jdk

Форк
0
/
arm_32.ad 
562 строки · 21.3 Кб
1
//
2
// Copyright (c) 2008, 2024, Oracle and/or its affiliates. All rights reserved.
3
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
//
5
// This code is free software; you can redistribute it and/or modify it
6
// under the terms of the GNU General Public License version 2 only, as
7
// published by the Free Software Foundation.
8
//
9
// This code is distributed in the hope that it will be useful, but WITHOUT
10
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12
// version 2 for more details (a copy is included in the LICENSE file that
13
// accompanied this code).
14
//
15
// You should have received a copy of the GNU General Public License version
16
// 2 along with this work; if not, write to the Free Software Foundation,
17
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
//
19
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
// or visit www.oracle.com if you need additional information or have any
21
// questions.
22
//
23

24
// ARM Architecture Description File
25

26
//----------REGISTER DEFINITION BLOCK------------------------------------------
27
// This information is used by the matcher and the register allocator to
28
// describe individual registers and classes of registers within the target
29
// architecture.
30
register %{
31
//----------Architecture Description Register Definitions----------------------
32
// General Registers
33
// "reg_def"  name ( register save type, C convention save type,
34
//                   ideal register type, encoding, vm name );
35
// Register Save Types:
36
//
37
// NS  = No-Save:       The register allocator assumes that these registers
38
//                      can be used without saving upon entry to the method, &
39
//                      that they do not need to be saved at call sites.
40
//
41
// SOC = Save-On-Call:  The register allocator assumes that these registers
42
//                      can be used without saving upon entry to the method,
43
//                      but that they must be saved at call sites.
44
//
45
// SOE = Save-On-Entry: The register allocator assumes that these registers
46
//                      must be saved before using them upon entry to the
47
//                      method, but they do not need to be saved at call
48
//                      sites.
49
//
50
// AS  = Always-Save:   The register allocator assumes that these registers
51
//                      must be saved before using them upon entry to the
52
//                      method, & that they must be saved at call sites.
53
//
54
// Ideal Register Type is used to determine how to save & restore a
55
// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
56
// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
57
//
58
// The encoding number is the actual bit-pattern placed into the opcodes.
59

60

61
// ----------------------------
62
// Integer/Long Registers
63
// ----------------------------
64

65
reg_def R_R0 (SOC, SOC, Op_RegI,  0,  R(0)->as_VMReg());
66
reg_def R_R1 (SOC, SOC, Op_RegI,  1,  R(1)->as_VMReg());
67
reg_def R_R2 (SOC, SOC, Op_RegI,  2,  R(2)->as_VMReg());
68
reg_def R_R3 (SOC, SOC, Op_RegI,  3,  R(3)->as_VMReg());
69
reg_def R_R4 (SOC, SOE, Op_RegI,  4,  R(4)->as_VMReg());
70
reg_def R_R5 (SOC, SOE, Op_RegI,  5,  R(5)->as_VMReg());
71
reg_def R_R6 (SOC, SOE, Op_RegI,  6,  R(6)->as_VMReg());
72
reg_def R_R7 (SOC, SOE, Op_RegI,  7,  R(7)->as_VMReg());
73
reg_def R_R8 (SOC, SOE, Op_RegI,  8,  R(8)->as_VMReg());
74
reg_def R_R9 (SOC, SOE, Op_RegI,  9,  R(9)->as_VMReg());
75
reg_def R_R10(NS,  SOE, Op_RegI, 10, R(10)->as_VMReg());
76
reg_def R_R11(NS,  SOE, Op_RegI, 11, R(11)->as_VMReg());
77
reg_def R_R12(SOC, SOC, Op_RegI, 12, R(12)->as_VMReg());
78
reg_def R_R13(NS,  NS,  Op_RegI, 13, R(13)->as_VMReg());
79
reg_def R_R14(SOC, SOC, Op_RegI, 14, R(14)->as_VMReg());
80
reg_def R_R15(NS,  NS,  Op_RegI, 15, R(15)->as_VMReg());
81

82
// ----------------------------
83
// Float/Double Registers
84
// ----------------------------
85

86
// Float Registers
87

88
reg_def R_S0 ( SOC, SOC, Op_RegF,  0, S0->as_VMReg());
89
reg_def R_S1 ( SOC, SOC, Op_RegF,  1, S1_reg->as_VMReg());
90
reg_def R_S2 ( SOC, SOC, Op_RegF,  2, S2_reg->as_VMReg());
91
reg_def R_S3 ( SOC, SOC, Op_RegF,  3, S3_reg->as_VMReg());
92
reg_def R_S4 ( SOC, SOC, Op_RegF,  4, S4_reg->as_VMReg());
93
reg_def R_S5 ( SOC, SOC, Op_RegF,  5, S5_reg->as_VMReg());
94
reg_def R_S6 ( SOC, SOC, Op_RegF,  6, S6_reg->as_VMReg());
95
reg_def R_S7 ( SOC, SOC, Op_RegF,  7, S7->as_VMReg());
96
reg_def R_S8 ( SOC, SOC, Op_RegF,  8, S8->as_VMReg());
97
reg_def R_S9 ( SOC, SOC, Op_RegF,  9, S9->as_VMReg());
98
reg_def R_S10( SOC, SOC, Op_RegF, 10,S10->as_VMReg());
99
reg_def R_S11( SOC, SOC, Op_RegF, 11,S11->as_VMReg());
100
reg_def R_S12( SOC, SOC, Op_RegF, 12,S12->as_VMReg());
101
reg_def R_S13( SOC, SOC, Op_RegF, 13,S13->as_VMReg());
102
reg_def R_S14( SOC, SOC, Op_RegF, 14,S14->as_VMReg());
103
reg_def R_S15( SOC, SOC, Op_RegF, 15,S15->as_VMReg());
104
reg_def R_S16( SOC, SOE, Op_RegF, 16,S16->as_VMReg());
105
reg_def R_S17( SOC, SOE, Op_RegF, 17,S17->as_VMReg());
106
reg_def R_S18( SOC, SOE, Op_RegF, 18,S18->as_VMReg());
107
reg_def R_S19( SOC, SOE, Op_RegF, 19,S19->as_VMReg());
108
reg_def R_S20( SOC, SOE, Op_RegF, 20,S20->as_VMReg());
109
reg_def R_S21( SOC, SOE, Op_RegF, 21,S21->as_VMReg());
110
reg_def R_S22( SOC, SOE, Op_RegF, 22,S22->as_VMReg());
111
reg_def R_S23( SOC, SOE, Op_RegF, 23,S23->as_VMReg());
112
reg_def R_S24( SOC, SOE, Op_RegF, 24,S24->as_VMReg());
113
reg_def R_S25( SOC, SOE, Op_RegF, 25,S25->as_VMReg());
114
reg_def R_S26( SOC, SOE, Op_RegF, 26,S26->as_VMReg());
115
reg_def R_S27( SOC, SOE, Op_RegF, 27,S27->as_VMReg());
116
reg_def R_S28( SOC, SOE, Op_RegF, 28,S28->as_VMReg());
117
reg_def R_S29( SOC, SOE, Op_RegF, 29,S29->as_VMReg());
118
reg_def R_S30( SOC, SOE, Op_RegF, 30,S30->as_VMReg());
119
reg_def R_S31( SOC, SOE, Op_RegF, 31,S31->as_VMReg());
120

121
// Double Registers
122
// The rules of ADL require that double registers be defined in pairs.
123
// Each pair must be two 32-bit values, but not necessarily a pair of
124
// single float registers.  In each pair, ADLC-assigned register numbers
125
// must be adjacent, with the lower number even.  Finally, when the
126
// CPU stores such a register pair to memory, the word associated with
127
// the lower ADLC-assigned number must be stored to the lower address.
128

129
reg_def R_D16 (SOC, SOC, Op_RegD, 32, D16->as_VMReg());
130
reg_def R_D16x(SOC, SOC, Op_RegD,255, D16->as_VMReg()->next());
131
reg_def R_D17 (SOC, SOC, Op_RegD, 34, D17->as_VMReg());
132
reg_def R_D17x(SOC, SOC, Op_RegD,255, D17->as_VMReg()->next());
133
reg_def R_D18 (SOC, SOC, Op_RegD, 36, D18->as_VMReg());
134
reg_def R_D18x(SOC, SOC, Op_RegD,255, D18->as_VMReg()->next());
135
reg_def R_D19 (SOC, SOC, Op_RegD, 38, D19->as_VMReg());
136
reg_def R_D19x(SOC, SOC, Op_RegD,255, D19->as_VMReg()->next());
137
reg_def R_D20 (SOC, SOC, Op_RegD, 40, D20->as_VMReg());
138
reg_def R_D20x(SOC, SOC, Op_RegD,255, D20->as_VMReg()->next());
139
reg_def R_D21 (SOC, SOC, Op_RegD, 42, D21->as_VMReg());
140
reg_def R_D21x(SOC, SOC, Op_RegD,255, D21->as_VMReg()->next());
141
reg_def R_D22 (SOC, SOC, Op_RegD, 44, D22->as_VMReg());
142
reg_def R_D22x(SOC, SOC, Op_RegD,255, D22->as_VMReg()->next());
143
reg_def R_D23 (SOC, SOC, Op_RegD, 46, D23->as_VMReg());
144
reg_def R_D23x(SOC, SOC, Op_RegD,255, D23->as_VMReg()->next());
145
reg_def R_D24 (SOC, SOC, Op_RegD, 48, D24->as_VMReg());
146
reg_def R_D24x(SOC, SOC, Op_RegD,255, D24->as_VMReg()->next());
147
reg_def R_D25 (SOC, SOC, Op_RegD, 50, D25->as_VMReg());
148
reg_def R_D25x(SOC, SOC, Op_RegD,255, D25->as_VMReg()->next());
149
reg_def R_D26 (SOC, SOC, Op_RegD, 52, D26->as_VMReg());
150
reg_def R_D26x(SOC, SOC, Op_RegD,255, D26->as_VMReg()->next());
151
reg_def R_D27 (SOC, SOC, Op_RegD, 54, D27->as_VMReg());
152
reg_def R_D27x(SOC, SOC, Op_RegD,255, D27->as_VMReg()->next());
153
reg_def R_D28 (SOC, SOC, Op_RegD, 56, D28->as_VMReg());
154
reg_def R_D28x(SOC, SOC, Op_RegD,255, D28->as_VMReg()->next());
155
reg_def R_D29 (SOC, SOC, Op_RegD, 58, D29->as_VMReg());
156
reg_def R_D29x(SOC, SOC, Op_RegD,255, D29->as_VMReg()->next());
157
reg_def R_D30 (SOC, SOC, Op_RegD, 60, D30->as_VMReg());
158
reg_def R_D30x(SOC, SOC, Op_RegD,255, D30->as_VMReg()->next());
159
reg_def R_D31 (SOC, SOC, Op_RegD, 62, D31->as_VMReg());
160
reg_def R_D31x(SOC, SOC, Op_RegD,255, D31->as_VMReg()->next());
161

162
// ----------------------------
163
// Special Registers
164
// Condition Codes Flag Registers
165
reg_def APSR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
166
reg_def FPSCR(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
167

168
// ----------------------------
169
// Specify the enum values for the registers.  These enums are only used by the
170
// OptoReg "class". We can convert these enum values at will to VMReg when needed
171
// for visibility to the rest of the vm. The order of this enum influences the
172
// register allocator so having the freedom to set this order and not be stuck
173
// with the order that is natural for the rest of the vm is worth it.
174

175
// registers in that order so that R11/R12 is an aligned pair that can be used for longs
176
alloc_class chunk0(
177
                   R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R11, R_R12, R_R10, R_R13, R_R14, R_R15, R_R0, R_R1, R_R2, R_R3);
178

179
// Note that a register is not allocatable unless it is also mentioned
180
// in a widely-used reg_class below.
181

182
alloc_class chunk1(
183
                   R_S16, R_S17, R_S18, R_S19, R_S20, R_S21, R_S22, R_S23,
184
                   R_S24, R_S25, R_S26, R_S27, R_S28, R_S29, R_S30, R_S31,
185
                   R_S0,  R_S1,  R_S2,  R_S3,  R_S4,  R_S5,  R_S6,  R_S7,
186
                   R_S8,  R_S9,  R_S10, R_S11, R_S12, R_S13, R_S14, R_S15,
187
                   R_D16, R_D16x,R_D17, R_D17x,R_D18, R_D18x,R_D19, R_D19x,
188
                   R_D20, R_D20x,R_D21, R_D21x,R_D22, R_D22x,R_D23, R_D23x,
189
                   R_D24, R_D24x,R_D25, R_D25x,R_D26, R_D26x,R_D27, R_D27x,
190
                   R_D28, R_D28x,R_D29, R_D29x,R_D30, R_D30x,R_D31, R_D31x
191
);
192

193
alloc_class chunk2(APSR, FPSCR);
194

195
//----------Architecture Description Register Classes--------------------------
196
// Several register classes are automatically defined based upon information in
197
// this architecture description.
198
// 1) reg_class inline_cache_reg           ( as defined in frame section )
199
// 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
200
//
201

202
// ----------------------------
203
// Integer Register Classes
204
// ----------------------------
205
// Exclusions from i_reg:
206
// SP (R13), PC (R15)
207
// R10: reserved by HotSpot to the TLS register (invariant within Java)
208
reg_class int_reg(R_R0, R_R1, R_R2, R_R3, R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R11, R_R12, R_R14);
209

210
reg_class R0_regI(R_R0);
211
reg_class R1_regI(R_R1);
212
reg_class R2_regI(R_R2);
213
reg_class R3_regI(R_R3);
214
reg_class R12_regI(R_R12);
215

216
// ----------------------------
217
// Pointer Register Classes
218
// ----------------------------
219
reg_class ptr_reg(R_R0, R_R1, R_R2, R_R3, R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R11, R_R12, R_R14);
220
// Special class for storeP instructions, which can store SP or RPC to TLS.
221
// It is also used for memory addressing, allowing direct TLS addressing.
222
reg_class sp_ptr_reg(R_R0, R_R1, R_R2, R_R3, R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R11, R_R12, R_R14, R_R10 /* TLS*/, R_R13 /* SP*/);
223

224
#define R_Ricklass R_R8
225
#define R_Rthread  R_R10
226
#define R_Rexception_obj R_R4
227

228
// Other special pointer regs
229
reg_class R0_regP(R_R0);
230
reg_class R1_regP(R_R1);
231
reg_class R2_regP(R_R2);
232
reg_class R4_regP(R_R4);
233
reg_class R8_regP(R_R8);
234
reg_class R9_regP(R_R9);
235
reg_class R12_regP(R_R12);
236
reg_class Rexception_regP(R_Rexception_obj);
237
reg_class Ricklass_regP(R_Ricklass);
238
reg_class Rthread_regP(R_Rthread);
239
reg_class IP_regP(R_R12);
240
reg_class SP_regP(R_R13);
241
reg_class LR_regP(R_R14);
242

243
reg_class FP_regP(R_R11);
244

245
// ----------------------------
246
// Long Register Classes
247
// ----------------------------
248
reg_class long_reg (             R_R0,R_R1, R_R2,R_R3, R_R4,R_R5, R_R6,R_R7, R_R8,R_R9, R_R11,R_R12);
249
// for ldrexd, strexd: first reg of pair must be even
250
reg_class long_reg_align (       R_R0,R_R1, R_R2,R_R3, R_R4,R_R5, R_R6,R_R7, R_R8,R_R9);
251

252
reg_class R0R1_regL(R_R0,R_R1);
253
reg_class R2R3_regL(R_R2,R_R3);
254

255
// ----------------------------
256
// Special Class for Condition Code Flags Register
257
reg_class int_flags(APSR);
258
reg_class float_flags(FPSCR);
259

260

261
// ----------------------------
262
// Float Point Register Classes
263
// ----------------------------
264
// Skip S14/S15, they are reserved for mem-mem copies
265
reg_class sflt_reg(R_S0, R_S1, R_S2, R_S3, R_S4, R_S5, R_S6, R_S7, R_S8, R_S9, R_S10, R_S11, R_S12, R_S13,
266
                   R_S16, R_S17, R_S18, R_S19, R_S20, R_S21, R_S22, R_S23, R_S24, R_S25, R_S26, R_S27, R_S28, R_S29, R_S30, R_S31);
267

268
// Paired floating point registers--they show up in the same order as the floats,
269
// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
270
reg_class dflt_reg(R_S0,R_S1, R_S2,R_S3, R_S4,R_S5, R_S6,R_S7, R_S8,R_S9, R_S10,R_S11, R_S12,R_S13,
271
                   R_S16,R_S17, R_S18,R_S19, R_S20,R_S21, R_S22,R_S23, R_S24,R_S25, R_S26,R_S27, R_S28,R_S29, R_S30,R_S31,
272
                   R_D16,R_D16x, R_D17,R_D17x, R_D18,R_D18x, R_D19,R_D19x, R_D20,R_D20x, R_D21,R_D21x, R_D22,R_D22x,
273
                   R_D23,R_D23x, R_D24,R_D24x, R_D25,R_D25x, R_D26,R_D26x, R_D27,R_D27x, R_D28,R_D28x, R_D29,R_D29x,
274
                   R_D30,R_D30x, R_D31,R_D31x);
275

276
reg_class dflt_low_reg(R_S0,R_S1, R_S2,R_S3, R_S4,R_S5, R_S6,R_S7, R_S8,R_S9, R_S10,R_S11, R_S12,R_S13,
277
                       R_S16,R_S17, R_S18,R_S19, R_S20,R_S21, R_S22,R_S23, R_S24,R_S25, R_S26,R_S27, R_S28,R_S29, R_S30,R_S31);
278

279

280
reg_class actual_dflt_reg %{
281
  if (VM_Version::has_vfp3_32()) {
282
    return DFLT_REG_mask();
283
  } else {
284
    return DFLT_LOW_REG_mask();
285
  }
286
%}
287

288
reg_class S0_regF(R_S0);
289
reg_class D0_regD(R_S0,R_S1);
290
reg_class D1_regD(R_S2,R_S3);
291
reg_class D2_regD(R_S4,R_S5);
292
reg_class D3_regD(R_S6,R_S7);
293
reg_class D4_regD(R_S8,R_S9);
294
reg_class D5_regD(R_S10,R_S11);
295
reg_class D6_regD(R_S12,R_S13);
296
reg_class D7_regD(R_S14,R_S15);
297

298
reg_class D16_regD(R_D16,R_D16x);
299
reg_class D17_regD(R_D17,R_D17x);
300
reg_class D18_regD(R_D18,R_D18x);
301
reg_class D19_regD(R_D19,R_D19x);
302
reg_class D20_regD(R_D20,R_D20x);
303
reg_class D21_regD(R_D21,R_D21x);
304
reg_class D22_regD(R_D22,R_D22x);
305
reg_class D23_regD(R_D23,R_D23x);
306
reg_class D24_regD(R_D24,R_D24x);
307
reg_class D25_regD(R_D25,R_D25x);
308
reg_class D26_regD(R_D26,R_D26x);
309
reg_class D27_regD(R_D27,R_D27x);
310
reg_class D28_regD(R_D28,R_D28x);
311
reg_class D29_regD(R_D29,R_D29x);
312
reg_class D30_regD(R_D30,R_D30x);
313
reg_class D31_regD(R_D31,R_D31x);
314

315
reg_class vectorx_reg(R_S0,R_S1,R_S2,R_S3, R_S4,R_S5,R_S6,R_S7,
316
                      R_S8,R_S9,R_S10,R_S11, /* skip S14/S15 */
317
                      R_S16,R_S17,R_S18,R_S19, R_S20,R_S21,R_S22,R_S23,
318
                      R_S24,R_S25,R_S26,R_S27, R_S28,R_S29,R_S30,R_S31,
319
                      R_D16,R_D16x,R_D17,R_D17x, R_D18,R_D18x,R_D19,R_D19x,
320
                      R_D20,R_D20x,R_D21,R_D21x, R_D22,R_D22x,R_D23,R_D23x,
321
                      R_D24,R_D24x,R_D25,R_D25x, R_D26,R_D26x,R_D27,R_D27x,
322
                      R_D28,R_D28x,R_D29,R_D29x, R_D30,R_D30x,R_D31,R_D31x);
323

324
%}
325

326
source_hpp %{
327
// FIXME
328
const MachRegisterNumbers R_mem_copy_lo_num = R_S14_num;
329
const MachRegisterNumbers R_mem_copy_hi_num = R_S15_num;
330
const FloatRegister Rmemcopy = S14;
331
const MachRegisterNumbers R_hf_ret_lo_num = R_S0_num;
332
const MachRegisterNumbers R_hf_ret_hi_num = R_S1_num;
333

334
const MachRegisterNumbers R_Ricklass_num = R_R8_num;
335
const MachRegisterNumbers R_Rmethod_num  = R_R9_num;
336

337
#define LDR_DOUBLE "FLDD"
338
#define LDR_FLOAT  "FLDS"
339
#define STR_DOUBLE "FSTD"
340
#define STR_FLOAT  "FSTS"
341
#define LDR_64     "LDRD"
342
#define STR_64     "STRD"
343
#define LDR_32     "LDR"
344
#define STR_32     "STR"
345
#define MOV_DOUBLE "FCPYD"
346
#define MOV_FLOAT  "FCPYS"
347
#define FMSR       "FMSR"
348
#define FMRS       "FMRS"
349
#define LDREX      "ldrex "
350
#define STREX      "strex "
351

352
#define str_64     strd
353
#define ldr_64     ldrd
354
#define ldr_32     ldr
355
#define ldrex      ldrex
356
#define strex      strex
357

358
static inline bool is_memoryD(int offset) {
359
  return offset < 1024 && offset > -1024;
360
}
361

362
static inline bool is_memoryfp(int offset) {
363
  return offset < 1024 && offset > -1024;
364
}
365

366
static inline bool is_memoryI(int offset) {
367
  return offset < 4096 && offset > -4096;
368
}
369

370
static inline bool is_memoryP(int offset) {
371
  return offset < 4096 && offset > -4096;
372
}
373

374
static inline bool is_memoryHD(int offset) {
375
  return offset < 256 && offset > -256;
376
}
377

378
static inline bool is_aimm(int imm) {
379
  return AsmOperand::is_rotated_imm(imm);
380
}
381

382
static inline bool is_limmI(jint imm) {
383
  return AsmOperand::is_rotated_imm(imm);
384
}
385

386
static inline bool is_limmI_low(jint imm, int n) {
387
  int imml = imm & right_n_bits(n);
388
  return is_limmI(imml) || is_limmI(imm);
389
}
390

391
static inline int limmI_low(jint imm, int n) {
392
  int imml = imm & right_n_bits(n);
393
  return is_limmI(imml) ? imml : imm;
394
}
395

396
%}
397

398
source %{
399

400
// Given a register encoding, produce a Integer Register object
401
static Register reg_to_register_object(int register_encoding) {
402
  assert(R0->encoding() == R_R0_enc && R15->encoding() == R_R15_enc, "right coding");
403
  return as_Register(register_encoding);
404
}
405

406
// Given a register encoding, produce a single-precision Float Register object
407
static FloatRegister reg_to_FloatRegister_object(int register_encoding) {
408
  assert(S0->encoding() == R_S0_enc && S31->encoding() == R_S31_enc, "right coding");
409
  return as_FloatRegister(register_encoding);
410
}
411

412
void Compile::pd_compiler2_init() {
413
  // Umimplemented
414
}
415

416
// Location of compiled Java return values.  Same as C
417
OptoRegPair c2::return_value(int ideal_reg) {
418
  assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
419
#ifndef __ABI_HARD__
420
  static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, R_R0_num,     R_R0_num,     R_R0_num,     R_R0_num, R_R0_num };
421
  static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_R1_num, R_R1_num };
422
#else
423
  static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, R_R0_num,     R_R0_num,     R_hf_ret_lo_num,  R_hf_ret_lo_num, R_R0_num };
424
  static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad,     R_hf_ret_hi_num, R_R1_num };
425
#endif
426
  return OptoRegPair( hi[ideal_reg], lo[ideal_reg]);
427
}
428

429
// !!!!! Special hack to get all type of calls to specify the byte offset
430
//       from the start of the call to the point where the return address
431
//       will point.
432

433
int MachCallStaticJavaNode::ret_addr_offset() {
434
  bool far = (_method == nullptr) ? maybe_far_call(this) : !cache_reachable();
435
  return ((far ? 3 : 1) + (_method_handle_invoke ? 1 : 0)) *
436
    NativeInstruction::instruction_size;
437
}
438

439
int MachCallDynamicJavaNode::ret_addr_offset() {
440
  bool far = !cache_reachable();
441
  // mov_oop is always 2 words
442
  return (2 + (far ? 3 : 1)) * NativeInstruction::instruction_size;
443
}
444

445
int MachCallRuntimeNode::ret_addr_offset() {
446
  // bl or movw; movt; blx
447
  bool far = maybe_far_call(this);
448
  return (far ? 3 : 1) * NativeInstruction::instruction_size;
449
}
450
%}
451

452
// The intptr_t operand types, defined by textual substitution.
453
// (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
454
#define immX      immI
455
#define immXRot   immIRot
456
#define iRegX     iRegI
457
#define aimmX     aimmI
458
#define limmX     limmI
459
#define immX10x2  immI10x2
460
#define LShiftX   LShiftI
461
#define shimmX    immU5
462

463
// Compatibility interface
464
#define aimmP     immPRot
465
#define immIMov   immIRot
466

467
#define store_RegL     iRegL
468
#define store_RegLd    iRegLd
469
#define store_RegI     iRegI
470
#define store_ptr_RegP iRegP
471

472
//----------ATTRIBUTES---------------------------------------------------------
473
//----------Operand Attributes-------------------------------------------------
474
op_attrib op_cost(1);          // Required cost attribute
475

476
//----------OPERANDS-----------------------------------------------------------
477
// Operand definitions must precede instruction definitions for correct parsing
478
// in the ADLC because operands constitute user defined types which are used in
479
// instruction definitions.
480

481
//----------Simple Operands----------------------------------------------------
482
// Immediate Operands
483

484
operand immIRot() %{
485
  predicate(AsmOperand::is_rotated_imm(n->get_int()));
486
  match(ConI);
487

488
  op_cost(0);
489
  // formats are generated automatically for constants and base registers
490
  format %{ %}
491
  interface(CONST_INTER);
492
%}
493

494
operand immIRotn() %{
495
  predicate(n->get_int() != 0 && AsmOperand::is_rotated_imm(~n->get_int()));
496
  match(ConI);
497

498
  op_cost(0);
499
  // formats are generated automatically for constants and base registers
500
  format %{ %}
501
  interface(CONST_INTER);
502
%}
503

504
operand immPRot() %{
505
  predicate(n->get_ptr() == 0 || (AsmOperand::is_rotated_imm(n->get_ptr()) && ((ConPNode*)n)->type()->reloc() == relocInfo::none));
506

507
  match(ConP);
508

509
  op_cost(0);
510
  // formats are generated automatically for constants and base registers
511
  format %{ %}
512
  interface(CONST_INTER);
513
%}
514

515
operand immLlowRot() %{
516
  predicate(n->get_long() >> 32 == 0 && AsmOperand::is_rotated_imm((int)n->get_long()));
517
  match(ConL);
518
  op_cost(0);
519

520
  format %{ %}
521
  interface(CONST_INTER);
522
%}
523

524
//operand immLRot2() %{
525
//  predicate(AsmOperand::is_rotated_imm((int)(n->get_long() >> 32)) &&
526
//            AsmOperand::is_rotated_imm((int)(n->get_long())));
527
//  match(ConL);
528
//  op_cost(0);
529
//
530
//  format %{ %}
531
//  interface(CONST_INTER);
532
//%}
533

534
// Integer Immediate: 12-bit - for addressing mode
535
operand immI12() %{
536
  predicate((-4096 < n->get_int()) && (n->get_int() < 4096));
537
  match(ConI);
538
  op_cost(0);
539

540
  format %{ %}
541
  interface(CONST_INTER);
542
%}
543

544
// Integer Immediate: 10-bit disp and disp+4 - for addressing float pair
545
operand immI10x2() %{
546
  predicate((-1024 < n->get_int()) && (n->get_int() < 1024 - 4));
547
  match(ConI);
548
  op_cost(0);
549

550
  format %{ %}
551
  interface(CONST_INTER);
552
%}
553

554
// Integer Immediate: 12-bit disp and disp+4 - for addressing word pair
555
operand immI12x2() %{
556
  predicate((-4096 < n->get_int()) && (n->get_int() < 4096 - 4));
557
  match(ConI);
558
  op_cost(0);
559

560
  format %{ %}
561
  interface(CONST_INTER);
562
%}
563

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.