "oops/method.hpp"
35
#include "oops/resolvedFieldEntry.hpp"
36
#include "oops/resolvedIndyEntry.hpp"
37
#include "oops/resolvedMethodEntry.hpp"
38
#include "prims/jvmtiExport.hpp"
39
#include "prims/jvmtiThreadState.hpp"
40
#include "runtime/basicLock.hpp"
41
#include "runtime/frame.inline.hpp"
42
#include "runtime/javaThread.hpp"
43
#include "runtime/safepointMechanism.hpp"
44
#include "runtime/sharedRuntime.hpp"
45
#include "utilities/powerOfTwo.hpp"
47
// Implementation of InterpreterMacroAssembler
49
void InterpreterMacroAssembler::jump_to_entry(address entry) {
50
assert(entry, "Entry must have been generated by now");
51
jump(RuntimeAddress(entry));
54
void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
55
Label update, next, none;
58
assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
60
assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
63
interp_verify_oop(obj, atos);
66
jccb(Assembler::notZero, update);
67
testptr(mdo_addr, TypeEntries::null_seen);
68
jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore.
69
// atomic update to prevent overwriting Klass* with 0
71
orptr(mdo_addr, TypeEntries::null_seen);
75
load_klass(obj, obj, rscratch1);
80
xorptr(obj, mdo_addr);
81
testptr(obj, TypeEntries::type_klass_mask);
82
jccb(Assembler::zero, next); // klass seen before, nothing to
83
// do. The unknown bit may have been
84
// set already but no need to check.
86
testptr(obj, TypeEntries::type_unknown);
87
jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
90
jccb(Assembler::equal, none);
91
cmpptr(mdo_addr, TypeEntries::null_seen);
92
jccb(Assembler::equal, none);
94
// There is a chance that the checks above (re-reading profiling
95
// data from memory) fail if another thread has just set the
96
// profiling to this obj's klass
98
xorptr(obj, mdo_addr);
99
testptr(obj, TypeEntries::type_klass_mask);
100
jccb(Assembler::zero, next);
103
// different than before. Cannot keep accurate profile.
104
orptr(mdo_addr, TypeEntries::type_unknown);
108
// first time here. Set profile type.
109
movptr(mdo_addr, obj);
111
andptr(obj, TypeEntries::type_klass_mask);
112
verify_klass_ptr(obj);
118
void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
119
if (!ProfileInterpreter) {
123
if (MethodData::profile_arguments() || MethodData::profile_return()) {
124
Label profile_continue;
126
test_method_data_pointer(mdp, profile_continue);
128
int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
130
cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
131
jcc(Assembler::notEqual, profile_continue);
133
if (MethodData::profile_arguments()) {
135
int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
136
addptr(mdp, off_to_args);
138
for (int i = 0; i < TypeProfileArgsLimit; i++) {
139
if (i > 0 || MethodData::profile_return()) {
140
// If return value type is profiled we may have no argument to profile
141
movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
142
subl(tmp, i*TypeStackSlotEntries::per_arg_count());
143
cmpl(tmp, TypeStackSlotEntries::per_arg_count());
144
jcc(Assembler::less, done);
146
movptr(tmp, Address(callee, Method::const_offset()));
147
load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
148
// stack offset o (zero based) from the start of the argument
149
// list, for n arguments translates into offset n - o - 1 from
150
// the end of the argument list
151
subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
153
Address arg_addr = argument_address(tmp);
154
movptr(tmp, arg_addr);
156
Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
157
profile_obj_type(tmp, mdo_arg_addr);
159
int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
161
off_to_args += to_add;
164
if (MethodData::profile_return()) {
165
movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
166
subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
171
if (MethodData::profile_return()) {
172
// We're right after the type profile for the last
173
// argument. tmp is the number of cells left in the
174
// CallTypeData/VirtualCallTypeData to reach its end. Non null
175
// if there's a return to profile.
176
assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
177
shll(tmp, log2i_exact((int)DataLayout::cell_size));
180
movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
182
assert(MethodData::profile_return(), "either profile call args or call ret");
183
update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
186
// mdp points right after the end of the
187
// CallTypeData/VirtualCallTypeData, right after the cells for the
188
// return value type if there's one
190
bind(profile_continue);
194
void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
195
assert_different_registers(mdp, ret, tmp, _bcp_register);
196
if (ProfileInterpreter && MethodData::profile_return()) {
197
Label profile_continue;
199
test_method_data_pointer(mdp, profile_continue);
201
if (MethodData::profile_return_jsr292_only()) {
202
assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
204
// If we don't profile all invoke bytecodes we must make sure
205
// it's a bytecode we indeed profile. We can't go back to the
206
// beginning of the ProfileData we intend to update to check its
207
// type because we're right after it and we don't known its
210
cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
211
jcc(Assembler::equal, do_profile);
212
cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
213
jcc(Assembler::equal, do_profile);
215
cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm));
216
jcc(Assembler::notEqual, profile_continue);
221
Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
223
profile_obj_type(tmp, mdo_ret_addr);
225
bind(profile_continue);
229
void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
230
if (ProfileInterpreter && MethodData::profile_parameters()) {
231
Label profile_continue;
233
test_method_data_pointer(mdp, profile_continue);
235
// Load the offset of the area within the MDO used for
236
// parameters. If it's negative we're not profiling any parameters
237
movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
239
jcc(Assembler::negative, profile_continue);
241
// Compute a pointer to the area for parameters from the offset
242
// and move the pointer to the slot for the last
243
// parameters. Collect profiling from last parameter down.
244
// mdo start + parameters offset + array length - 1
246
movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
247
decrement(tmp1, TypeStackSlotEntries::per_arg_count());
252
int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
253
int type_base = in_bytes(ParametersTypeData::type_offset(0));
254
Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
255
Address arg_off(mdp, tmp1, per_arg_scale, off_base);
256
Address arg_type(mdp, tmp1, per_arg_scale, type_base);
258
// load offset on the stack from the slot for this parameter
259
movptr(tmp2, arg_off);
261
// read the parameter from the local area
262
movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
264
// profile the parameter
265
profile_obj_type(tmp2, arg_type);
267
// go to next parameter
268
decrement(tmp1, TypeStackSlotEntries::per_arg_count());
269
jcc(Assembler::positive, loop);
271
bind(profile_continue);
275
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
276
int number_of_arguments) {
277
// interpreter specific
279
// Note: No need to save/restore bcp & locals registers
280
// since these are callee saved registers and no blocking/
281
// GC can happen in leaf calls.
282
// Further Note: DO NOT save/restore bcp/locals. If a caller has
283
// already saved them so that it can use rsi/rdi as temporaries
284
// then a save/restore here will DESTROY the copy the caller
285
// saved! There used to be a save_bcp() that only happened in
286
// the ASSERT path (no restore_bcp). Which caused bizarre failures
287
// when jvm built with ASSERTs.
291
cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
292
jcc(Assembler::equal, L);
293
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
299
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
300
// interpreter specific
301
// LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
302
// but since they may not have been saved (and we don't want to
303
// save them here (see note above) the assert is invalid.
306
void InterpreterMacroAssembler::call_VM_base(Register oop_result,
307
Register java_thread,
308
Register last_java_sp,
310
int number_of_arguments,
311
bool check_exceptions) {
312
// interpreter specific
314
// Note: Could avoid restoring locals ptr (callee saved) - however doesn't
315
// really make a difference for these runtime calls, since they are
316
// slow anyway. Btw., bcp must be saved/restored since it may change
318
NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
323
cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
324
jcc(Assembler::equal, L);
325
stop("InterpreterMacroAssembler::call_VM_base:"
326
" last_sp isn't null");
331
MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
332
entry_point, number_of_arguments,
334
// interpreter specific
339
void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
340
if (JvmtiExport::can_pop_frame()) {
342
// Initiate popframe handling only if it is not already being
343
// processed. If the flag has the popframe_processing bit set, it
344
// means that this code is called *during* popframe handling - we
345
// don't want to reenter.
346
// This method is only called just after the call into the vm in
347
// call_VM_base, so the arg registers are available.
348
Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
350
movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
351
testl(pop_cond, JavaThread::popframe_pending_bit);
352
jcc(Assembler::zero, L);
353
testl(pop_cond, JavaThread::popframe_processing_bit);
354
jcc(Assembler::notZero, L);
355
// Call Interpreter::remove_activation_preserving_args_entry() to get the
356
// address of the same-named entrypoint in the generated interpreter code.
357
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
360
NOT_LP64(get_thread(java_thread);)
364
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
365
Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
366
NOT_LP64(get_thread(thread);)
367
movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
368
const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
369
const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
370
const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
373
case atos: movptr(rax, oop_addr);
374
movptr(oop_addr, NULL_WORD);
375
interp_verify_oop(rax, state); break;
376
case ltos: movptr(rax, val_addr); break;
377
case btos: // fall through
378
case ztos: // fall through
379
case ctos: // fall through
380
case stos: // fall through
381
case itos: movl(rax, val_addr); break;
382
case ftos: load_float(val_addr); break;
383
case dtos: load_double(val_addr); break;
384
case vtos: /* nothing to do */ break;
385
default : ShouldNotReachHere();
387
// Clean up tos value in the thread object
388
movl(tos_addr, ilgl);
389
movl(val_addr, NULL_WORD);
391
const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
392
+ in_ByteSize(wordSize));
394
case atos: movptr(rax, oop_addr);
395
movptr(oop_addr, NULL_WORD);
396
interp_verify_oop(rax, state); break;
398
movl(rdx, val_addr1); // fall through
399
case btos: // fall through
400
case ztos: // fall through
401
case ctos: // fall through
402
case stos: // fall through
403
case itos: movl(rax, val_addr); break;
404
case ftos: load_float(val_addr); break;
405
case dtos: load_double(val_addr); break;
406
case vtos: /* nothing to do */ break;
407
default : ShouldNotReachHere();
410
// Clean up tos value in the thread object
411
movl(tos_addr, ilgl);
412
movptr(val_addr, NULL_WORD);
413
NOT_LP64(movptr(val_addr1, NULL_WORD);)
417
void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
418
if (JvmtiExport::can_force_early_return()) {
420
Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
421
Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
423
movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
425
jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit;
427
// Initiate earlyret handling only if it is not already being processed.
428
// If the flag has the earlyret_processing bit set, it means that this code
429
// is called *during* earlyret handling - we don't want to reenter.
430
movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
431
cmpl(tmp, JvmtiThreadState::earlyret_pending);
432
jcc(Assembler::notEqual, L);
434
// Call Interpreter::remove_activation_early_entry() to get the address of the
435
// same-named entrypoint in the generated interpreter code.
436
NOT_LP64(get_thread(java_thread);)
437
movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
439
movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
440
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
442
pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
443
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
447
NOT_LP64(get_thread(java_thread);)
451
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
452
assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
453
load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
458
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
461
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
462
if (index_size == sizeof(u2)) {
463
load_unsigned_short(index, Address(_bcp_register, bcp_offset));
464
} else if (index_size == sizeof(u4)) {
465
movl(index, Address(_bcp_register, bcp_offset));
466
} else if (index_size == sizeof(u1)) {
467
load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
469
ShouldNotReachHere();
473
// Load object from cpool->resolved_references(index)
474
void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
477
assert_different_registers(result, index);
479
get_constant_pool(result);
480
// load pointer for resolved_references[] objArray
481
movptr(result, Address(result, ConstantPool::cache_offset()));
482
movptr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
483
resolve_oop_handle(result, tmp);
484
load_heap_oop(result, Address(result, index,
485
UseCompressedOops ? Address::times_4 : Address::times_ptr,
486
arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
489
// load cpool->resolved_klass_at(index)
490
void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
493
assert_different_registers(cpool, index);
495
movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
496
Register resolved_klasses = cpool;
497
movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset()));
498
movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
501
// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
502
// subtype of super_klass.
506
// Rsub_klass: subklass
510
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
511
Label& ok_is_subtype) {
512
assert(Rsub_klass != rax, "rax holds superklass");
513
LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
514
LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
515
assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
516
assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
518
// Profile the not-null value's klass.
519
profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
522
check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
527
void InterpreterMacroAssembler::f2ieee() {
529
fstp_s(Address(rsp, 0));
530
fld_s(Address(rsp, 0));
535
void InterpreterMacroAssembler::d2ieee() {
537
fstp_d(Address(rsp, 0));
538
fld_d(Address(rsp, 0));
543
// Java Expression Stack
545
void InterpreterMacroAssembler::pop_ptr(Register r) {
549
void InterpreterMacroAssembler::push_ptr(Register r) {
553
void InterpreterMacroAssembler::push_i(Register r) {
557
void InterpreterMacroAssembler::push_i_or_ptr(Register r) {
561
void InterpreterMacroAssembler::push_f(XMMRegister r) {
562
subptr(rsp, wordSize);
563
movflt(Address(rsp, 0), r);
566
void InterpreterMacroAssembler::pop_f(XMMRegister r) {
567
movflt(r, Address(rsp, 0));
568
addptr(rsp, wordSize);
571
void InterpreterMacroAssembler::push_d(XMMRegister r) {
572
subptr(rsp, 2 * wordSize);
573
movdbl(Address(rsp, 0), r);
576
void InterpreterMacroAssembler::pop_d(XMMRegister r) {
577
movdbl(r, Address(rsp, 0));
578
addptr(rsp, 2 * Interpreter::stackElementSize);
582
void InterpreterMacroAssembler::pop_i(Register r) {
583
// XXX can't use pop currently, upper half non clean
584
movl(r, Address(rsp, 0));
585
addptr(rsp, wordSize);
588
void InterpreterMacroAssembler::pop_l(Register r) {
589
movq(r, Address(rsp, 0));
590
addptr(rsp, 2 * Interpreter::stackElementSize);
593
void InterpreterMacroAssembler::push_l(Register r) {
594
subptr(rsp, 2 * wordSize);
595
movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r );
596
movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
599
void InterpreterMacroAssembler::pop(TosState state) {
601
case atos: pop_ptr(); break;
606
case itos: pop_i(); break;
607
case ltos: pop_l(); break;
608
case ftos: pop_f(xmm0); break;
609
case dtos: pop_d(xmm0); break;
610
case vtos: /* nothing to do */ break;
611
default: ShouldNotReachHere();
613
interp_verify_oop(rax, state);
616
void InterpreterMacroAssembler::push(TosState state) {
617
interp_verify_oop(rax, state);
619
case atos: push_ptr(); break;
624
case itos: push_i(); break;
625
case ltos: push_l(); break;
626
case ftos: push_f(xmm0); break;
627
case dtos: push_d(xmm0); break;
628
case vtos: /* nothing to do */ break;
629
default : ShouldNotReachHere();
633
void InterpreterMacroAssembler::pop_i(Register r) {
637
void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
642
void InterpreterMacroAssembler::pop_f() {
643
fld_s(Address(rsp, 0));
644
addptr(rsp, 1 * wordSize);
647
void InterpreterMacroAssembler::pop_d() {
648
fld_d(Address(rsp, 0));
649
addptr(rsp, 2 * wordSize);
653
void InterpreterMacroAssembler::pop(TosState state) {
655
case atos: pop_ptr(rax); break;
656
case btos: // fall through
657
case ztos: // fall through
658
case ctos: // fall through
659
case stos: // fall through
660
case itos: pop_i(rax); break;
661
case ltos: pop_l(rax, rdx); break;
676
case vtos: /* nothing to do */ break;
677
default : ShouldNotReachHere();
679
interp_verify_oop(rax, state);
683
void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
688
void InterpreterMacroAssembler::push_f() {
689
// Do not schedule for no AGI! Never write beyond rsp!
690
subptr(rsp, 1 * wordSize);
691
fstp_s(Address(rsp, 0));
694
void InterpreterMacroAssembler::push_d() {
695
// Do not schedule for no AGI! Never write beyond rsp!
696
subptr(rsp, 2 * wordSize);
697
fstp_d(Address(rsp, 0));
701
void InterpreterMacroAssembler::push(TosState state) {
702
interp_verify_oop(rax, state);
704
case atos: push_ptr(rax); break;
705
case btos: // fall through
706
case ztos: // fall through
707
case ctos: // fall through
708
case stos: // fall through
709
case itos: push_i(rax); break;
710
case ltos: push_l(rax, rdx); break;
725
case vtos: /* nothing to do */ break;
726
default : ShouldNotReachHere();
732
// Helpers for swap and dup
733
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
734
movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
737
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
738
movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
742
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
744
lea(_bcp_register, Address(rsp, wordSize));
746
mov(rcx, _bcp_register);
748
sarptr(rcx, LogBytesPerWord);
749
movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rcx);
753
// Jump to from_interpreted entry of a call unless single stepping is possible
754
// in this thread in which case we must call the i2i entry
755
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
756
prepare_to_jump_from_interpreted();
758
if (JvmtiExport::can_post_interpreter_events()) {
759
Label run_compiled_code;
760
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
761
// compiled code in threads for which the event is enabled. Check here for
762
// interp_only_mode if these events CAN be enabled.
763
// interp_only is an int, on little endian it is sufficient to test the byte only
765
LP64_ONLY(temp = r15_thread;)
766
NOT_LP64(get_thread(temp);)
767
cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
768
jccb(Assembler::zero, run_compiled_code);
769
jmp(Address(method, Method::interpreter_entry_offset()));
770
bind(run_compiled_code);
773
jmp(Address(method, Method::from_interpreted_offset()));
776
// The following two routines provide a hook so that an implementation
777
// can schedule the dispatch in two parts. x86 does not do this.
778
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
779
// Nothing x86 specific to be done here
782
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
783
dispatch_next(state, step);
786
void InterpreterMacroAssembler::dispatch_base(TosState state,
789
bool generate_poll) {
790
verify_FPU(1, state);
791
if (VerifyActivationFrameSize) {
795
int32_t min_frame_size =
796
(frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
798
cmpptr(rcx, min_frame_size);
799
jcc(Assembler::greaterEqual, L);
800
stop("broken stack frame");
804
interp_verify_oop(rax, state);
807
address* const safepoint_table = Interpreter::safept_table(state);
809
Label no_safepoint, dispatch;
810
if (table != safepoint_table && generate_poll) {
811
NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
812
testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
814
jccb(Assembler::zero, no_safepoint);
815
lea(rscratch1, ExternalAddress((address)safepoint_table));
820
lea(rscratch1, ExternalAddress((address)table));
822
jmp(Address(rscratch1, rbx, Address::times_8));
825
Address index(noreg, rbx, Address::times_ptr);
826
if (table != safepoint_table && generate_poll) {
827
NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
829
const Register thread = rcx;
831
testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
833
jccb(Assembler::zero, no_safepoint);
834
ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index);
835
jump(dispatch_addr, noreg);
840
ArrayAddress dispatch_addr(ExternalAddress((address)table), index);
841
jump(dispatch_addr, noreg);
846
void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
847
dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
850
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
851
dispatch_base(state, Interpreter::normal_table(state));
854
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
855
dispatch_base(state, Interpreter::normal_table(state), false);
859
void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
860
// load next bytecode (load before advancing _bcp_register to prevent AGI)
861
load_unsigned_byte(rbx, Address(_bcp_register, step));
862
// advance _bcp_register
863
increment(_bcp_register, step);
864
dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
867
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
868
// load current bytecode
869
load_unsigned_byte(rbx, Address(_bcp_register, 0));
870
dispatch_base(state, table);
873
void InterpreterMacroAssembler::narrow(Register result) {
875
// Get method->_constMethod->_result_type
876
movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
877
movptr(rcx, Address(rcx, Method::const_offset()));
878
load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
880
Label done, notBool, notByte, notChar;
884
jcc(Assembler::equal, done);
886
// mask integer result to narrower return type.
887
cmpl(rcx, T_BOOLEAN);
888
jcc(Assembler::notEqual, notBool);
894
jcc(Assembler::notEqual, notByte);
895
LP64_ONLY(movsbl(result, result);)
896
NOT_LP64(shll(result, 24);) // truncate upper 24 bits
897
NOT_LP64(sarl(result, 24);) // and sign-extend byte
902
jcc(Assembler::notEqual, notChar);
903
LP64_ONLY(movzwl(result, result);)
904
NOT_LP64(andl(result, 0xFFFF);) // truncate upper 16 bits
908
// cmpl(rcx, T_SHORT); // all that's left
909
// jcc(Assembler::notEqual, done);
910
LP64_ONLY(movswl(result, result);)
911
NOT_LP64(shll(result, 16);) // truncate upper 16 bits
912
NOT_LP64(sarl(result, 16);) // and sign-extend short
914
// Nothing to do for T_INT
920
// Apply stack watermark barrier.
921
// Unlock the receiver if this is a synchronized method.
922
// Unlock any Java monitors from synchronized blocks.
923
// Remove the activation from the stack.
925
// If there are locked Java monitors
926
// If throw_monitor_exception
927
// throws IllegalMonitorStateException
928
// Else if install_monitor_exception
929
// installs IllegalMonitorStateException
931
// no error processing
932
void InterpreterMacroAssembler::remove_activation(
935
bool throw_monitor_exception,
936
bool install_monitor_exception,
938
// Note: Registers rdx xmm0 may be in use for the
939
// result check if synchronized method
940
Label unlocked, unlock, no_unlock;
942
const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
943
const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
944
const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
945
// monitor pointers need different register
946
// because rdx may have the result in it
947
NOT_LP64(get_thread(rthread);)
949
// The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
950
// that would normally not be safe to use. Such bad returns into unsafe territory of
951
// the stack, will call InterpreterRuntime::at_unwind.
954
safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */);
958
set_last_Java_frame(rthread, noreg, rbp, (address)pc(), rscratch1);
959
super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
960
NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore
961
reset_last_Java_frame(rthread, true);
965
// get the value of _do_not_unlock_if_synchronized into rdx
966
const Address do_not_unlock_if_synchronized(rthread,
967
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
968
movbool(rbx, do_not_unlock_if_synchronized);
969
movbool(do_not_unlock_if_synchronized, false); // reset the flag
971
// get method access flags
972
movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
973
movl(rcx, Address(rcx, Method::access_flags_offset()));
974
testl(rcx, JVM_ACC_SYNCHRONIZED);
975
jcc(Assembler::zero, unlocked);
977
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
980
jcc(Assembler::notZero, no_unlock);
983
push(state); // save result
985
// BasicObjectLock will be first in list, since this is a
986
// synchronized method. However, need to check that the object has
987
// not been unlocked by an explicit monitorexit bytecode.
988
const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
989
wordSize - (int) sizeof(BasicObjectLock));
990
// We use c_rarg1/rdx so that if we go slow path it will be the correct
991
// register for unlock_object to pass to VM directly
992
lea(robj, monitor); // address of first monitor
994
movptr(rax, Address(robj, BasicObjectLock::obj_offset()));
996
jcc(Assembler::notZero, unlock);
999
if (throw_monitor_exception) {
1000
// Entry already unlocked, need to throw exception
1001
NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow
1002
call_VM(noreg, CAST_FROM_FN_PTR(address,
1003
InterpreterRuntime::throw_illegal_monitor_state_exception));
1004
should_not_reach_here();
1006
// Monitor already unlocked during a stack unroll. If requested,
1007
// install an illegal_monitor_state_exception. Continue with
1009
if (install_monitor_exception) {
1010
NOT_LP64(empty_FPU_stack();)
1011
call_VM(noreg, CAST_FROM_FN_PTR(address,
1012
InterpreterRuntime::new_illegal_monitor_state_exception));
1018
unlock_object(robj);
1021
// Check that for block-structured locking (i.e., that all locked
1022
// objects has been unlocked)
1025
// rax, rdx: Might contain return value
1027
// Check that all monitors are unlocked
1029
Label loop, exception, entry, restart;
1030
const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
1031
const Address monitor_block_top(
1032
rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1033
const Address monitor_block_bot(
1034
rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1037
// We use c_rarg1 so that if we go slow path it will be the correct
1038
// register for unlock_object to pass to VM directly
1039
movptr(rmon, monitor_block_top); // derelativize pointer
1040
lea(rmon, Address(rbp, rmon, Address::times_ptr));
1041
// c_rarg1 points to current entry, starting with top-most entry
1043
lea(rbx, monitor_block_bot); // points to word before bottom of
1047
// Entry already locked, need to throw exception
1050
if (throw_monitor_exception) {
1052
NOT_LP64(empty_FPU_stack();)
1053
MacroAssembler::call_VM(noreg,
1054
CAST_FROM_FN_PTR(address, InterpreterRuntime::
1055
throw_illegal_monitor_state_exception));
1056
should_not_reach_here();
1058
// Stack unrolling. Unlock object and install illegal_monitor_exception.
1059
// Unlock does not block, so don't have to worry about the frame.
1060
// We don't have to preserve c_rarg1 since we are going to throw an exception.
1063
mov(robj, rmon); // nop if robj and rmon are the same
1064
unlock_object(robj);
1067
if (install_monitor_exception) {
1068
NOT_LP64(empty_FPU_stack();)
1069
call_VM(noreg, CAST_FROM_FN_PTR(address,
1070
InterpreterRuntime::
1071
new_illegal_monitor_state_exception));
1078
// check if current entry is used
1079
cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD);
1080
jcc(Assembler::notEqual, exception);
1082
addptr(rmon, entry_size); // otherwise advance to next entry
1084
cmpptr(rmon, rbx); // check if bottom reached
1085
jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1092
notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
1094
notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1097
// remove activation
1100
Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1101
if (StackReservedPages > 0) {
1102
// testing if reserved zone needs to be re-enabled
1103
Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1104
Label no_reserved_zone_enabling;
1106
NOT_LP64(get_thread(rthread);)
1108
// check if already enabled - if so no re-enabling needed
1109
assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
1110
cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled);
1111
jcc(Assembler::equal, no_reserved_zone_enabling);
1113
cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1114
jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1117
CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1118
call_VM(noreg, CAST_FROM_FN_PTR(address,
1119
InterpreterRuntime::throw_delayed_StackOverflowError));
1120
should_not_reach_here();
1122
bind(no_reserved_zone_enabling);
1124
leave(); // remove frame anchor
1125
pop(ret_addr); // get return address
1126
mov(rsp, rbx); // set sp to sender sp
1127
pop_cont_fastpath();
1130
void InterpreterMacroAssembler::get_method_counters(Register method,
1131
Register mcs, Label& skip) {
1133
movptr(mcs, Address(method, Method::method_counters_offset()));
1135
jcc(Assembler::notZero, has_counters);
1136
call_VM(noreg, CAST_FROM_FN_PTR(address,
1137
InterpreterRuntime::build_method_counters), method);
1138
movptr(mcs, Address(method,Method::method_counters_offset()));
1140
jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1148
// rdx, c_rarg1: BasicObjectLock to be used for locking
1152
void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1153
assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1154
"The argument is only for looks. It must be c_rarg1");
1156
if (LockingMode == LM_MONITOR) {
1158
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1161
Label count_locking, done, slow_case;
1163
const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1164
const Register tmp_reg = rbx;
1165
const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1166
const Register rklass_decode_tmp = rscratch1;
1168
const int obj_offset = in_bytes(BasicObjectLock::obj_offset());
1169
const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
1170
const int mark_offset = lock_offset +
1171
BasicLock::displaced_header_offset_in_bytes();
1173
// Load object pointer into obj_reg
1174
movptr(obj_reg, Address(lock_reg, obj_offset));
1176
if (DiagnoseSyncOnValueBasedClasses != 0) {
1177
load_klass(tmp_reg, obj_reg, rklass_decode_tmp);
1178
movl(tmp_reg, Address(tmp_reg, Klass::access_flags_offset()));
1179
testl(tmp_reg, JVM_ACC_IS_VALUE_BASED_CLASS);
1180
jcc(Assembler::notZero, slow_case);
1183
if (LockingMode == LM_LIGHTWEIGHT) {
1185
const Register thread = r15_thread;
1187
const Register thread = lock_reg;
1190
lightweight_lock(obj_reg, swap_reg, thread, tmp_reg, slow_case);
1191
} else if (LockingMode == LM_LEGACY) {
1192
// Load immediate 1 into swap_reg %rax
1195
// Load (object->mark() | 1) into swap_reg %rax
1196
orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1198
// Save (object->mark() | 1) into BasicLock's displaced header
1199
movptr(Address(lock_reg, mark_offset), swap_reg);
1201
assert(lock_offset == 0,
1202
"displaced header must be first word in BasicObjectLock");
1205
cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1206
jcc(Assembler::zero, count_locking);
1208
const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1210
// Fast check for recursive lock.
1212
// Can apply the optimization only if this is a stack lock
1213
// allocated in this thread. For efficiency, we can focus on
1214
// recently allocated stack locks (instead of reading the stack
1215
// base and checking whether 'mark' points inside the current
1217
// 1) (mark & zero_bits) == 0, and
1218
// 2) rsp <= mark < mark + os::pagesize()
1220
// Warning: rsp + os::pagesize can overflow the stack base. We must
1221
// neither apply the optimization for an inflated lock allocated
1222
// just above the thread stack (this is why condition 1 matters)
1223
// nor apply the optimization if the stack lock is inside the stack
1224
// of another thread. The latter is avoided even in case of overflow
1225
// because we have guard pages at the end of all stacks. Hence, if
1226
// we go over the stack base and hit the stack of another thread,
1227
// this should not be in a writeable area that could contain a
1228
// stack lock allocated by that thread. As a consequence, a stack
1229
// lock less than page size away from rsp is guaranteed to be
1230
// owned by the current thread.
1232
// These 3 tests can be done by evaluating the following
1233
// expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1234
// assuming both stack pointer and pagesize have their
1235
// least significant bits clear.
1236
// NOTE: the mark is in swap_reg %rax as the result of cmpxchg
1237
subptr(swap_reg, rsp);
1238
andptr(swap_reg, zero_bits - (int)os::vm_page_size());
1240
// Save the test result, for recursive case, the result is zero
1241
movptr(Address(lock_reg, mark_offset), swap_reg);
1242
jcc(Assembler::notZero, slow_case);
1244
bind(count_locking);
1246
inc_held_monitor_count();
1251
// Call the runtime routine for slow case
1252
if (LockingMode == LM_LIGHTWEIGHT) {
1254
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj),
1258
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1266
// Unlocks an object. Used in monitorexit bytecode and
1267
// remove_activation. Throws an IllegalMonitorException if object is
1268
// not locked by current thread.
1271
// rdx, c_rarg1: BasicObjectLock for lock
1275
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1276
// rscratch1 (scratch reg)
1277
// rax, rbx, rcx, rdx
1278
void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1279
assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1280
"The argument is only for looks. It must be c_rarg1");
1282
if (LockingMode == LM_MONITOR) {
1283
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1285
Label count_locking, done, slow_case;
1287
const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1288
const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark
1289
const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1291
save_bcp(); // Save in case of exception
1293
if (LockingMode != LM_LIGHTWEIGHT) {
1294
// Convert from BasicObjectLock structure to object and BasicLock
1295
// structure Store the BasicLock address into %rax
1296
lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset()));
1299
// Load oop into obj_reg(%c_rarg3)
1300
movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1303
movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD);
1305
if (LockingMode == LM_LIGHTWEIGHT) {
1307
lightweight_unlock(obj_reg, swap_reg, r15_thread, header_reg, slow_case);
1309
// This relies on the implementation of lightweight_unlock being able to handle
1310
// that the reg_rax and thread Register parameters may alias each other.
1311
get_thread(swap_reg);
1312
lightweight_unlock(obj_reg, swap_reg, swap_reg, header_reg, slow_case);
1314
} else if (LockingMode == LM_LEGACY) {
1315
// Load the old header from BasicLock structure
1316
movptr(header_reg, Address(swap_reg,
1317
BasicLock::displaced_header_offset_in_bytes()));
1319
// Test for recursion
1320
testptr(header_reg, header_reg);
1322
// zero for recursive case
1323
jcc(Assembler::zero, count_locking);
1325
// Atomic swap back the old header
1327
cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1329
// zero for simple unlock of a stack-lock case
1330
jcc(Assembler::notZero, slow_case);
1332
bind(count_locking);
1334
dec_held_monitor_count();
1338
// Call the runtime routine for slow case.
1339
movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj
1340
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1348
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1349
Label& zero_continue) {
1350
assert(ProfileInterpreter, "must be profiling interpreter");
1351
movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1353
jcc(Assembler::zero, zero_continue);
1357
// Set the method data pointer for the current bcp.
1358
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1359
assert(ProfileInterpreter, "must be profiling interpreter");
1365
// Test MDO to avoid the call if it is null.
1366
movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1368
jcc(Assembler::zero, set_mdp);
1370
// _bcp_register: bcp
1371
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1373
// mdo is guaranteed to be non-zero here, we checked for it before the call.
1374
movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1375
addptr(rbx, in_bytes(MethodData::data_offset()));
1378
movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1383
void InterpreterMacroAssembler::verify_method_data_pointer() {
1384
assert(ProfileInterpreter, "must be profiling interpreter");
1386
Label verify_continue;
1389
Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1390
Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1393
test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1396
// If the mdp is valid, it will point to a DataLayout header which is
1397
// consistent with the bcp. The converse is highly probable also.
1398
load_unsigned_short(arg2_reg,
1399
Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1400
addptr(arg2_reg, Address(rbx, Method::const_offset()));
1401
lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1402
cmpptr(arg2_reg, _bcp_register);
1403
jcc(Assembler::equal, verify_continue);
1405
// _bcp_register: bcp
1407
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1408
rbx, _bcp_register, arg3_reg);
1409
bind(verify_continue);
1418
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1421
assert(ProfileInterpreter, "must be profiling interpreter");
1422
Address data(mdp_in, constant);
1423
movptr(data, value);
1427
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1431
Address data(mdp_in, constant);
1433
increment_mdp_data_at(data, decrement);
1436
void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1438
assert(ProfileInterpreter, "must be profiling interpreter");
1439
// %%% this does 64bit counters at best it is wasting space
1440
// at worst it is a rare bug when counters overflow
1443
// Decrement the register. Set condition codes.
1444
addptr(data, -DataLayout::counter_increment);
1445
// If the decrement causes the counter to overflow, stay negative
1447
jcc(Assembler::negative, L);
1448
addptr(data, DataLayout::counter_increment);
1451
assert(DataLayout::counter_increment == 1,
1452
"flow-free idiom only works with 1");
1453
// Increment the register. Set carry flag.
1454
addptr(data, DataLayout::counter_increment);
1455
// If the increment causes the counter to overflow, pull back by 1.
1461
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1465
Address data(mdp_in, reg, Address::times_1, constant);
1467
increment_mdp_data_at(data, decrement);
1470
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1471
int flag_byte_constant) {
1472
assert(ProfileInterpreter, "must be profiling interpreter");
1473
int header_offset = in_bytes(DataLayout::flags_offset());
1474
int header_bits = flag_byte_constant;
1476
orb(Address(mdp_in, header_offset), header_bits);
1481
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1484
Register test_value_out,
1485
Label& not_equal_continue) {
1486
assert(ProfileInterpreter, "must be profiling interpreter");
1487
if (test_value_out == noreg) {
1488
cmpptr(value, Address(mdp_in, offset));
1490
// Put the test value into a register, so caller can use it:
1491
movptr(test_value_out, Address(mdp_in, offset));
1492
cmpptr(test_value_out, value);
1494
jcc(Assembler::notEqual, not_equal_continue);
1498
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1499
int offset_of_disp) {
1500
assert(ProfileInterpreter, "must be profiling interpreter");
1501
Address disp_address(mdp_in, offset_of_disp);
1502
addptr(mdp_in, disp_address);
1503
movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1507
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1509
int offset_of_disp) {
1510
assert(ProfileInterpreter, "must be profiling interpreter");
1511
Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1512
addptr(mdp_in, disp_address);
1513
movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1517
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1519
assert(ProfileInterpreter, "must be profiling interpreter");
1520
addptr(mdp_in, constant);
1521
movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1525
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1526
assert(ProfileInterpreter, "must be profiling interpreter");
1527
push(return_bci); // save/restore across call_VM
1529
CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1535
void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1536
Register bumped_count) {
1537
if (ProfileInterpreter) {
1538
Label profile_continue;
1540
// If no method data exists, go to profile_continue.
1541
// Otherwise, assign to mdp
1542
test_method_data_pointer(mdp, profile_continue);
1544
// We are taking a branch. Increment the taken count.
1545
// We inline increment_mdp_data_at to return bumped_count in a register
1546
//increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1547
Address data(mdp, in_bytes(JumpData::taken_offset()));
1548
movptr(bumped_count, data);
1549
assert(DataLayout::counter_increment == 1,
1550
"flow-free idiom only works with 1");
1551
addptr(bumped_count, DataLayout::counter_increment);
1552
sbbptr(bumped_count, 0);
1553
movptr(data, bumped_count); // Store back out
1555
// The method data pointer needs to be updated to reflect the new target.
1556
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1557
bind(profile_continue);
1562
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1563
if (ProfileInterpreter) {
1564
Label profile_continue;
1566
// If no method data exists, go to profile_continue.
1567
test_method_data_pointer(mdp, profile_continue);
1569
// We are taking a branch. Increment the not taken count.
1570
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1572
// The method data pointer needs to be updated to correspond to
1573
// the next bytecode
1574
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1575
bind(profile_continue);
1579
void InterpreterMacroAssembler::profile_call(Register mdp) {
1580
if (ProfileInterpreter) {
1581
Label profile_continue;
1583
// If no method data exists, go to profile_continue.
1584
test_method_data_pointer(mdp, profile_continue);
1586
// We are making a call. Increment the count.
1587
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1589
// The method data pointer needs to be updated to reflect the new target.
1590
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1591
bind(profile_continue);
1596
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1597
if (ProfileInterpreter) {
1598
Label profile_continue;
1600
// If no method data exists, go to profile_continue.
1601
test_method_data_pointer(mdp, profile_continue);
1603
// We are making a call. Increment the count.
1604
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1606
// The method data pointer needs to be updated to reflect the new target.
1607
update_mdp_by_constant(mdp,
1608
in_bytes(VirtualCallData::
1609
virtual_call_data_size()));
1610
bind(profile_continue);
1615
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1618
bool receiver_can_be_null) {
1619
if (ProfileInterpreter) {
1620
Label profile_continue;
1622
// If no method data exists, go to profile_continue.
1623
test_method_data_pointer(mdp, profile_continue);
1625
Label skip_receiver_profile;
1626
if (receiver_can_be_null) {
1628
testptr(receiver, receiver);
1629
jccb(Assembler::notZero, not_null);
1630
// We are making a call. Increment the count for null receiver.
1631
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1632
jmp(skip_receiver_profile);
1636
// Record the receiver type.
1637
record_klass_in_profile(receiver, mdp, reg2, true);
1638
bind(skip_receiver_profile);
1640
// The method data pointer needs to be updated to reflect the new target.
1641
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1642
bind(profile_continue);
1646
// This routine creates a state machine for updating the multi-row
1647
// type profile at a virtual call site (or other type-sensitive bytecode).
1648
// The machine visits each row (of receiver/count) until the receiver type
1649
// is found, or until it runs out of rows. At the same time, it remembers
1650
// the location of the first empty row. (An empty row records null for its
1651
// receiver, and can be allocated for a newly-observed receiver type.)
1652
// Because there are two degrees of freedom in the state, a simple linear
1653
// search will not work; it must be a decision tree. Hence this helper
1654
// function is recursive, to generate the required tree structured code.
1655
// It's the interpreter, so we are trading off code space for speed.
1656
// See below for example code.
1657
void InterpreterMacroAssembler::record_klass_in_profile_helper(
1658
Register receiver, Register mdp,
1659
Register reg2, int start_row,
1660
Label& done, bool is_virtual_call) {
1661
if (TypeProfileWidth == 0) {
1662
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1664
record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1665
&VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1669
void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row,
1670
Label& done, int total_rows,
1671
OffsetFunction item_offset_fn,
1672
OffsetFunction item_count_offset_fn) {
1673
int last_row = total_rows - 1;
1674
assert(start_row <= last_row, "must be work left to do");
1675
// Test this row for both the item and for null.
1676
// Take any of three different outcomes:
1677
// 1. found item => increment count and goto done
1678
// 2. found null => keep looking for case 1, maybe allocate this cell
1679
// 3. found something else => keep looking for cases 1 and 2
1680
// Case 3 is handled by a recursive call.
1681
for (int row = start_row; row <= last_row; row++) {
1683
bool test_for_null_also = (row == start_row);
1685
// See if the item is item[n].
1686
int item_offset = in_bytes(item_offset_fn(row));
1687
test_mdp_data_at(mdp, item_offset, item,
1688
(test_for_null_also ? reg2 : noreg),
1690
// (Reg2 now contains the item from the CallData.)
1692
// The item is item[n]. Increment count[n].
1693
int count_offset = in_bytes(item_count_offset_fn(row));
1694
increment_mdp_data_at(mdp, count_offset);
1698
if (test_for_null_also) {
1699
// Failed the equality check on item[n]... Test for null.
1700
testptr(reg2, reg2);
1701
if (start_row == last_row) {
1702
// The only thing left to do is handle the null case.
1704
jccb(Assembler::zero, found_null);
1705
// Item did not match any saved item and there is no empty row for it.
1706
// Increment total counter to indicate polymorphic case.
1707
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1713
// Since null is rare, make it be the branch-taken case.
1714
jcc(Assembler::zero, found_null);
1716
// Put all the "Case 3" tests here.
1717
record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1718
item_offset_fn, item_count_offset_fn);
1720
// Found a null. Keep searching for a matching item,
1721
// but remember that this is an empty (unused) slot.
1726
// In the fall-through case, we found no matching item, but we
1727
// observed the item[start_row] is null.
1729
// Fill in the item field and increment the count.
1730
int item_offset = in_bytes(item_offset_fn(start_row));
1731
set_mdp_data_at(mdp, item_offset, item);
1732
int count_offset = in_bytes(item_count_offset_fn(start_row));
1733
movl(reg2, DataLayout::counter_increment);
1734
set_mdp_data_at(mdp, count_offset, reg2);
1735
if (start_row > 0) {
1740
// Example state machine code for three profile rows:
1741
// // main copy of decision tree, rooted at row[1]
1742
// if (row[0].rec == rec) { row[0].incr(); goto done; }
1743
// if (row[0].rec != nullptr) {
1744
// // inner copy of decision tree, rooted at row[1]
1745
// if (row[1].rec == rec) { row[1].incr(); goto done; }
1746
// if (row[1].rec != nullptr) {
1747
// // degenerate decision tree, rooted at row[2]
1748
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1749
// if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1750
// row[2].init(rec); goto done;
1752
// // remember row[1] is empty
1753
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1754
// row[1].init(rec); goto done;
1757
// // remember row[0] is empty
1758
// if (row[1].rec == rec) { row[1].incr(); goto done; }
1759
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1760
// row[0].init(rec); goto done;
1764
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1765
Register mdp, Register reg2,
1766
bool is_virtual_call) {
1767
assert(ProfileInterpreter, "must be profiling");
1770
record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1775
void InterpreterMacroAssembler::profile_ret(Register return_bci,
1777
if (ProfileInterpreter) {
1778
Label profile_continue;
1781
// If no method data exists, go to profile_continue.
1782
test_method_data_pointer(mdp, profile_continue);
1784
// Update the total ret count.
1785
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1787
for (row = 0; row < RetData::row_limit(); row++) {
1790
// See if return_bci is equal to bci[n]:
1791
test_mdp_data_at(mdp,
1792
in_bytes(RetData::bci_offset(row)),
1796
// return_bci is equal to bci[n]. Increment the count.
1797
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1799
// The method data pointer needs to be updated to reflect the new target.
1800
update_mdp_by_offset(mdp,
1801
in_bytes(RetData::bci_displacement_offset(row)));
1802
jmp(profile_continue);
1806
update_mdp_for_ret(return_bci);
1808
bind(profile_continue);
1813
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1814
if (ProfileInterpreter) {
1815
Label profile_continue;
1817
// If no method data exists, go to profile_continue.
1818
test_method_data_pointer(mdp, profile_continue);
1820
set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1822
// The method data pointer needs to be updated.
1823
int mdp_delta = in_bytes(BitData::bit_data_size());
1824
if (TypeProfileCasts) {
1825
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1827
update_mdp_by_constant(mdp, mdp_delta);
1829
bind(profile_continue);
1834
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1835
if (ProfileInterpreter) {
1836
Label profile_continue;
1838
// If no method data exists, go to profile_continue.
1839
test_method_data_pointer(mdp, profile_continue);
1841
// The method data pointer needs to be updated.
1842
int mdp_delta = in_bytes(BitData::bit_data_size());
1843
if (TypeProfileCasts) {
1844
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1846
// Record the object type.
1847
record_klass_in_profile(klass, mdp, reg2, false);
1848
NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1849
NOT_LP64(restore_locals();) // Restore EDI
1851
update_mdp_by_constant(mdp, mdp_delta);
1853
bind(profile_continue);
1858
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1859
if (ProfileInterpreter) {
1860
Label profile_continue;
1862
// If no method data exists, go to profile_continue.
1863
test_method_data_pointer(mdp, profile_continue);
1865
// Update the default case count
1866
increment_mdp_data_at(mdp,
1867
in_bytes(MultiBranchData::default_count_offset()));
1869
// The method data pointer needs to be updated.
1870
update_mdp_by_offset(mdp,
1871
in_bytes(MultiBranchData::
1872
default_displacement_offset()));
1874
bind(profile_continue);
1879
void InterpreterMacroAssembler::profile_switch_case(Register index,
1882
if (ProfileInterpreter) {
1883
Label profile_continue;
1885
// If no method data exists, go to profile_continue.
1886
test_method_data_pointer(mdp, profile_continue);
1888
// Build the base (index * per_case_size_in_bytes()) +
1889
// case_array_offset_in_bytes()
1890
movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1891
imulptr(index, reg2); // XXX l ?
1892
addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1894
// Update the case count
1895
increment_mdp_data_at(mdp,
1897
in_bytes(MultiBranchData::relative_count_offset()));
1899
// The method data pointer needs to be updated.
1900
update_mdp_by_offset(mdp,
1902
in_bytes(MultiBranchData::
1903
relative_displacement_offset()));
1905
bind(profile_continue);
1911
void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1912
if (state == atos) {
1913
MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1917
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1919
if ((state == ftos && UseSSE < 1) ||
1920
(state == dtos && UseSSE < 2)) {
1921
MacroAssembler::verify_FPU(stack_depth);
1926
// Jump if ((*counter_addr += increment) & mask) == 0
1927
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask,
1928
Register scratch, Label* where) {
1929
// This update is actually not atomic and can lose a number of updates
1930
// under heavy contention, but the alternative of using the (contended)
1931
// atomic update here penalizes profiling paths too much.
1932
movl(scratch, counter_addr);
1933
incrementl(scratch, InvocationCounter::count_increment);
1934
movl(counter_addr, scratch);
1935
andl(scratch, mask);
1936
if (where != nullptr) {
1937
jcc(Assembler::zero, *where);
1941
void InterpreterMacroAssembler::notify_method_entry() {
1942
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1943
// track stack depth. If it is possible to enter interp_only_mode we add
1944
// the code to check if the event should be sent.
1945
Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1946
Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1947
if (JvmtiExport::can_post_interpreter_events()) {
1949
NOT_LP64(get_thread(rthread);)
1950
movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1952
jcc(Assembler::zero, L);
1953
call_VM(noreg, CAST_FROM_FN_PTR(address,
1954
InterpreterRuntime::post_method_entry));
1958
if (DTraceMethodProbes) {
1959
NOT_LP64(get_thread(rthread);)
1961
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1965
// RedefineClasses() tracing support for obsolete method entry
1966
if (log_is_enabled(Trace, redefine, class, obsolete)) {
1967
NOT_LP64(get_thread(rthread);)
1970
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1976
void InterpreterMacroAssembler::notify_method_exit(
1977
TosState state, NotifyMethodExitMode mode) {
1978
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1979
// track stack depth. If it is possible to enter interp_only_mode we add
1980
// the code to check if the event should be sent.
1981
Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1982
Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1983
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1985
// Note: frame::interpreter_frame_result has a dependency on how the
1986
// method result is saved across the call to post_method_exit. If this
1987
// is changed then the interpreter_frame_result implementation will
1988
// need to be updated too.
1990
// template interpreter will leave the result on the top of the stack.
1992
NOT_LP64(get_thread(rthread);)
1993
movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1995
jcc(Assembler::zero, L);
1997
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2002
if (DTraceMethodProbes) {
2004
NOT_LP64(get_thread(rthread);)
2006
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2012
void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
2013
// Get index out of bytecode pointer
2014
get_cache_index_at_bcp(index, 1, sizeof(u4));
2015
// Get address of invokedynamic array
2016
movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2017
movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
2018
if (is_power_of_2(sizeof(ResolvedIndyEntry))) {
2019
shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2
2021
imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
2023
lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes()));
2026
void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
2027
// Get index out of bytecode pointer
2028
movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2029
get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
2031
movptr(cache, Address(cache, ConstantPoolCache::field_entries_offset()));
2032
// Take shortcut if the size is a power of 2
2033
if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
2034
shll(index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
2036
imull(index, index, sizeof(ResolvedFieldEntry)); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
2038
lea(cache, Address(cache, index, Address::times_1, Array<ResolvedFieldEntry>::base_offset_in_bytes()));
2041
void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
2042
// Get index out of bytecode pointer
2043
movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2044
get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
2046
movptr(cache, Address(cache, ConstantPoolCache::method_entries_offset()));
2047
imull(index, index, sizeof(ResolvedMethodEntry)); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
2048
lea(cache, Address(cache, index, Address::times_1, Array<ResolvedMethodEntry>::base_offset_in_bytes()));