jdk

Форк
0
/
macroAssembler_aarch64.cpp 
6867 строк · 226.3 Кб
1
/*
2
 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
3
 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
4
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
 *
6
 * This code is free software; you can redistribute it and/or modify it
7
 * under the terms of the GNU General Public License version 2 only, as
8
 * published by the Free Software Foundation.
9
 *
10
 * This code is distributed in the hope that it will be useful, but WITHOUT
11
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13
 * version 2 for more details (a copy is included in the LICENSE file that
14
 * accompanied this code).
15
 *
16
 * You should have received a copy of the GNU General Public License version
17
 * 2 along with this work; if not, write to the Free Software Foundation,
18
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
 *
20
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
 * or visit www.oracle.com if you need additional information or have any
22
 * questions.
23
 *
24
 */
25

26
#include "precompiled.hpp"
27
#include "asm/assembler.hpp"
28
#include "asm/assembler.inline.hpp"
29
#include "ci/ciEnv.hpp"
30
#include "code/compiledIC.hpp"
31
#include "compiler/compileTask.hpp"
32
#include "compiler/disassembler.hpp"
33
#include "compiler/oopMap.hpp"
34
#include "gc/shared/barrierSet.hpp"
35
#include "gc/shared/barrierSetAssembler.hpp"
36
#include "gc/shared/cardTableBarrierSet.hpp"
37
#include "gc/shared/cardTable.hpp"
38
#include "gc/shared/collectedHeap.hpp"
39
#include "gc/shared/tlab_globals.hpp"
40
#include "interpreter/bytecodeHistogram.hpp"
41
#include "interpreter/interpreter.hpp"
42
#include "jvm.h"
43
#include "memory/resourceArea.hpp"
44
#include "memory/universe.hpp"
45
#include "nativeInst_aarch64.hpp"
46
#include "oops/accessDecorators.hpp"
47
#include "oops/compressedKlass.inline.hpp"
48
#include "oops/compressedOops.inline.hpp"
49
#include "oops/klass.inline.hpp"
50
#include "runtime/continuation.hpp"
51
#include "runtime/icache.hpp"
52
#include "runtime/interfaceSupport.inline.hpp"
53
#include "runtime/javaThread.hpp"
54
#include "runtime/jniHandles.inline.hpp"
55
#include "runtime/sharedRuntime.hpp"
56
#include "runtime/stubRoutines.hpp"
57
#include "utilities/globalDefinitions.hpp"
58
#include "utilities/powerOfTwo.hpp"
59
#ifdef COMPILER1
60
#include "c1/c1_LIRAssembler.hpp"
61
#endif
62
#ifdef COMPILER2
63
#include "oops/oop.hpp"
64
#include "opto/compile.hpp"
65
#include "opto/node.hpp"
66
#include "opto/output.hpp"
67
#endif
68

69
#include <sys/types.h>
70

71
#ifdef PRODUCT
72
#define BLOCK_COMMENT(str) /* nothing */
73
#else
74
#define BLOCK_COMMENT(str) block_comment(str)
75
#endif
76
#define STOP(str) stop(str);
77
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
78

79
#ifdef ASSERT
80
extern "C" void disnm(intptr_t p);
81
#endif
82
// Target-dependent relocation processing
83
//
84
// Instruction sequences whose target may need to be retrieved or
85
// patched are distinguished by their leading instruction, sorting
86
// them into three main instruction groups and related subgroups.
87
//
88
// 1) Branch, Exception and System (insn count = 1)
89
//    1a) Unconditional branch (immediate):
90
//      b/bl imm19
91
//    1b) Compare & branch (immediate):
92
//      cbz/cbnz Rt imm19
93
//    1c) Test & branch (immediate):
94
//      tbz/tbnz Rt imm14
95
//    1d) Conditional branch (immediate):
96
//      b.cond imm19
97
//
98
// 2) Loads and Stores (insn count = 1)
99
//    2a) Load register literal:
100
//      ldr Rt imm19
101
//
102
// 3) Data Processing Immediate (insn count = 2 or 3)
103
//    3a) PC-rel. addressing
104
//      adr/adrp Rx imm21; ldr/str Ry Rx  #imm12
105
//      adr/adrp Rx imm21; add Ry Rx  #imm12
106
//      adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page]
107
//      adr/adrp Rx imm21
108
//      adr/adrp Rx imm21; movk Rx #imm16<<32
109
//      adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page
110
//      The latter form can only happen when the target is an
111
//      ExternalAddress, and (by definition) ExternalAddresses don't
112
//      move. Because of that property, there is never any need to
113
//      patch the last of the three instructions. However,
114
//      MacroAssembler::target_addr_for_insn takes all three
115
//      instructions into account and returns the correct address.
116
//    3b) Move wide (immediate)
117
//      movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32;
118
//
119
// A switch on a subset of the instruction's bits provides an
120
// efficient dispatch to these subcases.
121
//
122
// insn[28:26] -> main group ('x' == don't care)
123
//   00x -> UNALLOCATED
124
//   100 -> Data Processing Immediate
125
//   101 -> Branch, Exception and System
126
//   x1x -> Loads and Stores
127
//
128
// insn[30:25] -> subgroup ('_' == group, 'x' == don't care).
129
// n.b. in some cases extra bits need to be checked to verify the
130
// instruction is as expected
131
//
132
// 1) ... xx101x Branch, Exception and System
133
//   1a)  00___x Unconditional branch (immediate)
134
//   1b)  01___0 Compare & branch (immediate)
135
//   1c)  01___1 Test & branch (immediate)
136
//   1d)  10___0 Conditional branch (immediate)
137
//        other  Should not happen
138
//
139
// 2) ... xxx1x0 Loads and Stores
140
//   2a)  xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0)
141
//   2aa) x01__00 Load register literal (i.e. requires insn[29] == 0)
142
//                strictly should be 64 bit non-FP/SIMD i.e.
143
//       0101_000 (i.e. requires insn[31:24] == 01011000)
144
//
145
// 3) ... xx100x Data Processing Immediate
146
//   3a)  xx___00 PC-rel. addressing (n.b. requires insn[24] == 0)
147
//   3b)  xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01)
148
//                 strictly should be 64 bit movz #imm16<<0
149
//       110___10100 (i.e. requires insn[31:21] == 11010010100)
150
//
151
class RelocActions {
152
protected:
153
  typedef int (*reloc_insn)(address insn_addr, address &target);
154

155
  virtual reloc_insn adrpMem() = 0;
156
  virtual reloc_insn adrpAdd() = 0;
157
  virtual reloc_insn adrpMovk() = 0;
158

159
  const address _insn_addr;
160
  const uint32_t _insn;
161

162
  static uint32_t insn_at(address insn_addr, int n) {
163
    return ((uint32_t*)insn_addr)[n];
164
  }
165
  uint32_t insn_at(int n) const {
166
    return insn_at(_insn_addr, n);
167
  }
168

169
public:
170

171
  RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {}
172
  RelocActions(address insn_addr, uint32_t insn)
173
    :  _insn_addr(insn_addr), _insn(insn) {}
174

175
  virtual int unconditionalBranch(address insn_addr, address &target) = 0;
176
  virtual int conditionalBranch(address insn_addr, address &target) = 0;
177
  virtual int testAndBranch(address insn_addr, address &target) = 0;
178
  virtual int loadStore(address insn_addr, address &target) = 0;
179
  virtual int adr(address insn_addr, address &target) = 0;
180
  virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0;
181
  virtual int immediate(address insn_addr, address &target) = 0;
182
  virtual void verify(address insn_addr, address &target) = 0;
183

184
  int ALWAYSINLINE run(address insn_addr, address &target) {
185
    int instructions = 1;
186

187
    uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25);
188
    switch(dispatch) {
189
      case 0b001010:
190
      case 0b001011: {
191
        instructions = unconditionalBranch(insn_addr, target);
192
        break;
193
      }
194
      case 0b101010:   // Conditional branch (immediate)
195
      case 0b011010: { // Compare & branch (immediate)
196
        instructions = conditionalBranch(insn_addr, target);
197
          break;
198
      }
199
      case 0b011011: {
200
        instructions = testAndBranch(insn_addr, target);
201
        break;
202
      }
203
      case 0b001100:
204
      case 0b001110:
205
      case 0b011100:
206
      case 0b011110:
207
      case 0b101100:
208
      case 0b101110:
209
      case 0b111100:
210
      case 0b111110: {
211
        // load/store
212
        if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) {
213
          // Load register (literal)
214
          instructions = loadStore(insn_addr, target);
215
          break;
216
        } else {
217
          // nothing to do
218
          assert(target == 0, "did not expect to relocate target for polling page load");
219
        }
220
        break;
221
      }
222
      case 0b001000:
223
      case 0b011000:
224
      case 0b101000:
225
      case 0b111000: {
226
        // adr/adrp
227
        assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
228
        int shift = Instruction_aarch64::extract(_insn, 31, 31);
229
        if (shift) {
230
          uint32_t insn2 = insn_at(1);
231
          if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
232
              Instruction_aarch64::extract(_insn, 4, 0) ==
233
              Instruction_aarch64::extract(insn2, 9, 5)) {
234
            instructions = adrp(insn_addr, target, adrpMem());
235
          } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
236
                     Instruction_aarch64::extract(_insn, 4, 0) ==
237
                     Instruction_aarch64::extract(insn2, 4, 0)) {
238
            instructions = adrp(insn_addr, target, adrpAdd());
239
          } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
240
                     Instruction_aarch64::extract(_insn, 4, 0) ==
241
                     Instruction_aarch64::extract(insn2, 4, 0)) {
242
            instructions = adrp(insn_addr, target, adrpMovk());
243
          } else {
244
            ShouldNotReachHere();
245
          }
246
        } else {
247
          instructions = adr(insn_addr, target);
248
        }
249
        break;
250
      }
251
      case 0b001001:
252
      case 0b011001:
253
      case 0b101001:
254
      case 0b111001: {
255
        instructions = immediate(insn_addr, target);
256
        break;
257
      }
258
      default: {
259
        ShouldNotReachHere();
260
      }
261
    }
262

263
    verify(insn_addr, target);
264
    return instructions * NativeInstruction::instruction_size;
265
  }
266
};
267

268
class Patcher : public RelocActions {
269
  virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; }
270
  virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; }
271
  virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; }
272

273
public:
274
  Patcher(address insn_addr) : RelocActions(insn_addr) {}
275

276
  virtual int unconditionalBranch(address insn_addr, address &target) {
277
    intptr_t offset = (target - insn_addr) >> 2;
278
    Instruction_aarch64::spatch(insn_addr, 25, 0, offset);
279
    return 1;
280
  }
281
  virtual int conditionalBranch(address insn_addr, address &target) {
282
    intptr_t offset = (target - insn_addr) >> 2;
283
    Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
284
    return 1;
285
  }
286
  virtual int testAndBranch(address insn_addr, address &target) {
287
    intptr_t offset = (target - insn_addr) >> 2;
288
    Instruction_aarch64::spatch(insn_addr, 18, 5, offset);
289
    return 1;
290
  }
291
  virtual int loadStore(address insn_addr, address &target) {
292
    intptr_t offset = (target - insn_addr) >> 2;
293
    Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
294
    return 1;
295
  }
296
  virtual int adr(address insn_addr, address &target) {
297
#ifdef ASSERT
298
    assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
299
#endif
300
    // PC-rel. addressing
301
    ptrdiff_t offset = target - insn_addr;
302
    int offset_lo = offset & 3;
303
    offset >>= 2;
304
    Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
305
    Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo);
306
    return 1;
307
  }
308
  virtual int adrp(address insn_addr, address &target, reloc_insn inner) {
309
    int instructions = 1;
310
#ifdef ASSERT
311
    assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
312
#endif
313
    ptrdiff_t offset = target - insn_addr;
314
    instructions = 2;
315
    precond(inner != nullptr);
316
    // Give the inner reloc a chance to modify the target.
317
    address adjusted_target = target;
318
    instructions = (*inner)(insn_addr, adjusted_target);
319
    uintptr_t pc_page = (uintptr_t)insn_addr >> 12;
320
    uintptr_t adr_page = (uintptr_t)adjusted_target >> 12;
321
    offset = adr_page - pc_page;
322
    int offset_lo = offset & 3;
323
    offset >>= 2;
324
    Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
325
    Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo);
326
    return instructions;
327
  }
328
  static int adrpMem_impl(address insn_addr, address &target) {
329
    uintptr_t dest = (uintptr_t)target;
330
    int offset_lo = dest & 0xfff;
331
    uint32_t insn2 = insn_at(insn_addr, 1);
332
    uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
333
    Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size);
334
    guarantee(((dest >> size) << size) == dest, "misaligned target");
335
    return 2;
336
  }
337
  static int adrpAdd_impl(address insn_addr, address &target) {
338
    uintptr_t dest = (uintptr_t)target;
339
    int offset_lo = dest & 0xfff;
340
    Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo);
341
    return 2;
342
  }
343
  static int adrpMovk_impl(address insn_addr, address &target) {
344
    uintptr_t dest = uintptr_t(target);
345
    Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32);
346
    dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL);
347
    target = address(dest);
348
    return 2;
349
  }
350
  virtual int immediate(address insn_addr, address &target) {
351
    assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be");
352
    uint64_t dest = (uint64_t)target;
353
    // Move wide constant
354
    assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
355
    assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
356
    Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
357
    Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
358
    Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
359
    return 3;
360
  }
361
  virtual void verify(address insn_addr, address &target) {
362
#ifdef ASSERT
363
    address address_is = MacroAssembler::target_addr_for_insn(insn_addr);
364
    if (!(address_is == target)) {
365
      tty->print_cr("%p at %p should be %p", address_is, insn_addr, target);
366
      disnm((intptr_t)insn_addr);
367
      assert(address_is == target, "should be");
368
    }
369
#endif
370
  }
371
};
372

373
// If insn1 and insn2 use the same register to form an address, either
374
// by an offsetted LDR or a simple ADD, return the offset. If the
375
// second instruction is an LDR, the offset may be scaled.
376
static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) {
377
  if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
378
      Instruction_aarch64::extract(insn1, 4, 0) ==
379
      Instruction_aarch64::extract(insn2, 9, 5)) {
380
    // Load/store register (unsigned immediate)
381
    byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
382
    uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
383
    byte_offset <<= size;
384
    return true;
385
  } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
386
             Instruction_aarch64::extract(insn1, 4, 0) ==
387
             Instruction_aarch64::extract(insn2, 4, 0)) {
388
    // add (immediate)
389
    byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
390
    return true;
391
  }
392
  return false;
393
}
394

395
class AArch64Decoder : public RelocActions {
396
  virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; }
397
  virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; }
398
  virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; }
399

400
public:
401
  AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {}
402

403
  virtual int loadStore(address insn_addr, address &target) {
404
    intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5);
405
    target = insn_addr + (offset << 2);
406
    return 1;
407
  }
408
  virtual int unconditionalBranch(address insn_addr, address &target) {
409
    intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0);
410
    target = insn_addr + (offset << 2);
411
    return 1;
412
  }
413
  virtual int conditionalBranch(address insn_addr, address &target) {
414
    intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5);
415
    target = address(((uint64_t)insn_addr + (offset << 2)));
416
    return 1;
417
  }
418
  virtual int testAndBranch(address insn_addr, address &target) {
419
    intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5);
420
    target = address(((uint64_t)insn_addr + (offset << 2)));
421
    return 1;
422
  }
423
  virtual int adr(address insn_addr, address &target) {
424
    // PC-rel. addressing
425
    intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29);
426
    offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2;
427
    target = address((uint64_t)insn_addr + offset);
428
    return 1;
429
  }
430
  virtual int adrp(address insn_addr, address &target, reloc_insn inner) {
431
    assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
432
    intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29);
433
    offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2;
434
    int shift = 12;
435
    offset <<= shift;
436
    uint64_t target_page = ((uint64_t)insn_addr) + offset;
437
    target_page &= ((uint64_t)-1) << shift;
438
    uint32_t insn2 = insn_at(1);
439
    target = address(target_page);
440
    precond(inner != nullptr);
441
    (*inner)(insn_addr, target);
442
    return 2;
443
  }
444
  static int adrpMem_impl(address insn_addr, address &target) {
445
    uint32_t insn2 = insn_at(insn_addr, 1);
446
    // Load/store register (unsigned immediate)
447
    ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
448
    uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
449
    byte_offset <<= size;
450
    target += byte_offset;
451
    return 2;
452
  }
453
  static int adrpAdd_impl(address insn_addr, address &target) {
454
    uint32_t insn2 = insn_at(insn_addr, 1);
455
    // add (immediate)
456
    ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
457
    target += byte_offset;
458
    return 2;
459
  }
460
  static int adrpMovk_impl(address insn_addr, address &target) {
461
    uint32_t insn2 = insn_at(insn_addr, 1);
462
    uint64_t dest = uint64_t(target);
463
    dest = (dest & 0xffff0000ffffffff) |
464
      ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32);
465
    target = address(dest);
466

467
    // We know the destination 4k page. Maybe we have a third
468
    // instruction.
469
    uint32_t insn = insn_at(insn_addr, 0);
470
    uint32_t insn3 = insn_at(insn_addr, 2);
471
    ptrdiff_t byte_offset;
472
    if (offset_for(insn, insn3, byte_offset)) {
473
      target += byte_offset;
474
      return 3;
475
    } else {
476
      return 2;
477
    }
478
  }
479
  virtual int immediate(address insn_addr, address &target) {
480
    uint32_t *insns = (uint32_t *)insn_addr;
481
    assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be");
482
    // Move wide constant: movz, movk, movk.  See movptr().
483
    assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
484
    assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
485
    target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5))
486
                 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
487
                 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
488
    assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
489
    assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
490
    return 3;
491
  }
492
  virtual void verify(address insn_addr, address &target) {
493
  }
494
};
495

496
address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) {
497
  AArch64Decoder decoder(insn_addr, insn);
498
  address target;
499
  decoder.run(insn_addr, target);
500
  return target;
501
}
502

503
// Patch any kind of instruction; there may be several instructions.
504
// Return the total length (in bytes) of the instructions.
505
int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) {
506
  Patcher patcher(insn_addr);
507
  return patcher.run(insn_addr, target);
508
}
509

510
int MacroAssembler::patch_oop(address insn_addr, address o) {
511
  int instructions;
512
  unsigned insn = *(unsigned*)insn_addr;
513
  assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
514

515
  // OOPs are either narrow (32 bits) or wide (48 bits).  We encode
516
  // narrow OOPs by setting the upper 16 bits in the first
517
  // instruction.
518
  if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
519
    // Move narrow OOP
520
    uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o));
521
    Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
522
    Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
523
    instructions = 2;
524
  } else {
525
    // Move wide OOP
526
    assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
527
    uintptr_t dest = (uintptr_t)o;
528
    Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
529
    Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
530
    Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
531
    instructions = 3;
532
  }
533
  return instructions * NativeInstruction::instruction_size;
534
}
535

536
int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) {
537
  // Metadata pointers are either narrow (32 bits) or wide (48 bits).
538
  // We encode narrow ones by setting the upper 16 bits in the first
539
  // instruction.
540
  NativeInstruction *insn = nativeInstruction_at(insn_addr);
541
  assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 &&
542
         nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
543

544
  Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
545
  Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
546
  return 2 * NativeInstruction::instruction_size;
547
}
548

549
address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) {
550
  if (NativeInstruction::is_ldrw_to_zr(address(&insn))) {
551
    return nullptr;
552
  }
553
  return MacroAssembler::target_addr_for_insn(insn_addr, insn);
554
}
555

556
void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) {
557
  if (acquire) {
558
    lea(tmp, Address(rthread, JavaThread::polling_word_offset()));
559
    ldar(tmp, tmp);
560
  } else {
561
    ldr(tmp, Address(rthread, JavaThread::polling_word_offset()));
562
  }
563
  if (at_return) {
564
    // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
565
    // we may safely use the sp instead to perform the stack watermark check.
566
    cmp(in_nmethod ? sp : rfp, tmp);
567
    br(Assembler::HI, slow_path);
568
  } else {
569
    tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path);
570
  }
571
}
572

573
void MacroAssembler::rt_call(address dest, Register tmp) {
574
  CodeBlob *cb = CodeCache::find_blob(dest);
575
  if (cb) {
576
    far_call(RuntimeAddress(dest));
577
  } else {
578
    lea(tmp, RuntimeAddress(dest));
579
    blr(tmp);
580
  }
581
}
582

583
void MacroAssembler::push_cont_fastpath(Register java_thread) {
584
  if (!Continuations::enabled()) return;
585
  Label done;
586
  ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
587
  cmp(sp, rscratch1);
588
  br(Assembler::LS, done);
589
  mov(rscratch1, sp); // we can't use sp as the source in str
590
  str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
591
  bind(done);
592
}
593

594
void MacroAssembler::pop_cont_fastpath(Register java_thread) {
595
  if (!Continuations::enabled()) return;
596
  Label done;
597
  ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
598
  cmp(sp, rscratch1);
599
  br(Assembler::LO, done);
600
  str(zr, Address(java_thread, JavaThread::cont_fastpath_offset()));
601
  bind(done);
602
}
603

604
void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
605
  // we must set sp to zero to clear frame
606
  str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
607

608
  // must clear fp, so that compiled frames are not confused; it is
609
  // possible that we need it only for debugging
610
  if (clear_fp) {
611
    str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
612
  }
613

614
  // Always clear the pc because it could have been set by make_walkable()
615
  str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
616
}
617

618
// Calls to C land
619
//
620
// When entering C land, the rfp, & resp of the last Java frame have to be recorded
621
// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
622
// has to be reset to 0. This is required to allow proper stack traversal.
623
void MacroAssembler::set_last_Java_frame(Register last_java_sp,
624
                                         Register last_java_fp,
625
                                         Register last_java_pc,
626
                                         Register scratch) {
627

628
  if (last_java_pc->is_valid()) {
629
      str(last_java_pc, Address(rthread,
630
                                JavaThread::frame_anchor_offset()
631
                                + JavaFrameAnchor::last_Java_pc_offset()));
632
    }
633

634
  // determine last_java_sp register
635
  if (last_java_sp == sp) {
636
    mov(scratch, sp);
637
    last_java_sp = scratch;
638
  } else if (!last_java_sp->is_valid()) {
639
    last_java_sp = esp;
640
  }
641

642
  str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
643

644
  // last_java_fp is optional
645
  if (last_java_fp->is_valid()) {
646
    str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
647
  }
648
}
649

650
void MacroAssembler::set_last_Java_frame(Register last_java_sp,
651
                                         Register last_java_fp,
652
                                         address  last_java_pc,
653
                                         Register scratch) {
654
  assert(last_java_pc != nullptr, "must provide a valid PC");
655

656
  adr(scratch, last_java_pc);
657
  str(scratch, Address(rthread,
658
                       JavaThread::frame_anchor_offset()
659
                       + JavaFrameAnchor::last_Java_pc_offset()));
660

661
  set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
662
}
663

664
void MacroAssembler::set_last_Java_frame(Register last_java_sp,
665
                                         Register last_java_fp,
666
                                         Label &L,
667
                                         Register scratch) {
668
  if (L.is_bound()) {
669
    set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
670
  } else {
671
    InstructionMark im(this);
672
    L.add_patch_at(code(), locator());
673
    set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch);
674
  }
675
}
676

677
static inline bool target_needs_far_branch(address addr) {
678
  // codecache size <= 128M
679
  if (!MacroAssembler::far_branches()) {
680
    return false;
681
  }
682
  // codecache size > 240M
683
  if (MacroAssembler::codestub_branch_needs_far_jump()) {
684
    return true;
685
  }
686
  // codecache size: 128M..240M
687
  return !CodeCache::is_non_nmethod(addr);
688
}
689

690
void MacroAssembler::far_call(Address entry, Register tmp) {
691
  assert(ReservedCodeCacheSize < 4*G, "branch out of range");
692
  assert(CodeCache::find_blob(entry.target()) != nullptr,
693
         "destination of far call not found in code cache");
694
  assert(entry.rspec().type() == relocInfo::external_word_type
695
         || entry.rspec().type() == relocInfo::runtime_call_type
696
         || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type");
697
  if (target_needs_far_branch(entry.target())) {
698
    uint64_t offset;
699
    // We can use ADRP here because we know that the total size of
700
    // the code cache cannot exceed 2Gb (ADRP limit is 4GB).
701
    adrp(tmp, entry, offset);
702
    add(tmp, tmp, offset);
703
    blr(tmp);
704
  } else {
705
    bl(entry);
706
  }
707
}
708

709
int MacroAssembler::far_jump(Address entry, Register tmp) {
710
  assert(ReservedCodeCacheSize < 4*G, "branch out of range");
711
  assert(CodeCache::find_blob(entry.target()) != nullptr,
712
         "destination of far call not found in code cache");
713
  assert(entry.rspec().type() == relocInfo::external_word_type
714
         || entry.rspec().type() == relocInfo::runtime_call_type
715
         || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type");
716
  address start = pc();
717
  if (target_needs_far_branch(entry.target())) {
718
    uint64_t offset;
719
    // We can use ADRP here because we know that the total size of
720
    // the code cache cannot exceed 2Gb (ADRP limit is 4GB).
721
    adrp(tmp, entry, offset);
722
    add(tmp, tmp, offset);
723
    br(tmp);
724
  } else {
725
    b(entry);
726
  }
727
  return pc() - start;
728
}
729

730
void MacroAssembler::reserved_stack_check() {
731
    // testing if reserved zone needs to be enabled
732
    Label no_reserved_zone_enabling;
733

734
    ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
735
    cmp(sp, rscratch1);
736
    br(Assembler::LO, no_reserved_zone_enabling);
737

738
    enter();   // LR and FP are live.
739
    lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone));
740
    mov(c_rarg0, rthread);
741
    blr(rscratch1);
742
    leave();
743

744
    // We have already removed our own frame.
745
    // throw_delayed_StackOverflowError will think that it's been
746
    // called by our caller.
747
    lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
748
    br(rscratch1);
749
    should_not_reach_here();
750

751
    bind(no_reserved_zone_enabling);
752
}
753

754
static void pass_arg0(MacroAssembler* masm, Register arg) {
755
  if (c_rarg0 != arg ) {
756
    masm->mov(c_rarg0, arg);
757
  }
758
}
759

760
static void pass_arg1(MacroAssembler* masm, Register arg) {
761
  if (c_rarg1 != arg ) {
762
    masm->mov(c_rarg1, arg);
763
  }
764
}
765

766
static void pass_arg2(MacroAssembler* masm, Register arg) {
767
  if (c_rarg2 != arg ) {
768
    masm->mov(c_rarg2, arg);
769
  }
770
}
771

772
static void pass_arg3(MacroAssembler* masm, Register arg) {
773
  if (c_rarg3 != arg ) {
774
    masm->mov(c_rarg3, arg);
775
  }
776
}
777

778
void MacroAssembler::call_VM_base(Register oop_result,
779
                                  Register java_thread,
780
                                  Register last_java_sp,
781
                                  address  entry_point,
782
                                  int      number_of_arguments,
783
                                  bool     check_exceptions) {
784
   // determine java_thread register
785
  if (!java_thread->is_valid()) {
786
    java_thread = rthread;
787
  }
788

789
  // determine last_java_sp register
790
  if (!last_java_sp->is_valid()) {
791
    last_java_sp = esp;
792
  }
793

794
  // debugging support
795
  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
796
  assert(java_thread == rthread, "unexpected register");
797
#ifdef ASSERT
798
  // TraceBytecodes does not use r12 but saves it over the call, so don't verify
799
  // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
800
#endif // ASSERT
801

802
  assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
803
  assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
804

805
  // push java thread (becomes first argument of C function)
806

807
  mov(c_rarg0, java_thread);
808

809
  // set last Java frame before call
810
  assert(last_java_sp != rfp, "can't use rfp");
811

812
  Label l;
813
  set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
814

815
  // do the call, remove parameters
816
  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
817

818
  // lr could be poisoned with PAC signature during throw_pending_exception
819
  // if it was tail-call optimized by compiler, since lr is not callee-saved
820
  // reload it with proper value
821
  adr(lr, l);
822

823
  // reset last Java frame
824
  // Only interpreter should have to clear fp
825
  reset_last_Java_frame(true);
826

827
   // C++ interp handles this in the interpreter
828
  check_and_handle_popframe(java_thread);
829
  check_and_handle_earlyret(java_thread);
830

831
  if (check_exceptions) {
832
    // check for pending exceptions (java_thread is set upon return)
833
    ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
834
    Label ok;
835
    cbz(rscratch1, ok);
836
    lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
837
    br(rscratch1);
838
    bind(ok);
839
  }
840

841
  // get oop result if there is one and reset the value in the thread
842
  if (oop_result->is_valid()) {
843
    get_vm_result(oop_result, java_thread);
844
  }
845
}
846

847
void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
848
  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
849
}
850

851
// Check the entry target is always reachable from any branch.
852
static bool is_always_within_branch_range(Address entry) {
853
  const address target = entry.target();
854

855
  if (!CodeCache::contains(target)) {
856
    // We always use trampolines for callees outside CodeCache.
857
    assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target");
858
    return false;
859
  }
860

861
  if (!MacroAssembler::far_branches()) {
862
    return true;
863
  }
864

865
  if (entry.rspec().type() == relocInfo::runtime_call_type) {
866
    // Runtime calls are calls of a non-compiled method (stubs, adapters).
867
    // Non-compiled methods stay forever in CodeCache.
868
    // We check whether the longest possible branch is within the branch range.
869
    assert(CodeCache::find_blob(target) != nullptr &&
870
          !CodeCache::find_blob(target)->is_nmethod(),
871
          "runtime call of compiled method");
872
    const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size;
873
    const address left_longest_branch_start = CodeCache::low_bound();
874
    const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) &&
875
                              Assembler::reachable_from_branch_at(right_longest_branch_start, target);
876
    return is_reachable;
877
  }
878

879
  return false;
880
}
881

882
// Maybe emit a call via a trampoline. If the code cache is small
883
// trampolines won't be emitted.
884
address MacroAssembler::trampoline_call(Address entry) {
885
  assert(entry.rspec().type() == relocInfo::runtime_call_type
886
         || entry.rspec().type() == relocInfo::opt_virtual_call_type
887
         || entry.rspec().type() == relocInfo::static_call_type
888
         || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
889

890
  address target = entry.target();
891

892
  if (!is_always_within_branch_range(entry)) {
893
    if (!in_scratch_emit_size()) {
894
      // We don't want to emit a trampoline if C2 is generating dummy
895
      // code during its branch shortening phase.
896
      if (entry.rspec().type() == relocInfo::runtime_call_type) {
897
        assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs");
898
        code()->share_trampoline_for(entry.target(), offset());
899
      } else {
900
        address stub = emit_trampoline_stub(offset(), target);
901
        if (stub == nullptr) {
902
          postcond(pc() == badAddress);
903
          return nullptr; // CodeCache is full
904
        }
905
      }
906
    }
907
    target = pc();
908
  }
909

910
  address call_pc = pc();
911
  relocate(entry.rspec());
912
  bl(target);
913

914
  postcond(pc() != badAddress);
915
  return call_pc;
916
}
917

918
// Emit a trampoline stub for a call to a target which is too far away.
919
//
920
// code sequences:
921
//
922
// call-site:
923
//   branch-and-link to <destination> or <trampoline stub>
924
//
925
// Related trampoline stub for this call site in the stub section:
926
//   load the call target from the constant pool
927
//   branch (LR still points to the call site above)
928

929
address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
930
                                             address dest) {
931
  // Max stub size: alignment nop, TrampolineStub.
932
  address stub = start_a_stub(max_trampoline_stub_size());
933
  if (stub == nullptr) {
934
    return nullptr;  // CodeBuffer::expand failed
935
  }
936

937
  // Create a trampoline stub relocation which relates this trampoline stub
938
  // with the call instruction at insts_call_instruction_offset in the
939
  // instructions code-section.
940
  align(wordSize);
941
  relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
942
                                            + insts_call_instruction_offset));
943
  const int stub_start_offset = offset();
944

945
  // Now, create the trampoline stub's code:
946
  // - load the call
947
  // - call
948
  Label target;
949
  ldr(rscratch1, target);
950
  br(rscratch1);
951
  bind(target);
952
  assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
953
         "should be");
954
  emit_int64((int64_t)dest);
955

956
  const address stub_start_addr = addr_at(stub_start_offset);
957

958
  assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
959

960
  end_a_stub();
961
  return stub_start_addr;
962
}
963

964
int MacroAssembler::max_trampoline_stub_size() {
965
  // Max stub size: alignment nop, TrampolineStub.
966
  return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size;
967
}
968

969
void MacroAssembler::emit_static_call_stub() {
970
  // CompiledDirectCall::set_to_interpreted knows the
971
  // exact layout of this stub.
972

973
  isb();
974
  mov_metadata(rmethod, nullptr);
975

976
  // Jump to the entry point of the c2i stub.
977
  movptr(rscratch1, 0);
978
  br(rscratch1);
979
}
980

981
int MacroAssembler::static_call_stub_size() {
982
  // isb; movk; movz; movz; movk; movz; movz; br
983
  return 8 * NativeInstruction::instruction_size;
984
}
985

986
void MacroAssembler::c2bool(Register x) {
987
  // implements x == 0 ? 0 : 1
988
  // note: must only look at least-significant byte of x
989
  //       since C-style booleans are stored in one byte
990
  //       only! (was bug)
991
  tst(x, 0xff);
992
  cset(x, Assembler::NE);
993
}
994

995
address MacroAssembler::ic_call(address entry, jint method_index) {
996
  RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
997
  // address const_ptr = long_constant((jlong)Universe::non_oop_word());
998
  // uintptr_t offset;
999
  // ldr_constant(rscratch2, const_ptr);
1000
  movptr(rscratch2, (intptr_t)Universe::non_oop_word());
1001
  return trampoline_call(Address(entry, rh));
1002
}
1003

1004
int MacroAssembler::ic_check_size() {
1005
  if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) {
1006
    return NativeInstruction::instruction_size * 7;
1007
  } else {
1008
    return NativeInstruction::instruction_size * 5;
1009
  }
1010
}
1011

1012
int MacroAssembler::ic_check(int end_alignment) {
1013
  Register receiver = j_rarg0;
1014
  Register data = rscratch2;
1015
  Register tmp1 = rscratch1;
1016
  Register tmp2 = r10;
1017

1018
  // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed
1019
  // before the inline cache check, so we don't have to execute any nop instructions when dispatching
1020
  // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align
1021
  // before the inline cache check here, and not after
1022
  align(end_alignment, offset() + ic_check_size());
1023

1024
  int uep_offset = offset();
1025

1026
  if (UseCompressedClassPointers) {
1027
    ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes()));
1028
    ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset()));
1029
    cmpw(tmp1, tmp2);
1030
  } else {
1031
    ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes()));
1032
    ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset()));
1033
    cmp(tmp1, tmp2);
1034
  }
1035

1036
  Label dont;
1037
  br(Assembler::EQ, dont);
1038
  far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1039
  bind(dont);
1040
  assert((offset() % end_alignment) == 0, "Misaligned verified entry point");
1041

1042
  return uep_offset;
1043
}
1044

1045
// Implementation of call_VM versions
1046

1047
void MacroAssembler::call_VM(Register oop_result,
1048
                             address entry_point,
1049
                             bool check_exceptions) {
1050
  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
1051
}
1052

1053
void MacroAssembler::call_VM(Register oop_result,
1054
                             address entry_point,
1055
                             Register arg_1,
1056
                             bool check_exceptions) {
1057
  pass_arg1(this, arg_1);
1058
  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
1059
}
1060

1061
void MacroAssembler::call_VM(Register oop_result,
1062
                             address entry_point,
1063
                             Register arg_1,
1064
                             Register arg_2,
1065
                             bool check_exceptions) {
1066
  assert_different_registers(arg_1, c_rarg2);
1067
  pass_arg2(this, arg_2);
1068
  pass_arg1(this, arg_1);
1069
  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
1070
}
1071

1072
void MacroAssembler::call_VM(Register oop_result,
1073
                             address entry_point,
1074
                             Register arg_1,
1075
                             Register arg_2,
1076
                             Register arg_3,
1077
                             bool check_exceptions) {
1078
  assert_different_registers(arg_1, c_rarg2, c_rarg3);
1079
  assert_different_registers(arg_2, c_rarg3);
1080
  pass_arg3(this, arg_3);
1081

1082
  pass_arg2(this, arg_2);
1083

1084
  pass_arg1(this, arg_1);
1085
  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
1086
}
1087

1088
void MacroAssembler::call_VM(Register oop_result,
1089
                             Register last_java_sp,
1090
                             address entry_point,
1091
                             int number_of_arguments,
1092
                             bool check_exceptions) {
1093
  call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1094
}
1095

1096
void MacroAssembler::call_VM(Register oop_result,
1097
                             Register last_java_sp,
1098
                             address entry_point,
1099
                             Register arg_1,
1100
                             bool check_exceptions) {
1101
  pass_arg1(this, arg_1);
1102
  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1103
}
1104

1105
void MacroAssembler::call_VM(Register oop_result,
1106
                             Register last_java_sp,
1107
                             address entry_point,
1108
                             Register arg_1,
1109
                             Register arg_2,
1110
                             bool check_exceptions) {
1111

1112
  assert_different_registers(arg_1, c_rarg2);
1113
  pass_arg2(this, arg_2);
1114
  pass_arg1(this, arg_1);
1115
  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1116
}
1117

1118
void MacroAssembler::call_VM(Register oop_result,
1119
                             Register last_java_sp,
1120
                             address entry_point,
1121
                             Register arg_1,
1122
                             Register arg_2,
1123
                             Register arg_3,
1124
                             bool check_exceptions) {
1125
  assert_different_registers(arg_1, c_rarg2, c_rarg3);
1126
  assert_different_registers(arg_2, c_rarg3);
1127
  pass_arg3(this, arg_3);
1128
  pass_arg2(this, arg_2);
1129
  pass_arg1(this, arg_1);
1130
  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1131
}
1132

1133

1134
void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
1135
  ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
1136
  str(zr, Address(java_thread, JavaThread::vm_result_offset()));
1137
  verify_oop_msg(oop_result, "broken oop in call_VM_base");
1138
}
1139

1140
void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
1141
  ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
1142
  str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
1143
}
1144

1145
void MacroAssembler::align(int modulus) {
1146
  align(modulus, offset());
1147
}
1148

1149
// Ensure that the code at target bytes offset from the current offset() is aligned
1150
// according to modulus.
1151
void MacroAssembler::align(int modulus, int target) {
1152
  int delta = target - offset();
1153
  while ((offset() + delta) % modulus != 0) nop();
1154
}
1155

1156
void MacroAssembler::post_call_nop() {
1157
  if (!Continuations::enabled()) {
1158
    return;
1159
  }
1160
  InstructionMark im(this);
1161
  relocate(post_call_nop_Relocation::spec());
1162
  InlineSkippedInstructionsCounter skipCounter(this);
1163
  nop();
1164
  movk(zr, 0);
1165
  movk(zr, 0);
1166
}
1167

1168
// these are no-ops overridden by InterpreterMacroAssembler
1169

1170
void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
1171

1172
void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
1173

1174
// Look up the method for a megamorphic invokeinterface call.
1175
// The target method is determined by <intf_klass, itable_index>.
1176
// The receiver klass is in recv_klass.
1177
// On success, the result will be in method_result, and execution falls through.
1178
// On failure, execution transfers to the given label.
1179
void MacroAssembler::lookup_interface_method(Register recv_klass,
1180
                                             Register intf_klass,
1181
                                             RegisterOrConstant itable_index,
1182
                                             Register method_result,
1183
                                             Register scan_temp,
1184
                                             Label& L_no_such_interface,
1185
                         bool return_method) {
1186
  assert_different_registers(recv_klass, intf_klass, scan_temp);
1187
  assert_different_registers(method_result, intf_klass, scan_temp);
1188
  assert(recv_klass != method_result || !return_method,
1189
     "recv_klass can be destroyed when method isn't needed");
1190
  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1191
         "caller must use same register for non-constant itable index as for method");
1192

1193
  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
1194
  int vtable_base = in_bytes(Klass::vtable_start_offset());
1195
  int itentry_off = in_bytes(itableMethodEntry::method_offset());
1196
  int scan_step   = itableOffsetEntry::size() * wordSize;
1197
  int vte_size    = vtableEntry::size_in_bytes();
1198
  assert(vte_size == wordSize, "else adjust times_vte_scale");
1199

1200
  ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
1201

1202
  // Could store the aligned, prescaled offset in the klass.
1203
  // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
1204
  lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
1205
  add(scan_temp, scan_temp, vtable_base);
1206

1207
  if (return_method) {
1208
    // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1209
    assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1210
    // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
1211
    lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
1212
    if (itentry_off)
1213
      add(recv_klass, recv_klass, itentry_off);
1214
  }
1215

1216
  // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
1217
  //   if (scan->interface() == intf) {
1218
  //     result = (klass + scan->offset() + itable_index);
1219
  //   }
1220
  // }
1221
  Label search, found_method;
1222

1223
  ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
1224
  cmp(intf_klass, method_result);
1225
  br(Assembler::EQ, found_method);
1226
  bind(search);
1227
  // Check that the previous entry is non-null.  A null entry means that
1228
  // the receiver class doesn't implement the interface, and wasn't the
1229
  // same as when the caller was compiled.
1230
  cbz(method_result, L_no_such_interface);
1231
  if (itableOffsetEntry::interface_offset() != 0) {
1232
    add(scan_temp, scan_temp, scan_step);
1233
    ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
1234
  } else {
1235
    ldr(method_result, Address(pre(scan_temp, scan_step)));
1236
  }
1237
  cmp(intf_klass, method_result);
1238
  br(Assembler::NE, search);
1239

1240
  bind(found_method);
1241

1242
  // Got a hit.
1243
  if (return_method) {
1244
    ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
1245
    ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0)));
1246
  }
1247
}
1248

1249
// Look up the method for a megamorphic invokeinterface call in a single pass over itable:
1250
// - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData
1251
// - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
1252
// The target method is determined by <holder_klass, itable_index>.
1253
// The receiver klass is in recv_klass.
1254
// On success, the result will be in method_result, and execution falls through.
1255
// On failure, execution transfers to the given label.
1256
void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
1257
                                                  Register holder_klass,
1258
                                                  Register resolved_klass,
1259
                                                  Register method_result,
1260
                                                  Register temp_itbl_klass,
1261
                                                  Register scan_temp,
1262
                                                  int itable_index,
1263
                                                  Label& L_no_such_interface) {
1264
  // 'method_result' is only used as output register at the very end of this method.
1265
  // Until then we can reuse it as 'holder_offset'.
1266
  Register holder_offset = method_result;
1267
  assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset);
1268

1269
  int vtable_start_offset = in_bytes(Klass::vtable_start_offset());
1270
  int itable_offset_entry_size = itableOffsetEntry::size() * wordSize;
1271
  int ioffset = in_bytes(itableOffsetEntry::interface_offset());
1272
  int ooffset = in_bytes(itableOffsetEntry::offset_offset());
1273

1274
  Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found;
1275

1276
  ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
1277
  add(recv_klass, recv_klass, vtable_start_offset + ioffset);
1278
  // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len;
1279
  // temp_itbl_klass = itable[0]._interface;
1280
  int vtblEntrySize = vtableEntry::size_in_bytes();
1281
  assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3");
1282
  ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize))));
1283
  mov(holder_offset, zr);
1284
  // scan_temp = &(itable[0]._interface)
1285
  lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize))));
1286

1287
  // Initial checks:
1288
  //   - if (holder_klass != resolved_klass), go to "scan for resolved"
1289
  //   - if (itable[0] == holder_klass), shortcut to "holder found"
1290
  //   - if (itable[0] == 0), no such interface
1291
  cmp(resolved_klass, holder_klass);
1292
  br(Assembler::NE, L_loop_search_resolved_entry);
1293
  cmp(holder_klass, temp_itbl_klass);
1294
  br(Assembler::EQ, L_holder_found);
1295
  cbz(temp_itbl_klass, L_no_such_interface);
1296

1297
  // Loop: Look for holder_klass record in itable
1298
  //   do {
1299
  //     temp_itbl_klass = *(scan_temp += itable_offset_entry_size);
1300
  //     if (temp_itbl_klass == holder_klass) {
1301
  //       goto L_holder_found; // Found!
1302
  //     }
1303
  //   } while (temp_itbl_klass != 0);
1304
  //   goto L_no_such_interface // Not found.
1305
  Label L_search_holder;
1306
  bind(L_search_holder);
1307
    ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size)));
1308
    cmp(holder_klass, temp_itbl_klass);
1309
    br(Assembler::EQ, L_holder_found);
1310
    cbnz(temp_itbl_klass, L_search_holder);
1311

1312
  b(L_no_such_interface);
1313

1314
  // Loop: Look for resolved_class record in itable
1315
  //   while (true) {
1316
  //     temp_itbl_klass = *(scan_temp += itable_offset_entry_size);
1317
  //     if (temp_itbl_klass == 0) {
1318
  //       goto L_no_such_interface;
1319
  //     }
1320
  //     if (temp_itbl_klass == resolved_klass) {
1321
  //        goto L_resolved_found;  // Found!
1322
  //     }
1323
  //     if (temp_itbl_klass == holder_klass) {
1324
  //        holder_offset = scan_temp;
1325
  //     }
1326
  //   }
1327
  //
1328
  Label L_loop_search_resolved;
1329
  bind(L_loop_search_resolved);
1330
    ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size)));
1331
  bind(L_loop_search_resolved_entry);
1332
    cbz(temp_itbl_klass, L_no_such_interface);
1333
    cmp(resolved_klass, temp_itbl_klass);
1334
    br(Assembler::EQ, L_resolved_found);
1335
    cmp(holder_klass, temp_itbl_klass);
1336
    br(Assembler::NE, L_loop_search_resolved);
1337
    mov(holder_offset, scan_temp);
1338
    b(L_loop_search_resolved);
1339

1340
  // See if we already have a holder klass. If not, go and scan for it.
1341
  bind(L_resolved_found);
1342
  cbz(holder_offset, L_search_holder);
1343
  mov(scan_temp, holder_offset);
1344

1345
  // Finally, scan_temp contains holder_klass vtable offset
1346
  bind(L_holder_found);
1347
  ldrw(method_result, Address(scan_temp, ooffset - ioffset));
1348
  add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset())
1349
    - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass
1350
  ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0)));
1351
}
1352

1353
// virtual method calling
1354
void MacroAssembler::lookup_virtual_method(Register recv_klass,
1355
                                           RegisterOrConstant vtable_index,
1356
                                           Register method_result) {
1357
  assert(vtableEntry::size() * wordSize == 8,
1358
         "adjust the scaling in the code below");
1359
  int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset());
1360

1361
  if (vtable_index.is_register()) {
1362
    lea(method_result, Address(recv_klass,
1363
                               vtable_index.as_register(),
1364
                               Address::lsl(LogBytesPerWord)));
1365
    ldr(method_result, Address(method_result, vtable_offset_in_bytes));
1366
  } else {
1367
    vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
1368
    ldr(method_result,
1369
        form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0));
1370
  }
1371
}
1372

1373
void MacroAssembler::check_klass_subtype(Register sub_klass,
1374
                           Register super_klass,
1375
                           Register temp_reg,
1376
                           Label& L_success) {
1377
  Label L_failure;
1378
  check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, nullptr);
1379
  check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
1380
  bind(L_failure);
1381
}
1382

1383

1384
void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1385
                                                   Register super_klass,
1386
                                                   Register temp_reg,
1387
                                                   Label* L_success,
1388
                                                   Label* L_failure,
1389
                                                   Label* L_slow_path,
1390
                                        RegisterOrConstant super_check_offset) {
1391
  assert_different_registers(sub_klass, super_klass, temp_reg);
1392
  bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1393
  if (super_check_offset.is_register()) {
1394
    assert_different_registers(sub_klass, super_klass,
1395
                               super_check_offset.as_register());
1396
  } else if (must_load_sco) {
1397
    assert(temp_reg != noreg, "supply either a temp or a register offset");
1398
  }
1399

1400
  Label L_fallthrough;
1401
  int label_nulls = 0;
1402
  if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
1403
  if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
1404
  if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
1405
  assert(label_nulls <= 1, "at most one null in the batch");
1406

1407
  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1408
  int sco_offset = in_bytes(Klass::super_check_offset_offset());
1409
  Address super_check_offset_addr(super_klass, sco_offset);
1410

1411
  // Hacked jmp, which may only be used just before L_fallthrough.
1412
#define final_jmp(label)                                                \
1413
  if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
1414
  else                            b(label)                /*omit semi*/
1415

1416
  // If the pointers are equal, we are done (e.g., String[] elements).
1417
  // This self-check enables sharing of secondary supertype arrays among
1418
  // non-primary types such as array-of-interface.  Otherwise, each such
1419
  // type would need its own customized SSA.
1420
  // We move this check to the front of the fast path because many
1421
  // type checks are in fact trivially successful in this manner,
1422
  // so we get a nicely predicted branch right at the start of the check.
1423
  cmp(sub_klass, super_klass);
1424
  br(Assembler::EQ, *L_success);
1425

1426
  // Check the supertype display:
1427
  if (must_load_sco) {
1428
    ldrw(temp_reg, super_check_offset_addr);
1429
    super_check_offset = RegisterOrConstant(temp_reg);
1430
  }
1431
  Address super_check_addr(sub_klass, super_check_offset);
1432
  ldr(rscratch1, super_check_addr);
1433
  cmp(super_klass, rscratch1); // load displayed supertype
1434

1435
  // This check has worked decisively for primary supers.
1436
  // Secondary supers are sought in the super_cache ('super_cache_addr').
1437
  // (Secondary supers are interfaces and very deeply nested subtypes.)
1438
  // This works in the same check above because of a tricky aliasing
1439
  // between the super_cache and the primary super display elements.
1440
  // (The 'super_check_addr' can address either, as the case requires.)
1441
  // Note that the cache is updated below if it does not help us find
1442
  // what we need immediately.
1443
  // So if it was a primary super, we can just fail immediately.
1444
  // Otherwise, it's the slow path for us (no success at this point).
1445

1446
  if (super_check_offset.is_register()) {
1447
    br(Assembler::EQ, *L_success);
1448
    subs(zr, super_check_offset.as_register(), sc_offset);
1449
    if (L_failure == &L_fallthrough) {
1450
      br(Assembler::EQ, *L_slow_path);
1451
    } else {
1452
      br(Assembler::NE, *L_failure);
1453
      final_jmp(*L_slow_path);
1454
    }
1455
  } else if (super_check_offset.as_constant() == sc_offset) {
1456
    // Need a slow path; fast failure is impossible.
1457
    if (L_slow_path == &L_fallthrough) {
1458
      br(Assembler::EQ, *L_success);
1459
    } else {
1460
      br(Assembler::NE, *L_slow_path);
1461
      final_jmp(*L_success);
1462
    }
1463
  } else {
1464
    // No slow path; it's a fast decision.
1465
    if (L_failure == &L_fallthrough) {
1466
      br(Assembler::EQ, *L_success);
1467
    } else {
1468
      br(Assembler::NE, *L_failure);
1469
      final_jmp(*L_success);
1470
    }
1471
  }
1472

1473
  bind(L_fallthrough);
1474

1475
#undef final_jmp
1476
}
1477

1478
// These two are taken from x86, but they look generally useful
1479

1480
// scans count pointer sized words at [addr] for occurrence of value,
1481
// generic
1482
void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1483
                                Register scratch) {
1484
  Label Lloop, Lexit;
1485
  cbz(count, Lexit);
1486
  bind(Lloop);
1487
  ldr(scratch, post(addr, wordSize));
1488
  cmp(value, scratch);
1489
  br(EQ, Lexit);
1490
  sub(count, count, 1);
1491
  cbnz(count, Lloop);
1492
  bind(Lexit);
1493
}
1494

1495
// scans count 4 byte words at [addr] for occurrence of value,
1496
// generic
1497
void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1498
                                Register scratch) {
1499
  Label Lloop, Lexit;
1500
  cbz(count, Lexit);
1501
  bind(Lloop);
1502
  ldrw(scratch, post(addr, wordSize));
1503
  cmpw(value, scratch);
1504
  br(EQ, Lexit);
1505
  sub(count, count, 1);
1506
  cbnz(count, Lloop);
1507
  bind(Lexit);
1508
}
1509

1510
void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1511
                                                   Register super_klass,
1512
                                                   Register temp_reg,
1513
                                                   Register temp2_reg,
1514
                                                   Label* L_success,
1515
                                                   Label* L_failure,
1516
                                                   bool set_cond_codes) {
1517
  // NB! Callers may assume that, when temp2_reg is a valid register,
1518
  // this code sets it to a nonzero value.
1519

1520
  assert_different_registers(sub_klass, super_klass, temp_reg);
1521
  if (temp2_reg != noreg)
1522
    assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1523
#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1524

1525
  Label L_fallthrough;
1526
  int label_nulls = 0;
1527
  if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
1528
  if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
1529
  assert(label_nulls <= 1, "at most one null in the batch");
1530

1531
  // a couple of useful fields in sub_klass:
1532
  int ss_offset = in_bytes(Klass::secondary_supers_offset());
1533
  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1534
  Address secondary_supers_addr(sub_klass, ss_offset);
1535
  Address super_cache_addr(     sub_klass, sc_offset);
1536

1537
  BLOCK_COMMENT("check_klass_subtype_slow_path");
1538

1539
  // Do a linear scan of the secondary super-klass chain.
1540
  // This code is rarely used, so simplicity is a virtue here.
1541
  // The repne_scan instruction uses fixed registers, which we must spill.
1542
  // Don't worry too much about pre-existing connections with the input regs.
1543

1544
  assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1545
  assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1546

1547
  RegSet pushed_registers;
1548
  if (!IS_A_TEMP(r2))    pushed_registers += r2;
1549
  if (!IS_A_TEMP(r5))    pushed_registers += r5;
1550

1551
  if (super_klass != r0) {
1552
    if (!IS_A_TEMP(r0))   pushed_registers += r0;
1553
  }
1554

1555
  push(pushed_registers, sp);
1556

1557
  // Get super_klass value into r0 (even if it was in r5 or r2).
1558
  if (super_klass != r0) {
1559
    mov(r0, super_klass);
1560
  }
1561

1562
#ifndef PRODUCT
1563
  incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
1564
#endif //PRODUCT
1565

1566
  // We will consult the secondary-super array.
1567
  ldr(r5, secondary_supers_addr);
1568
  // Load the array length.
1569
  ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1570
  // Skip to start of data.
1571
  add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1572

1573
  cmp(sp, zr); // Clear Z flag; SP is never zero
1574
  // Scan R2 words at [R5] for an occurrence of R0.
1575
  // Set NZ/Z based on last compare.
1576
  repne_scan(r5, r0, r2, rscratch1);
1577

1578
  // Unspill the temp. registers:
1579
  pop(pushed_registers, sp);
1580

1581
  br(Assembler::NE, *L_failure);
1582

1583
  // Success.  Cache the super we found and proceed in triumph.
1584
  str(super_klass, super_cache_addr);
1585

1586
  if (L_success != &L_fallthrough) {
1587
    b(*L_success);
1588
  }
1589

1590
#undef IS_A_TEMP
1591

1592
  bind(L_fallthrough);
1593
}
1594

1595
// Ensure that the inline code and the stub are using the same registers.
1596
#define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS                    \
1597
do {                                                               \
1598
  assert(r_super_klass  == r0                                   && \
1599
         r_array_base   == r1                                   && \
1600
         r_array_length == r2                                   && \
1601
         (r_array_index == r3        || r_array_index == noreg) && \
1602
         (r_sub_klass   == r4        || r_sub_klass   == noreg) && \
1603
         (r_bitmap      == rscratch2 || r_bitmap      == noreg) && \
1604
         (result        == r5        || result        == noreg), "registers must match aarch64.ad"); \
1605
} while(0)
1606

1607
// Return true: we succeeded in generating this code
1608
bool MacroAssembler::lookup_secondary_supers_table(Register r_sub_klass,
1609
                                                   Register r_super_klass,
1610
                                                   Register temp1,
1611
                                                   Register temp2,
1612
                                                   Register temp3,
1613
                                                   FloatRegister vtemp,
1614
                                                   Register result,
1615
                                                   u1 super_klass_slot,
1616
                                                   bool stub_is_near) {
1617
  assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2);
1618

1619
  Label L_fallthrough;
1620

1621
  BLOCK_COMMENT("lookup_secondary_supers_table {");
1622

1623
  const Register
1624
    r_array_base   = temp1, // r1
1625
    r_array_length = temp2, // r2
1626
    r_array_index  = temp3, // r3
1627
    r_bitmap       = rscratch2;
1628

1629
  LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
1630

1631
  u1 bit = super_klass_slot;
1632

1633
  // Make sure that result is nonzero if the TBZ below misses.
1634
  mov(result, 1);
1635

1636
  // We're going to need the bitmap in a vector reg and in a core reg,
1637
  // so load both now.
1638
  ldr(r_bitmap, Address(r_sub_klass, Klass::bitmap_offset()));
1639
  if (bit != 0) {
1640
    ldrd(vtemp, Address(r_sub_klass, Klass::bitmap_offset()));
1641
  }
1642
  // First check the bitmap to see if super_klass might be present. If
1643
  // the bit is zero, we are certain that super_klass is not one of
1644
  // the secondary supers.
1645
  tbz(r_bitmap, bit, L_fallthrough);
1646

1647
  // Get the first array index that can contain super_klass into r_array_index.
1648
  if (bit != 0) {
1649
    shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit);
1650
    cnt(vtemp, T8B, vtemp);
1651
    addv(vtemp, T8B, vtemp);
1652
    fmovd(r_array_index, vtemp);
1653
  } else {
1654
    mov(r_array_index, (u1)1);
1655
  }
1656
  // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word.
1657

1658
  // We will consult the secondary-super array.
1659
  ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
1660

1661
  // The value i in r_array_index is >= 1, so even though r_array_base
1662
  // points to the length, we don't need to adjust it to point to the
1663
  // data.
1664
  assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code");
1665
  assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code");
1666

1667
  ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord)));
1668
  eor(result, result, r_super_klass);
1669
  cbz(result, L_fallthrough); // Found a match
1670

1671
  // Is there another entry to check? Consult the bitmap.
1672
  tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough);
1673

1674
  // Linear probe.
1675
  if (bit != 0) {
1676
    ror(r_bitmap, r_bitmap, bit);
1677
  }
1678

1679
  // The slot we just inspected is at secondary_supers[r_array_index - 1].
1680
  // The next slot to be inspected, by the stub we're about to call,
1681
  // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap
1682
  // have been checked.
1683
  Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub());
1684
  if (stub_is_near) {
1685
    bl(stub);
1686
  } else {
1687
    address call = trampoline_call(stub);
1688
    if (call == nullptr) {
1689
      return false; // trampoline allocation failed
1690
    }
1691
  }
1692

1693
  BLOCK_COMMENT("} lookup_secondary_supers_table");
1694

1695
  bind(L_fallthrough);
1696

1697
  if (VerifySecondarySupers) {
1698
    verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0
1699
                                  temp1, temp2, result);      // r1, r2, r5
1700
  }
1701
  return true;
1702
}
1703

1704
// Called by code generated by check_klass_subtype_slow_path
1705
// above. This is called when there is a collision in the hashed
1706
// lookup in the secondary supers array.
1707
void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass,
1708
                                                             Register r_array_base,
1709
                                                             Register r_array_index,
1710
                                                             Register r_bitmap,
1711
                                                             Register temp1,
1712
                                                             Register result) {
1713
  assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1);
1714

1715
  const Register
1716
    r_array_length = temp1,
1717
    r_sub_klass    = noreg; // unused
1718

1719
  LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
1720

1721
  Label L_fallthrough, L_huge;
1722

1723
  // Load the array length.
1724
  ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
1725
  // And adjust the array base to point to the data.
1726
  // NB! Effectively increments current slot index by 1.
1727
  assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "");
1728
  add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
1729

1730
  // The bitmap is full to bursting.
1731
  // Implicit invariant: BITMAP_FULL implies (length > 0)
1732
  assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), "");
1733
  cmn(r_bitmap, (u1)1);
1734
  br(EQ, L_huge);
1735

1736
  // NB! Our caller has checked bits 0 and 1 in the bitmap. The
1737
  // current slot (at secondary_supers[r_array_index]) has not yet
1738
  // been inspected, and r_array_index may be out of bounds if we
1739
  // wrapped around the end of the array.
1740

1741
  { // This is conventional linear probing, but instead of terminating
1742
    // when a null entry is found in the table, we maintain a bitmap
1743
    // in which a 0 indicates missing entries.
1744
    // The check above guarantees there are 0s in the bitmap, so the loop
1745
    // eventually terminates.
1746
    Label L_loop;
1747
    bind(L_loop);
1748

1749
    // Check for wraparound.
1750
    cmp(r_array_index, r_array_length);
1751
    csel(r_array_index, zr, r_array_index, GE);
1752

1753
    ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord)));
1754
    eor(result, rscratch1, r_super_klass);
1755
    cbz(result, L_fallthrough);
1756

1757
    tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero
1758

1759
    ror(r_bitmap, r_bitmap, 1);
1760
    add(r_array_index, r_array_index, 1);
1761
    b(L_loop);
1762
  }
1763

1764
  { // Degenerate case: more than 64 secondary supers.
1765
    // FIXME: We could do something smarter here, maybe a vectorized
1766
    // comparison or a binary search, but is that worth any added
1767
    // complexity?
1768
    bind(L_huge);
1769
    cmp(sp, zr); // Clear Z flag; SP is never zero
1770
    repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1);
1771
    cset(result, NE); // result == 0 iff we got a match.
1772
  }
1773

1774
  bind(L_fallthrough);
1775
}
1776

1777
// Make sure that the hashed lookup and a linear scan agree.
1778
void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass,
1779
                                                   Register r_super_klass,
1780
                                                   Register temp1,
1781
                                                   Register temp2,
1782
                                                   Register result) {
1783
  assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1);
1784

1785
  const Register
1786
    r_array_base   = temp1,
1787
    r_array_length = temp2,
1788
    r_array_index  = noreg, // unused
1789
    r_bitmap       = noreg; // unused
1790

1791
  LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS;
1792

1793
  BLOCK_COMMENT("verify_secondary_supers_table {");
1794

1795
  // We will consult the secondary-super array.
1796
  ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset())));
1797

1798
  // Load the array length.
1799
  ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes()));
1800
  // And adjust the array base to point to the data.
1801
  add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes());
1802

1803
  cmp(sp, zr); // Clear Z flag; SP is never zero
1804
  // Scan R2 words at [R5] for an occurrence of R0.
1805
  // Set NZ/Z based on last compare.
1806
  repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2);
1807
  // rscratch1 == 0 iff we got a match.
1808
  cset(rscratch1, NE);
1809

1810
  Label passed;
1811
  cmp(result, zr);
1812
  cset(result, NE); // normalize result to 0/1 for comparison
1813

1814
  cmp(rscratch1, result);
1815
  br(EQ, passed);
1816
  {
1817
    mov(r0, r_super_klass);         // r0 <- r0
1818
    mov(r1, r_sub_klass);           // r1 <- r4
1819
    mov(r2, /*expected*/rscratch1); // r2 <- r8
1820
    mov(r3, result);                // r3 <- r5
1821
    mov(r4, (address)("mismatch")); // r4 <- const
1822
    rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2);
1823
    should_not_reach_here();
1824
  }
1825
  bind(passed);
1826

1827
  BLOCK_COMMENT("} verify_secondary_supers_table");
1828
}
1829

1830
void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) {
1831
  assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
1832
  assert_different_registers(klass, rthread, scratch);
1833

1834
  Label L_fallthrough, L_tmp;
1835
  if (L_fast_path == nullptr) {
1836
    L_fast_path = &L_fallthrough;
1837
  } else if (L_slow_path == nullptr) {
1838
    L_slow_path = &L_fallthrough;
1839
  }
1840
  // Fast path check: class is fully initialized
1841
  ldrb(scratch, Address(klass, InstanceKlass::init_state_offset()));
1842
  subs(zr, scratch, InstanceKlass::fully_initialized);
1843
  br(Assembler::EQ, *L_fast_path);
1844

1845
  // Fast path check: current thread is initializer thread
1846
  ldr(scratch, Address(klass, InstanceKlass::init_thread_offset()));
1847
  cmp(rthread, scratch);
1848

1849
  if (L_slow_path == &L_fallthrough) {
1850
    br(Assembler::EQ, *L_fast_path);
1851
    bind(*L_slow_path);
1852
  } else if (L_fast_path == &L_fallthrough) {
1853
    br(Assembler::NE, *L_slow_path);
1854
    bind(*L_fast_path);
1855
  } else {
1856
    Unimplemented();
1857
  }
1858
}
1859

1860
void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
1861
  if (!VerifyOops) return;
1862

1863
  // Pass register number to verify_oop_subroutine
1864
  const char* b = nullptr;
1865
  {
1866
    ResourceMark rm;
1867
    stringStream ss;
1868
    ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
1869
    b = code_string(ss.as_string());
1870
  }
1871
  BLOCK_COMMENT("verify_oop {");
1872

1873
  strip_return_address(); // This might happen within a stack frame.
1874
  protect_return_address();
1875
  stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1876
  stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1877

1878
  mov(r0, reg);
1879
  movptr(rscratch1, (uintptr_t)(address)b);
1880

1881
  // call indirectly to solve generation ordering problem
1882
  lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1883
  ldr(rscratch2, Address(rscratch2));
1884
  blr(rscratch2);
1885

1886
  ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1887
  ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1888
  authenticate_return_address();
1889

1890
  BLOCK_COMMENT("} verify_oop");
1891
}
1892

1893
void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
1894
  if (!VerifyOops) return;
1895

1896
  const char* b = nullptr;
1897
  {
1898
    ResourceMark rm;
1899
    stringStream ss;
1900
    ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
1901
    b = code_string(ss.as_string());
1902
  }
1903
  BLOCK_COMMENT("verify_oop_addr {");
1904

1905
  strip_return_address(); // This might happen within a stack frame.
1906
  protect_return_address();
1907
  stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1908
  stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1909

1910
  // addr may contain sp so we will have to adjust it based on the
1911
  // pushes that we just did.
1912
  if (addr.uses(sp)) {
1913
    lea(r0, addr);
1914
    ldr(r0, Address(r0, 4 * wordSize));
1915
  } else {
1916
    ldr(r0, addr);
1917
  }
1918
  movptr(rscratch1, (uintptr_t)(address)b);
1919

1920
  // call indirectly to solve generation ordering problem
1921
  lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1922
  ldr(rscratch2, Address(rscratch2));
1923
  blr(rscratch2);
1924

1925
  ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1926
  ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1927
  authenticate_return_address();
1928

1929
  BLOCK_COMMENT("} verify_oop_addr");
1930
}
1931

1932
Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1933
                                         int extra_slot_offset) {
1934
  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1935
  int stackElementSize = Interpreter::stackElementSize;
1936
  int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
1937
#ifdef ASSERT
1938
  int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
1939
  assert(offset1 - offset == stackElementSize, "correct arithmetic");
1940
#endif
1941
  if (arg_slot.is_constant()) {
1942
    return Address(esp, arg_slot.as_constant() * stackElementSize
1943
                   + offset);
1944
  } else {
1945
    add(rscratch1, esp, arg_slot.as_register(),
1946
        ext::uxtx, exact_log2(stackElementSize));
1947
    return Address(rscratch1, offset);
1948
  }
1949
}
1950

1951
void MacroAssembler::call_VM_leaf_base(address entry_point,
1952
                                       int number_of_arguments,
1953
                                       Label *retaddr) {
1954
  Label E, L;
1955

1956
  stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
1957

1958
  mov(rscratch1, entry_point);
1959
  blr(rscratch1);
1960
  if (retaddr)
1961
    bind(*retaddr);
1962

1963
  ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
1964
}
1965

1966
void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1967
  call_VM_leaf_base(entry_point, number_of_arguments);
1968
}
1969

1970
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1971
  pass_arg0(this, arg_0);
1972
  call_VM_leaf_base(entry_point, 1);
1973
}
1974

1975
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1976
  assert_different_registers(arg_1, c_rarg0);
1977
  pass_arg0(this, arg_0);
1978
  pass_arg1(this, arg_1);
1979
  call_VM_leaf_base(entry_point, 2);
1980
}
1981

1982
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1983
                                  Register arg_1, Register arg_2) {
1984
  assert_different_registers(arg_1, c_rarg0);
1985
  assert_different_registers(arg_2, c_rarg0, c_rarg1);
1986
  pass_arg0(this, arg_0);
1987
  pass_arg1(this, arg_1);
1988
  pass_arg2(this, arg_2);
1989
  call_VM_leaf_base(entry_point, 3);
1990
}
1991

1992
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1993
  pass_arg0(this, arg_0);
1994
  MacroAssembler::call_VM_leaf_base(entry_point, 1);
1995
}
1996

1997
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1998

1999
  assert_different_registers(arg_0, c_rarg1);
2000
  pass_arg1(this, arg_1);
2001
  pass_arg0(this, arg_0);
2002
  MacroAssembler::call_VM_leaf_base(entry_point, 2);
2003
}
2004

2005
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2006
  assert_different_registers(arg_0, c_rarg1, c_rarg2);
2007
  assert_different_registers(arg_1, c_rarg2);
2008
  pass_arg2(this, arg_2);
2009
  pass_arg1(this, arg_1);
2010
  pass_arg0(this, arg_0);
2011
  MacroAssembler::call_VM_leaf_base(entry_point, 3);
2012
}
2013

2014
void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2015
  assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3);
2016
  assert_different_registers(arg_1, c_rarg2, c_rarg3);
2017
  assert_different_registers(arg_2, c_rarg3);
2018
  pass_arg3(this, arg_3);
2019
  pass_arg2(this, arg_2);
2020
  pass_arg1(this, arg_1);
2021
  pass_arg0(this, arg_0);
2022
  MacroAssembler::call_VM_leaf_base(entry_point, 4);
2023
}
2024

2025
void MacroAssembler::null_check(Register reg, int offset) {
2026
  if (needs_explicit_null_check(offset)) {
2027
    // provoke OS null exception if reg is null by
2028
    // accessing M[reg] w/o changing any registers
2029
    // NOTE: this is plenty to provoke a segv
2030
    ldr(zr, Address(reg));
2031
  } else {
2032
    // nothing to do, (later) access of M[reg + offset]
2033
    // will provoke OS null exception if reg is null
2034
  }
2035
}
2036

2037
// MacroAssembler protected routines needed to implement
2038
// public methods
2039

2040
void MacroAssembler::mov(Register r, Address dest) {
2041
  code_section()->relocate(pc(), dest.rspec());
2042
  uint64_t imm64 = (uint64_t)dest.target();
2043
  movptr(r, imm64);
2044
}
2045

2046
// Move a constant pointer into r.  In AArch64 mode the virtual
2047
// address space is 48 bits in size, so we only need three
2048
// instructions to create a patchable instruction sequence that can
2049
// reach anywhere.
2050
void MacroAssembler::movptr(Register r, uintptr_t imm64) {
2051
#ifndef PRODUCT
2052
  {
2053
    char buffer[64];
2054
    snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64);
2055
    block_comment(buffer);
2056
  }
2057
#endif
2058
  assert(imm64 < (1ull << 48), "48-bit overflow in address constant");
2059
  movz(r, imm64 & 0xffff);
2060
  imm64 >>= 16;
2061
  movk(r, imm64 & 0xffff, 16);
2062
  imm64 >>= 16;
2063
  movk(r, imm64 & 0xffff, 32);
2064
}
2065

2066
// Macro to mov replicated immediate to vector register.
2067
// imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is,
2068
//        the upper 56/48/32 bits must be zeros for B/H/S type.
2069
// Vd will get the following values for different arrangements in T
2070
//   imm64 == hex 000000gh  T8B:  Vd = ghghghghghghghgh
2071
//   imm64 == hex 000000gh  T16B: Vd = ghghghghghghghghghghghghghghghgh
2072
//   imm64 == hex 0000efgh  T4H:  Vd = efghefghefghefgh
2073
//   imm64 == hex 0000efgh  T8H:  Vd = efghefghefghefghefghefghefghefgh
2074
//   imm64 == hex abcdefgh  T2S:  Vd = abcdefghabcdefgh
2075
//   imm64 == hex abcdefgh  T4S:  Vd = abcdefghabcdefghabcdefghabcdefgh
2076
//   imm64 == hex abcdefgh  T1D:  Vd = 00000000abcdefgh
2077
//   imm64 == hex abcdefgh  T2D:  Vd = 00000000abcdefgh00000000abcdefgh
2078
// Clobbers rscratch1
2079
void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) {
2080
  assert(T != T1Q, "unsupported");
2081
  if (T == T1D || T == T2D) {
2082
    int imm = operand_valid_for_movi_immediate(imm64, T);
2083
    if (-1 != imm) {
2084
      movi(Vd, T, imm);
2085
    } else {
2086
      mov(rscratch1, imm64);
2087
      dup(Vd, T, rscratch1);
2088
    }
2089
    return;
2090
  }
2091

2092
#ifdef ASSERT
2093
  if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)");
2094
  if (T == T4H || T == T8H) assert((imm64  & ~0xffff) == 0, "extraneous bits (T4H/T8H)");
2095
  if (T == T2S || T == T4S) assert((imm64  & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)");
2096
#endif
2097
  int shift = operand_valid_for_movi_immediate(imm64, T);
2098
  uint32_t imm32 = imm64 & 0xffffffffULL;
2099
  if (shift >= 0) {
2100
    movi(Vd, T, (imm32 >> shift) & 0xff, shift);
2101
  } else {
2102
    movw(rscratch1, imm32);
2103
    dup(Vd, T, rscratch1);
2104
  }
2105
}
2106

2107
void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64)
2108
{
2109
#ifndef PRODUCT
2110
  {
2111
    char buffer[64];
2112
    snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64);
2113
    block_comment(buffer);
2114
  }
2115
#endif
2116
  if (operand_valid_for_logical_immediate(false, imm64)) {
2117
    orr(dst, zr, imm64);
2118
  } else {
2119
    // we can use a combination of MOVZ or MOVN with
2120
    // MOVK to build up the constant
2121
    uint64_t imm_h[4];
2122
    int zero_count = 0;
2123
    int neg_count = 0;
2124
    int i;
2125
    for (i = 0; i < 4; i++) {
2126
      imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
2127
      if (imm_h[i] == 0) {
2128
        zero_count++;
2129
      } else if (imm_h[i] == 0xffffL) {
2130
        neg_count++;
2131
      }
2132
    }
2133
    if (zero_count == 4) {
2134
      // one MOVZ will do
2135
      movz(dst, 0);
2136
    } else if (neg_count == 4) {
2137
      // one MOVN will do
2138
      movn(dst, 0);
2139
    } else if (zero_count == 3) {
2140
      for (i = 0; i < 4; i++) {
2141
        if (imm_h[i] != 0L) {
2142
          movz(dst, (uint32_t)imm_h[i], (i << 4));
2143
          break;
2144
        }
2145
      }
2146
    } else if (neg_count == 3) {
2147
      // one MOVN will do
2148
      for (int i = 0; i < 4; i++) {
2149
        if (imm_h[i] != 0xffffL) {
2150
          movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
2151
          break;
2152
        }
2153
      }
2154
    } else if (zero_count == 2) {
2155
      // one MOVZ and one MOVK will do
2156
      for (i = 0; i < 3; i++) {
2157
        if (imm_h[i] != 0L) {
2158
          movz(dst, (uint32_t)imm_h[i], (i << 4));
2159
          i++;
2160
          break;
2161
        }
2162
      }
2163
      for (;i < 4; i++) {
2164
        if (imm_h[i] != 0L) {
2165
          movk(dst, (uint32_t)imm_h[i], (i << 4));
2166
        }
2167
      }
2168
    } else if (neg_count == 2) {
2169
      // one MOVN and one MOVK will do
2170
      for (i = 0; i < 4; i++) {
2171
        if (imm_h[i] != 0xffffL) {
2172
          movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
2173
          i++;
2174
          break;
2175
        }
2176
      }
2177
      for (;i < 4; i++) {
2178
        if (imm_h[i] != 0xffffL) {
2179
          movk(dst, (uint32_t)imm_h[i], (i << 4));
2180
        }
2181
      }
2182
    } else if (zero_count == 1) {
2183
      // one MOVZ and two MOVKs will do
2184
      for (i = 0; i < 4; i++) {
2185
        if (imm_h[i] != 0L) {
2186
          movz(dst, (uint32_t)imm_h[i], (i << 4));
2187
          i++;
2188
          break;
2189
        }
2190
      }
2191
      for (;i < 4; i++) {
2192
        if (imm_h[i] != 0x0L) {
2193
          movk(dst, (uint32_t)imm_h[i], (i << 4));
2194
        }
2195
      }
2196
    } else if (neg_count == 1) {
2197
      // one MOVN and two MOVKs will do
2198
      for (i = 0; i < 4; i++) {
2199
        if (imm_h[i] != 0xffffL) {
2200
          movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
2201
          i++;
2202
          break;
2203
        }
2204
      }
2205
      for (;i < 4; i++) {
2206
        if (imm_h[i] != 0xffffL) {
2207
          movk(dst, (uint32_t)imm_h[i], (i << 4));
2208
        }
2209
      }
2210
    } else {
2211
      // use a MOVZ and 3 MOVKs (makes it easier to debug)
2212
      movz(dst, (uint32_t)imm_h[0], 0);
2213
      for (i = 1; i < 4; i++) {
2214
        movk(dst, (uint32_t)imm_h[i], (i << 4));
2215
      }
2216
    }
2217
  }
2218
}
2219

2220
void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32)
2221
{
2222
#ifndef PRODUCT
2223
    {
2224
      char buffer[64];
2225
      snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32);
2226
      block_comment(buffer);
2227
    }
2228
#endif
2229
  if (operand_valid_for_logical_immediate(true, imm32)) {
2230
    orrw(dst, zr, imm32);
2231
  } else {
2232
    // we can use MOVZ, MOVN or two calls to MOVK to build up the
2233
    // constant
2234
    uint32_t imm_h[2];
2235
    imm_h[0] = imm32 & 0xffff;
2236
    imm_h[1] = ((imm32 >> 16) & 0xffff);
2237
    if (imm_h[0] == 0) {
2238
      movzw(dst, imm_h[1], 16);
2239
    } else if (imm_h[0] == 0xffff) {
2240
      movnw(dst, imm_h[1] ^ 0xffff, 16);
2241
    } else if (imm_h[1] == 0) {
2242
      movzw(dst, imm_h[0], 0);
2243
    } else if (imm_h[1] == 0xffff) {
2244
      movnw(dst, imm_h[0] ^ 0xffff, 0);
2245
    } else {
2246
      // use a MOVZ and MOVK (makes it easier to debug)
2247
      movzw(dst, imm_h[0], 0);
2248
      movkw(dst, imm_h[1], 16);
2249
    }
2250
  }
2251
}
2252

2253
// Form an address from base + offset in Rd.  Rd may or may
2254
// not actually be used: you must use the Address that is returned.
2255
// It is up to you to ensure that the shift provided matches the size
2256
// of your data.
2257
Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) {
2258
  if (Address::offset_ok_for_immed(byte_offset, shift))
2259
    // It fits; no need for any heroics
2260
    return Address(base, byte_offset);
2261

2262
  // Don't do anything clever with negative or misaligned offsets
2263
  unsigned mask = (1 << shift) - 1;
2264
  if (byte_offset < 0 || byte_offset & mask) {
2265
    mov(Rd, byte_offset);
2266
    add(Rd, base, Rd);
2267
    return Address(Rd);
2268
  }
2269

2270
  // See if we can do this with two 12-bit offsets
2271
  {
2272
    uint64_t word_offset = byte_offset >> shift;
2273
    uint64_t masked_offset = word_offset & 0xfff000;
2274
    if (Address::offset_ok_for_immed(word_offset - masked_offset, 0)
2275
        && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
2276
      add(Rd, base, masked_offset << shift);
2277
      word_offset -= masked_offset;
2278
      return Address(Rd, word_offset << shift);
2279
    }
2280
  }
2281

2282
  // Do it the hard way
2283
  mov(Rd, byte_offset);
2284
  add(Rd, base, Rd);
2285
  return Address(Rd);
2286
}
2287

2288
int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
2289
                                    bool want_remainder, Register scratch)
2290
{
2291
  // Full implementation of Java idiv and irem.  The function
2292
  // returns the (pc) offset of the div instruction - may be needed
2293
  // for implicit exceptions.
2294
  //
2295
  // constraint : ra/rb =/= scratch
2296
  //         normal case
2297
  //
2298
  // input : ra: dividend
2299
  //         rb: divisor
2300
  //
2301
  // result: either
2302
  //         quotient  (= ra idiv rb)
2303
  //         remainder (= ra irem rb)
2304

2305
  assert(ra != scratch && rb != scratch, "reg cannot be scratch");
2306

2307
  int idivl_offset = offset();
2308
  if (! want_remainder) {
2309
    sdivw(result, ra, rb);
2310
  } else {
2311
    sdivw(scratch, ra, rb);
2312
    Assembler::msubw(result, scratch, rb, ra);
2313
  }
2314

2315
  return idivl_offset;
2316
}
2317

2318
int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
2319
                                    bool want_remainder, Register scratch)
2320
{
2321
  // Full implementation of Java ldiv and lrem.  The function
2322
  // returns the (pc) offset of the div instruction - may be needed
2323
  // for implicit exceptions.
2324
  //
2325
  // constraint : ra/rb =/= scratch
2326
  //         normal case
2327
  //
2328
  // input : ra: dividend
2329
  //         rb: divisor
2330
  //
2331
  // result: either
2332
  //         quotient  (= ra idiv rb)
2333
  //         remainder (= ra irem rb)
2334

2335
  assert(ra != scratch && rb != scratch, "reg cannot be scratch");
2336

2337
  int idivq_offset = offset();
2338
  if (! want_remainder) {
2339
    sdiv(result, ra, rb);
2340
  } else {
2341
    sdiv(scratch, ra, rb);
2342
    Assembler::msub(result, scratch, rb, ra);
2343
  }
2344

2345
  return idivq_offset;
2346
}
2347

2348
void MacroAssembler::membar(Membar_mask_bits order_constraint) {
2349
  address prev = pc() - NativeMembar::instruction_size;
2350
  address last = code()->last_insn();
2351
  if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) {
2352
    NativeMembar *bar = NativeMembar_at(prev);
2353
    if (AlwaysMergeDMB) {
2354
      bar->set_kind(bar->get_kind() | order_constraint);
2355
      BLOCK_COMMENT("merged membar(always)");
2356
      return;
2357
    }
2358
    // Don't promote DMB ST|DMB LD to DMB (a full barrier) because
2359
    // doing so would introduce a StoreLoad which the caller did not
2360
    // intend
2361
    if (bar->get_kind() == order_constraint
2362
        || bar->get_kind() == AnyAny
2363
        || order_constraint == AnyAny) {
2364
      // We are merging two memory barrier instructions.  On AArch64 we
2365
      // can do this simply by ORing them together.
2366
      bar->set_kind(bar->get_kind() | order_constraint);
2367
      BLOCK_COMMENT("merged membar");
2368
      return;
2369
    } else {
2370
      // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped
2371
      // We need check the last 2 instructions
2372
      address prev2 = prev - NativeMembar::instruction_size;
2373
      if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) {
2374
        NativeMembar *bar2 = NativeMembar_at(prev2);
2375
        assert(bar2->get_kind() == order_constraint, "it should be merged before");
2376
        BLOCK_COMMENT("merged membar(elided)");
2377
        return;
2378
      }
2379
    }
2380
  }
2381
  code()->set_last_insn(pc());
2382
  dmb(Assembler::barrier(order_constraint));
2383
}
2384

2385
bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) {
2386
  if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) {
2387
    merge_ldst(rt, adr, size_in_bytes, is_store);
2388
    code()->clear_last_insn();
2389
    return true;
2390
  } else {
2391
    assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported.");
2392
    const uint64_t mask = size_in_bytes - 1;
2393
    if (adr.getMode() == Address::base_plus_offset &&
2394
        (adr.offset() & mask) == 0) { // only supports base_plus_offset.
2395
      code()->set_last_insn(pc());
2396
    }
2397
    return false;
2398
  }
2399
}
2400

2401
void MacroAssembler::ldr(Register Rx, const Address &adr) {
2402
  // We always try to merge two adjacent loads into one ldp.
2403
  if (!try_merge_ldst(Rx, adr, 8, false)) {
2404
    Assembler::ldr(Rx, adr);
2405
  }
2406
}
2407

2408
void MacroAssembler::ldrw(Register Rw, const Address &adr) {
2409
  // We always try to merge two adjacent loads into one ldp.
2410
  if (!try_merge_ldst(Rw, adr, 4, false)) {
2411
    Assembler::ldrw(Rw, adr);
2412
  }
2413
}
2414

2415
void MacroAssembler::str(Register Rx, const Address &adr) {
2416
  // We always try to merge two adjacent stores into one stp.
2417
  if (!try_merge_ldst(Rx, adr, 8, true)) {
2418
    Assembler::str(Rx, adr);
2419
  }
2420
}
2421

2422
void MacroAssembler::strw(Register Rw, const Address &adr) {
2423
  // We always try to merge two adjacent stores into one stp.
2424
  if (!try_merge_ldst(Rw, adr, 4, true)) {
2425
    Assembler::strw(Rw, adr);
2426
  }
2427
}
2428

2429
// MacroAssembler routines found actually to be needed
2430

2431
void MacroAssembler::push(Register src)
2432
{
2433
  str(src, Address(pre(esp, -1 * wordSize)));
2434
}
2435

2436
void MacroAssembler::pop(Register dst)
2437
{
2438
  ldr(dst, Address(post(esp, 1 * wordSize)));
2439
}
2440

2441
// Note: load_unsigned_short used to be called load_unsigned_word.
2442
int MacroAssembler::load_unsigned_short(Register dst, Address src) {
2443
  int off = offset();
2444
  ldrh(dst, src);
2445
  return off;
2446
}
2447

2448
int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
2449
  int off = offset();
2450
  ldrb(dst, src);
2451
  return off;
2452
}
2453

2454
int MacroAssembler::load_signed_short(Register dst, Address src) {
2455
  int off = offset();
2456
  ldrsh(dst, src);
2457
  return off;
2458
}
2459

2460
int MacroAssembler::load_signed_byte(Register dst, Address src) {
2461
  int off = offset();
2462
  ldrsb(dst, src);
2463
  return off;
2464
}
2465

2466
int MacroAssembler::load_signed_short32(Register dst, Address src) {
2467
  int off = offset();
2468
  ldrshw(dst, src);
2469
  return off;
2470
}
2471

2472
int MacroAssembler::load_signed_byte32(Register dst, Address src) {
2473
  int off = offset();
2474
  ldrsbw(dst, src);
2475
  return off;
2476
}
2477

2478
void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
2479
  switch (size_in_bytes) {
2480
  case  8:  ldr(dst, src); break;
2481
  case  4:  ldrw(dst, src); break;
2482
  case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
2483
  case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
2484
  default:  ShouldNotReachHere();
2485
  }
2486
}
2487

2488
void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) {
2489
  switch (size_in_bytes) {
2490
  case  8:  str(src, dst); break;
2491
  case  4:  strw(src, dst); break;
2492
  case  2:  strh(src, dst); break;
2493
  case  1:  strb(src, dst); break;
2494
  default:  ShouldNotReachHere();
2495
  }
2496
}
2497

2498
void MacroAssembler::decrementw(Register reg, int value)
2499
{
2500
  if (value < 0)  { incrementw(reg, -value);      return; }
2501
  if (value == 0) {                               return; }
2502
  if (value < (1 << 12)) { subw(reg, reg, value); return; }
2503
  /* else */ {
2504
    guarantee(reg != rscratch2, "invalid dst for register decrement");
2505
    movw(rscratch2, (unsigned)value);
2506
    subw(reg, reg, rscratch2);
2507
  }
2508
}
2509

2510
void MacroAssembler::decrement(Register reg, int value)
2511
{
2512
  if (value < 0)  { increment(reg, -value);      return; }
2513
  if (value == 0) {                              return; }
2514
  if (value < (1 << 12)) { sub(reg, reg, value); return; }
2515
  /* else */ {
2516
    assert(reg != rscratch2, "invalid dst for register decrement");
2517
    mov(rscratch2, (uint64_t)value);
2518
    sub(reg, reg, rscratch2);
2519
  }
2520
}
2521

2522
void MacroAssembler::decrementw(Address dst, int value)
2523
{
2524
  assert(!dst.uses(rscratch1), "invalid dst for address decrement");
2525
  if (dst.getMode() == Address::literal) {
2526
    assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2527
    lea(rscratch2, dst);
2528
    dst = Address(rscratch2);
2529
  }
2530
  ldrw(rscratch1, dst);
2531
  decrementw(rscratch1, value);
2532
  strw(rscratch1, dst);
2533
}
2534

2535
void MacroAssembler::decrement(Address dst, int value)
2536
{
2537
  assert(!dst.uses(rscratch1), "invalid address for decrement");
2538
  if (dst.getMode() == Address::literal) {
2539
    assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2540
    lea(rscratch2, dst);
2541
    dst = Address(rscratch2);
2542
  }
2543
  ldr(rscratch1, dst);
2544
  decrement(rscratch1, value);
2545
  str(rscratch1, dst);
2546
}
2547

2548
void MacroAssembler::incrementw(Register reg, int value)
2549
{
2550
  if (value < 0)  { decrementw(reg, -value);      return; }
2551
  if (value == 0) {                               return; }
2552
  if (value < (1 << 12)) { addw(reg, reg, value); return; }
2553
  /* else */ {
2554
    assert(reg != rscratch2, "invalid dst for register increment");
2555
    movw(rscratch2, (unsigned)value);
2556
    addw(reg, reg, rscratch2);
2557
  }
2558
}
2559

2560
void MacroAssembler::increment(Register reg, int value)
2561
{
2562
  if (value < 0)  { decrement(reg, -value);      return; }
2563
  if (value == 0) {                              return; }
2564
  if (value < (1 << 12)) { add(reg, reg, value); return; }
2565
  /* else */ {
2566
    assert(reg != rscratch2, "invalid dst for register increment");
2567
    movw(rscratch2, (unsigned)value);
2568
    add(reg, reg, rscratch2);
2569
  }
2570
}
2571

2572
void MacroAssembler::incrementw(Address dst, int value)
2573
{
2574
  assert(!dst.uses(rscratch1), "invalid dst for address increment");
2575
  if (dst.getMode() == Address::literal) {
2576
    assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2577
    lea(rscratch2, dst);
2578
    dst = Address(rscratch2);
2579
  }
2580
  ldrw(rscratch1, dst);
2581
  incrementw(rscratch1, value);
2582
  strw(rscratch1, dst);
2583
}
2584

2585
void MacroAssembler::increment(Address dst, int value)
2586
{
2587
  assert(!dst.uses(rscratch1), "invalid dst for address increment");
2588
  if (dst.getMode() == Address::literal) {
2589
    assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2590
    lea(rscratch2, dst);
2591
    dst = Address(rscratch2);
2592
  }
2593
  ldr(rscratch1, dst);
2594
  increment(rscratch1, value);
2595
  str(rscratch1, dst);
2596
}
2597

2598
// Push lots of registers in the bit set supplied.  Don't push sp.
2599
// Return the number of words pushed
2600
int MacroAssembler::push(unsigned int bitset, Register stack) {
2601
  int words_pushed = 0;
2602

2603
  // Scan bitset to accumulate register pairs
2604
  unsigned char regs[32];
2605
  int count = 0;
2606
  for (int reg = 0; reg <= 30; reg++) {
2607
    if (1 & bitset)
2608
      regs[count++] = reg;
2609
    bitset >>= 1;
2610
  }
2611
  regs[count++] = zr->raw_encoding();
2612
  count &= ~1;  // Only push an even number of regs
2613

2614
  if (count) {
2615
    stp(as_Register(regs[0]), as_Register(regs[1]),
2616
       Address(pre(stack, -count * wordSize)));
2617
    words_pushed += 2;
2618
  }
2619
  for (int i = 2; i < count; i += 2) {
2620
    stp(as_Register(regs[i]), as_Register(regs[i+1]),
2621
       Address(stack, i * wordSize));
2622
    words_pushed += 2;
2623
  }
2624

2625
  assert(words_pushed == count, "oops, pushed != count");
2626

2627
  return count;
2628
}
2629

2630
int MacroAssembler::pop(unsigned int bitset, Register stack) {
2631
  int words_pushed = 0;
2632

2633
  // Scan bitset to accumulate register pairs
2634
  unsigned char regs[32];
2635
  int count = 0;
2636
  for (int reg = 0; reg <= 30; reg++) {
2637
    if (1 & bitset)
2638
      regs[count++] = reg;
2639
    bitset >>= 1;
2640
  }
2641
  regs[count++] = zr->raw_encoding();
2642
  count &= ~1;
2643

2644
  for (int i = 2; i < count; i += 2) {
2645
    ldp(as_Register(regs[i]), as_Register(regs[i+1]),
2646
       Address(stack, i * wordSize));
2647
    words_pushed += 2;
2648
  }
2649
  if (count) {
2650
    ldp(as_Register(regs[0]), as_Register(regs[1]),
2651
       Address(post(stack, count * wordSize)));
2652
    words_pushed += 2;
2653
  }
2654

2655
  assert(words_pushed == count, "oops, pushed != count");
2656

2657
  return count;
2658
}
2659

2660
// Push lots of registers in the bit set supplied.  Don't push sp.
2661
// Return the number of dwords pushed
2662
int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) {
2663
  int words_pushed = 0;
2664
  bool use_sve = false;
2665
  int sve_vector_size_in_bytes = 0;
2666

2667
#ifdef COMPILER2
2668
  use_sve = Matcher::supports_scalable_vector();
2669
  sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
2670
#endif
2671

2672
  // Scan bitset to accumulate register pairs
2673
  unsigned char regs[32];
2674
  int count = 0;
2675
  for (int reg = 0; reg <= 31; reg++) {
2676
    if (1 & bitset)
2677
      regs[count++] = reg;
2678
    bitset >>= 1;
2679
  }
2680

2681
  if (count == 0) {
2682
    return 0;
2683
  }
2684

2685
  if (mode == PushPopFull) {
2686
    if (use_sve && sve_vector_size_in_bytes > 16) {
2687
      mode = PushPopSVE;
2688
    } else {
2689
      mode = PushPopNeon;
2690
    }
2691
  }
2692

2693
#ifndef PRODUCT
2694
  {
2695
    char buffer[48];
2696
    if (mode == PushPopSVE) {
2697
      snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count);
2698
    } else if (mode == PushPopNeon) {
2699
      snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count);
2700
    } else {
2701
      snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count);
2702
    }
2703
    block_comment(buffer);
2704
  }
2705
#endif
2706

2707
  if (mode == PushPopSVE) {
2708
    sub(stack, stack, sve_vector_size_in_bytes * count);
2709
    for (int i = 0; i < count; i++) {
2710
      sve_str(as_FloatRegister(regs[i]), Address(stack, i));
2711
    }
2712
    return count * sve_vector_size_in_bytes / 8;
2713
  }
2714

2715
  if (mode == PushPopNeon) {
2716
    if (count == 1) {
2717
      strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2)));
2718
      return 2;
2719
    }
2720

2721
    bool odd = (count & 1) == 1;
2722
    int push_slots = count + (odd ? 1 : 0);
2723

2724
    // Always pushing full 128 bit registers.
2725
    stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2)));
2726
    words_pushed += 2;
2727

2728
    for (int i = 2; i + 1 < count; i += 2) {
2729
      stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2));
2730
      words_pushed += 2;
2731
    }
2732

2733
    if (odd) {
2734
      strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2));
2735
      words_pushed++;
2736
    }
2737

2738
    assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
2739
    return count * 2;
2740
  }
2741

2742
  if (mode == PushPopFp) {
2743
    bool odd = (count & 1) == 1;
2744
    int push_slots = count + (odd ? 1 : 0);
2745

2746
    if (count == 1) {
2747
      // Stack pointer must be 16 bytes aligned
2748
      strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize)));
2749
      return 1;
2750
    }
2751

2752
    stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize)));
2753
    words_pushed += 2;
2754

2755
    for (int i = 2; i + 1 < count; i += 2) {
2756
      stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize));
2757
      words_pushed += 2;
2758
    }
2759

2760
    if (odd) {
2761
      // Stack pointer must be 16 bytes aligned
2762
      strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize));
2763
      words_pushed++;
2764
    }
2765

2766
    assert(words_pushed == count, "oops, pushed != count");
2767

2768
    return count;
2769
  }
2770

2771
  return 0;
2772
}
2773

2774
// Return the number of dwords popped
2775
int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) {
2776
  int words_pushed = 0;
2777
  bool use_sve = false;
2778
  int sve_vector_size_in_bytes = 0;
2779

2780
#ifdef COMPILER2
2781
  use_sve = Matcher::supports_scalable_vector();
2782
  sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
2783
#endif
2784
  // Scan bitset to accumulate register pairs
2785
  unsigned char regs[32];
2786
  int count = 0;
2787
  for (int reg = 0; reg <= 31; reg++) {
2788
    if (1 & bitset)
2789
      regs[count++] = reg;
2790
    bitset >>= 1;
2791
  }
2792

2793
  if (count == 0) {
2794
    return 0;
2795
  }
2796

2797
  if (mode == PushPopFull) {
2798
    if (use_sve && sve_vector_size_in_bytes > 16) {
2799
      mode = PushPopSVE;
2800
    } else {
2801
      mode = PushPopNeon;
2802
    }
2803
  }
2804

2805
#ifndef PRODUCT
2806
  {
2807
    char buffer[48];
2808
    if (mode == PushPopSVE) {
2809
      snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count);
2810
    } else if (mode == PushPopNeon) {
2811
      snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count);
2812
    } else {
2813
      snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count);
2814
    }
2815
    block_comment(buffer);
2816
  }
2817
#endif
2818

2819
  if (mode == PushPopSVE) {
2820
    for (int i = count - 1; i >= 0; i--) {
2821
      sve_ldr(as_FloatRegister(regs[i]), Address(stack, i));
2822
    }
2823
    add(stack, stack, sve_vector_size_in_bytes * count);
2824
    return count * sve_vector_size_in_bytes / 8;
2825
  }
2826

2827
  if (mode == PushPopNeon) {
2828
    if (count == 1) {
2829
      ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2)));
2830
      return 2;
2831
    }
2832

2833
    bool odd = (count & 1) == 1;
2834
    int push_slots = count + (odd ? 1 : 0);
2835

2836
    if (odd) {
2837
      ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2));
2838
      words_pushed++;
2839
    }
2840

2841
    for (int i = 2; i + 1 < count; i += 2) {
2842
      ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2));
2843
      words_pushed += 2;
2844
    }
2845

2846
    ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2)));
2847
    words_pushed += 2;
2848

2849
    assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
2850

2851
    return count * 2;
2852
  }
2853

2854
  if (mode == PushPopFp) {
2855
    bool odd = (count & 1) == 1;
2856
    int push_slots = count + (odd ? 1 : 0);
2857

2858
    if (count == 1) {
2859
      ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize)));
2860
      return 1;
2861
    }
2862

2863
    if (odd) {
2864
      ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize));
2865
      words_pushed++;
2866
    }
2867

2868
    for (int i = 2; i + 1 < count; i += 2) {
2869
      ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize));
2870
      words_pushed += 2;
2871
    }
2872

2873
    ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize)));
2874
    words_pushed += 2;
2875

2876
    assert(words_pushed == count, "oops, pushed != count");
2877

2878
    return count;
2879
  }
2880

2881
  return 0;
2882
}
2883

2884
// Return the number of dwords pushed
2885
int MacroAssembler::push_p(unsigned int bitset, Register stack) {
2886
  bool use_sve = false;
2887
  int sve_predicate_size_in_slots = 0;
2888

2889
#ifdef COMPILER2
2890
  use_sve = Matcher::supports_scalable_vector();
2891
  if (use_sve) {
2892
    sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
2893
  }
2894
#endif
2895

2896
  if (!use_sve) {
2897
    return 0;
2898
  }
2899

2900
  unsigned char regs[PRegister::number_of_registers];
2901
  int count = 0;
2902
  for (int reg = 0; reg < PRegister::number_of_registers; reg++) {
2903
    if (1 & bitset)
2904
      regs[count++] = reg;
2905
    bitset >>= 1;
2906
  }
2907

2908
  if (count == 0) {
2909
    return 0;
2910
  }
2911

2912
  int total_push_bytes = align_up(sve_predicate_size_in_slots *
2913
                                  VMRegImpl::stack_slot_size * count, 16);
2914
  sub(stack, stack, total_push_bytes);
2915
  for (int i = 0; i < count; i++) {
2916
    sve_str(as_PRegister(regs[i]), Address(stack, i));
2917
  }
2918
  return total_push_bytes / 8;
2919
}
2920

2921
// Return the number of dwords popped
2922
int MacroAssembler::pop_p(unsigned int bitset, Register stack) {
2923
  bool use_sve = false;
2924
  int sve_predicate_size_in_slots = 0;
2925

2926
#ifdef COMPILER2
2927
  use_sve = Matcher::supports_scalable_vector();
2928
  if (use_sve) {
2929
    sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
2930
  }
2931
#endif
2932

2933
  if (!use_sve) {
2934
    return 0;
2935
  }
2936

2937
  unsigned char regs[PRegister::number_of_registers];
2938
  int count = 0;
2939
  for (int reg = 0; reg < PRegister::number_of_registers; reg++) {
2940
    if (1 & bitset)
2941
      regs[count++] = reg;
2942
    bitset >>= 1;
2943
  }
2944

2945
  if (count == 0) {
2946
    return 0;
2947
  }
2948

2949
  int total_pop_bytes = align_up(sve_predicate_size_in_slots *
2950
                                 VMRegImpl::stack_slot_size * count, 16);
2951
  for (int i = count - 1; i >= 0; i--) {
2952
    sve_ldr(as_PRegister(regs[i]), Address(stack, i));
2953
  }
2954
  add(stack, stack, total_pop_bytes);
2955
  return total_pop_bytes / 8;
2956
}
2957

2958
#ifdef ASSERT
2959
void MacroAssembler::verify_heapbase(const char* msg) {
2960
#if 0
2961
  assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
2962
  assert (Universe::heap() != nullptr, "java heap should be initialized");
2963
  if (!UseCompressedOops || Universe::ptr_base() == nullptr) {
2964
    // rheapbase is allocated as general register
2965
    return;
2966
  }
2967
  if (CheckCompressedOops) {
2968
    Label ok;
2969
    push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
2970
    cmpptr(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr()));
2971
    br(Assembler::EQ, ok);
2972
    stop(msg);
2973
    bind(ok);
2974
    pop(1 << rscratch1->encoding(), sp);
2975
  }
2976
#endif
2977
}
2978
#endif
2979

2980
void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
2981
  assert_different_registers(value, tmp1, tmp2);
2982
  Label done, tagged, weak_tagged;
2983

2984
  cbz(value, done);           // Use null as-is.
2985
  tst(value, JNIHandles::tag_mask); // Test for tag.
2986
  br(Assembler::NE, tagged);
2987

2988
  // Resolve local handle
2989
  access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2);
2990
  verify_oop(value);
2991
  b(done);
2992

2993
  bind(tagged);
2994
  STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1);
2995
  tbnz(value, 0, weak_tagged);    // Test for weak tag.
2996

2997
  // Resolve global handle
2998
  access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2);
2999
  verify_oop(value);
3000
  b(done);
3001

3002
  bind(weak_tagged);
3003
  // Resolve jweak.
3004
  access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
3005
                 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2);
3006
  verify_oop(value);
3007

3008
  bind(done);
3009
}
3010

3011
void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) {
3012
  assert_different_registers(value, tmp1, tmp2);
3013
  Label done;
3014

3015
  cbz(value, done);           // Use null as-is.
3016

3017
#ifdef ASSERT
3018
  {
3019
    STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10);
3020
    Label valid_global_tag;
3021
    tbnz(value, 1, valid_global_tag); // Test for global tag
3022
    stop("non global jobject using resolve_global_jobject");
3023
    bind(valid_global_tag);
3024
  }
3025
#endif
3026

3027
  // Resolve global handle
3028
  access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2);
3029
  verify_oop(value);
3030

3031
  bind(done);
3032
}
3033

3034
void MacroAssembler::stop(const char* msg) {
3035
  BLOCK_COMMENT(msg);
3036
  dcps1(0xdeae);
3037
  emit_int64((uintptr_t)msg);
3038
}
3039

3040
void MacroAssembler::unimplemented(const char* what) {
3041
  const char* buf = nullptr;
3042
  {
3043
    ResourceMark rm;
3044
    stringStream ss;
3045
    ss.print("unimplemented: %s", what);
3046
    buf = code_string(ss.as_string());
3047
  }
3048
  stop(buf);
3049
}
3050

3051
void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) {
3052
#ifdef ASSERT
3053
  Label OK;
3054
  br(cc, OK);
3055
  stop(msg);
3056
  bind(OK);
3057
#endif
3058
}
3059

3060
// If a constant does not fit in an immediate field, generate some
3061
// number of MOV instructions and then perform the operation.
3062
void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
3063
                                           add_sub_imm_insn insn1,
3064
                                           add_sub_reg_insn insn2,
3065
                                           bool is32) {
3066
  assert(Rd != zr, "Rd = zr and not setting flags?");
3067
  bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm);
3068
  if (fits) {
3069
    (this->*insn1)(Rd, Rn, imm);
3070
  } else {
3071
    if (uabs(imm) < (1 << 24)) {
3072
       (this->*insn1)(Rd, Rn, imm & -(1 << 12));
3073
       (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
3074
    } else {
3075
       assert_different_registers(Rd, Rn);
3076
       mov(Rd, imm);
3077
       (this->*insn2)(Rd, Rn, Rd, LSL, 0);
3078
    }
3079
  }
3080
}
3081

3082
// Separate vsn which sets the flags. Optimisations are more restricted
3083
// because we must set the flags correctly.
3084
void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
3085
                                             add_sub_imm_insn insn1,
3086
                                             add_sub_reg_insn insn2,
3087
                                             bool is32) {
3088
  bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm);
3089
  if (fits) {
3090
    (this->*insn1)(Rd, Rn, imm);
3091
  } else {
3092
    assert_different_registers(Rd, Rn);
3093
    assert(Rd != zr, "overflow in immediate operand");
3094
    mov(Rd, imm);
3095
    (this->*insn2)(Rd, Rn, Rd, LSL, 0);
3096
  }
3097
}
3098

3099

3100
void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
3101
  if (increment.is_register()) {
3102
    add(Rd, Rn, increment.as_register());
3103
  } else {
3104
    add(Rd, Rn, increment.as_constant());
3105
  }
3106
}
3107

3108
void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
3109
  if (increment.is_register()) {
3110
    addw(Rd, Rn, increment.as_register());
3111
  } else {
3112
    addw(Rd, Rn, increment.as_constant());
3113
  }
3114
}
3115

3116
void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
3117
  if (decrement.is_register()) {
3118
    sub(Rd, Rn, decrement.as_register());
3119
  } else {
3120
    sub(Rd, Rn, decrement.as_constant());
3121
  }
3122
}
3123

3124
void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
3125
  if (decrement.is_register()) {
3126
    subw(Rd, Rn, decrement.as_register());
3127
  } else {
3128
    subw(Rd, Rn, decrement.as_constant());
3129
  }
3130
}
3131

3132
void MacroAssembler::reinit_heapbase()
3133
{
3134
  if (UseCompressedOops) {
3135
    if (Universe::is_fully_initialized()) {
3136
      mov(rheapbase, CompressedOops::ptrs_base());
3137
    } else {
3138
      lea(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr()));
3139
      ldr(rheapbase, Address(rheapbase));
3140
    }
3141
  }
3142
}
3143

3144
// this simulates the behaviour of the x86 cmpxchg instruction using a
3145
// load linked/store conditional pair. we use the acquire/release
3146
// versions of these instructions so that we flush pending writes as
3147
// per Java semantics.
3148

3149
// n.b the x86 version assumes the old value to be compared against is
3150
// in rax and updates rax with the value located in memory if the
3151
// cmpxchg fails. we supply a register for the old value explicitly
3152

3153
// the aarch64 load linked/store conditional instructions do not
3154
// accept an offset. so, unlike x86, we must provide a plain register
3155
// to identify the memory word to be compared/exchanged rather than a
3156
// register+offset Address.
3157

3158
void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
3159
                                Label &succeed, Label *fail) {
3160
  // oldv holds comparison value
3161
  // newv holds value to write in exchange
3162
  // addr identifies memory word to compare against/update
3163
  if (UseLSE) {
3164
    mov(tmp, oldv);
3165
    casal(Assembler::xword, oldv, newv, addr);
3166
    cmp(tmp, oldv);
3167
    br(Assembler::EQ, succeed);
3168
    membar(AnyAny);
3169
  } else {
3170
    Label retry_load, nope;
3171
    prfm(Address(addr), PSTL1STRM);
3172
    bind(retry_load);
3173
    // flush and load exclusive from the memory location
3174
    // and fail if it is not what we expect
3175
    ldaxr(tmp, addr);
3176
    cmp(tmp, oldv);
3177
    br(Assembler::NE, nope);
3178
    // if we store+flush with no intervening write tmp will be zero
3179
    stlxr(tmp, newv, addr);
3180
    cbzw(tmp, succeed);
3181
    // retry so we only ever return after a load fails to compare
3182
    // ensures we don't return a stale value after a failed write.
3183
    b(retry_load);
3184
    // if the memory word differs we return it in oldv and signal a fail
3185
    bind(nope);
3186
    membar(AnyAny);
3187
    mov(oldv, tmp);
3188
  }
3189
  if (fail)
3190
    b(*fail);
3191
}
3192

3193
void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
3194
                                        Label &succeed, Label *fail) {
3195
  assert(oopDesc::mark_offset_in_bytes() == 0, "assumption");
3196
  cmpxchgptr(oldv, newv, obj, tmp, succeed, fail);
3197
}
3198

3199
void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
3200
                                Label &succeed, Label *fail) {
3201
  // oldv holds comparison value
3202
  // newv holds value to write in exchange
3203
  // addr identifies memory word to compare against/update
3204
  // tmp returns 0/1 for success/failure
3205
  if (UseLSE) {
3206
    mov(tmp, oldv);
3207
    casal(Assembler::word, oldv, newv, addr);
3208
    cmp(tmp, oldv);
3209
    br(Assembler::EQ, succeed);
3210
    membar(AnyAny);
3211
  } else {
3212
    Label retry_load, nope;
3213
    prfm(Address(addr), PSTL1STRM);
3214
    bind(retry_load);
3215
    // flush and load exclusive from the memory location
3216
    // and fail if it is not what we expect
3217
    ldaxrw(tmp, addr);
3218
    cmp(tmp, oldv);
3219
    br(Assembler::NE, nope);
3220
    // if we store+flush with no intervening write tmp will be zero
3221
    stlxrw(tmp, newv, addr);
3222
    cbzw(tmp, succeed);
3223
    // retry so we only ever return after a load fails to compare
3224
    // ensures we don't return a stale value after a failed write.
3225
    b(retry_load);
3226
    // if the memory word differs we return it in oldv and signal a fail
3227
    bind(nope);
3228
    membar(AnyAny);
3229
    mov(oldv, tmp);
3230
  }
3231
  if (fail)
3232
    b(*fail);
3233
}
3234

3235
// A generic CAS; success or failure is in the EQ flag.  A weak CAS
3236
// doesn't retry and may fail spuriously.  If the oldval is wanted,
3237
// Pass a register for the result, otherwise pass noreg.
3238

3239
// Clobbers rscratch1
3240
void MacroAssembler::cmpxchg(Register addr, Register expected,
3241
                             Register new_val,
3242
                             enum operand_size size,
3243
                             bool acquire, bool release,
3244
                             bool weak,
3245
                             Register result) {
3246
  if (result == noreg)  result = rscratch1;
3247
  BLOCK_COMMENT("cmpxchg {");
3248
  if (UseLSE) {
3249
    mov(result, expected);
3250
    lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true);
3251
    compare_eq(result, expected, size);
3252
#ifdef ASSERT
3253
    // Poison rscratch1 which is written on !UseLSE branch
3254
    mov(rscratch1, 0x1f1f1f1f1f1f1f1f);
3255
#endif
3256
  } else {
3257
    Label retry_load, done;
3258
    prfm(Address(addr), PSTL1STRM);
3259
    bind(retry_load);
3260
    load_exclusive(result, addr, size, acquire);
3261
    compare_eq(result, expected, size);
3262
    br(Assembler::NE, done);
3263
    store_exclusive(rscratch1, new_val, addr, size, release);
3264
    if (weak) {
3265
      cmpw(rscratch1, 0u);  // If the store fails, return NE to our caller.
3266
    } else {
3267
      cbnzw(rscratch1, retry_load);
3268
    }
3269
    bind(done);
3270
  }
3271
  BLOCK_COMMENT("} cmpxchg");
3272
}
3273

3274
// A generic comparison. Only compares for equality, clobbers rscratch1.
3275
void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) {
3276
  if (size == xword) {
3277
    cmp(rm, rn);
3278
  } else if (size == word) {
3279
    cmpw(rm, rn);
3280
  } else if (size == halfword) {
3281
    eorw(rscratch1, rm, rn);
3282
    ands(zr, rscratch1, 0xffff);
3283
  } else if (size == byte) {
3284
    eorw(rscratch1, rm, rn);
3285
    ands(zr, rscratch1, 0xff);
3286
  } else {
3287
    ShouldNotReachHere();
3288
  }
3289
}
3290

3291

3292
static bool different(Register a, RegisterOrConstant b, Register c) {
3293
  if (b.is_constant())
3294
    return a != c;
3295
  else
3296
    return a != b.as_register() && a != c && b.as_register() != c;
3297
}
3298

3299
#define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz)                   \
3300
void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
3301
  if (UseLSE) {                                                         \
3302
    prev = prev->is_valid() ? prev : zr;                                \
3303
    if (incr.is_register()) {                                           \
3304
      AOP(sz, incr.as_register(), prev, addr);                          \
3305
    } else {                                                            \
3306
      mov(rscratch2, incr.as_constant());                               \
3307
      AOP(sz, rscratch2, prev, addr);                                   \
3308
    }                                                                   \
3309
    return;                                                             \
3310
  }                                                                     \
3311
  Register result = rscratch2;                                          \
3312
  if (prev->is_valid())                                                 \
3313
    result = different(prev, incr, addr) ? prev : rscratch2;            \
3314
                                                                        \
3315
  Label retry_load;                                                     \
3316
  prfm(Address(addr), PSTL1STRM);                                       \
3317
  bind(retry_load);                                                     \
3318
  LDXR(result, addr);                                                   \
3319
  OP(rscratch1, result, incr);                                          \
3320
  STXR(rscratch2, rscratch1, addr);                                     \
3321
  cbnzw(rscratch2, retry_load);                                         \
3322
  if (prev->is_valid() && prev != result) {                             \
3323
    IOP(prev, rscratch1, incr);                                         \
3324
  }                                                                     \
3325
}
3326

3327
ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword)
3328
ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
3329
ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword)
3330
ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word)
3331

3332
#undef ATOMIC_OP
3333

3334
#define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz)                            \
3335
void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
3336
  if (UseLSE) {                                                         \
3337
    prev = prev->is_valid() ? prev : zr;                                \
3338
    AOP(sz, newv, prev, addr);                                          \
3339
    return;                                                             \
3340
  }                                                                     \
3341
  Register result = rscratch2;                                          \
3342
  if (prev->is_valid())                                                 \
3343
    result = different(prev, newv, addr) ? prev : rscratch2;            \
3344
                                                                        \
3345
  Label retry_load;                                                     \
3346
  prfm(Address(addr), PSTL1STRM);                                       \
3347
  bind(retry_load);                                                     \
3348
  LDXR(result, addr);                                                   \
3349
  STXR(rscratch1, newv, addr);                                          \
3350
  cbnzw(rscratch1, retry_load);                                         \
3351
  if (prev->is_valid() && prev != result)                               \
3352
    mov(prev, result);                                                  \
3353
}
3354

3355
ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword)
3356
ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word)
3357
ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword)
3358
ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word)
3359
ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword)
3360
ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word)
3361

3362
#undef ATOMIC_XCHG
3363

3364
#ifndef PRODUCT
3365
extern "C" void findpc(intptr_t x);
3366
#endif
3367

3368
void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
3369
{
3370
  // In order to get locks to work, we need to fake a in_VM state
3371
  if (ShowMessageBoxOnError ) {
3372
    JavaThread* thread = JavaThread::current();
3373
    JavaThreadState saved_state = thread->thread_state();
3374
    thread->set_thread_state(_thread_in_vm);
3375
#ifndef PRODUCT
3376
    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
3377
      ttyLocker ttyl;
3378
      BytecodeCounter::print();
3379
    }
3380
#endif
3381
    if (os::message_box(msg, "Execution stopped, print registers?")) {
3382
      ttyLocker ttyl;
3383
      tty->print_cr(" pc = 0x%016" PRIx64, pc);
3384
#ifndef PRODUCT
3385
      tty->cr();
3386
      findpc(pc);
3387
      tty->cr();
3388
#endif
3389
      tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]);
3390
      tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]);
3391
      tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]);
3392
      tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]);
3393
      tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]);
3394
      tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]);
3395
      tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]);
3396
      tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]);
3397
      tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]);
3398
      tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]);
3399
      tty->print_cr("r10 = 0x%016" PRIx64, regs[10]);
3400
      tty->print_cr("r11 = 0x%016" PRIx64, regs[11]);
3401
      tty->print_cr("r12 = 0x%016" PRIx64, regs[12]);
3402
      tty->print_cr("r13 = 0x%016" PRIx64, regs[13]);
3403
      tty->print_cr("r14 = 0x%016" PRIx64, regs[14]);
3404
      tty->print_cr("r15 = 0x%016" PRIx64, regs[15]);
3405
      tty->print_cr("r16 = 0x%016" PRIx64, regs[16]);
3406
      tty->print_cr("r17 = 0x%016" PRIx64, regs[17]);
3407
      tty->print_cr("r18 = 0x%016" PRIx64, regs[18]);
3408
      tty->print_cr("r19 = 0x%016" PRIx64, regs[19]);
3409
      tty->print_cr("r20 = 0x%016" PRIx64, regs[20]);
3410
      tty->print_cr("r21 = 0x%016" PRIx64, regs[21]);
3411
      tty->print_cr("r22 = 0x%016" PRIx64, regs[22]);
3412
      tty->print_cr("r23 = 0x%016" PRIx64, regs[23]);
3413
      tty->print_cr("r24 = 0x%016" PRIx64, regs[24]);
3414
      tty->print_cr("r25 = 0x%016" PRIx64, regs[25]);
3415
      tty->print_cr("r26 = 0x%016" PRIx64, regs[26]);
3416
      tty->print_cr("r27 = 0x%016" PRIx64, regs[27]);
3417
      tty->print_cr("r28 = 0x%016" PRIx64, regs[28]);
3418
      tty->print_cr("r30 = 0x%016" PRIx64, regs[30]);
3419
      tty->print_cr("r31 = 0x%016" PRIx64, regs[31]);
3420
      BREAKPOINT;
3421
    }
3422
  }
3423
  fatal("DEBUG MESSAGE: %s", msg);
3424
}
3425

3426
RegSet MacroAssembler::call_clobbered_gp_registers() {
3427
  RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2);
3428
#ifndef R18_RESERVED
3429
  regs += r18_tls;
3430
#endif
3431
  return regs;
3432
}
3433

3434
void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) {
3435
  int step = 4 * wordSize;
3436
  push(call_clobbered_gp_registers() - exclude, sp);
3437
  sub(sp, sp, step);
3438
  mov(rscratch1, -step);
3439
  // Push v0-v7, v16-v31.
3440
  for (int i = 31; i>= 4; i -= 4) {
3441
    if (i <= v7->encoding() || i >= v16->encoding())
3442
      st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1),
3443
          as_FloatRegister(i), T1D, Address(post(sp, rscratch1)));
3444
  }
3445
  st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2),
3446
      as_FloatRegister(3), T1D, Address(sp));
3447
}
3448

3449
void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) {
3450
  for (int i = 0; i < 32; i += 4) {
3451
    if (i <= v7->encoding() || i >= v16->encoding())
3452
      ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3453
          as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize)));
3454
  }
3455

3456
  reinitialize_ptrue();
3457

3458
  pop(call_clobbered_gp_registers() - exclude, sp);
3459
}
3460

3461
void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve,
3462
                                    int sve_vector_size_in_bytes, int total_predicate_in_bytes) {
3463
  push(RegSet::range(r0, r29), sp); // integer registers except lr & sp
3464
  if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) {
3465
    sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers);
3466
    for (int i = 0; i < FloatRegister::number_of_registers; i++) {
3467
      sve_str(as_FloatRegister(i), Address(sp, i));
3468
    }
3469
  } else {
3470
    int step = (save_vectors ? 8 : 4) * wordSize;
3471
    mov(rscratch1, -step);
3472
    sub(sp, sp, step);
3473
    for (int i = 28; i >= 4; i -= 4) {
3474
      st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3475
          as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1)));
3476
    }
3477
    st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp);
3478
  }
3479
  if (save_vectors && use_sve && total_predicate_in_bytes > 0) {
3480
    sub(sp, sp, total_predicate_in_bytes);
3481
    for (int i = 0; i < PRegister::number_of_registers; i++) {
3482
      sve_str(as_PRegister(i), Address(sp, i));
3483
    }
3484
  }
3485
}
3486

3487
void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve,
3488
                                   int sve_vector_size_in_bytes, int total_predicate_in_bytes) {
3489
  if (restore_vectors && use_sve && total_predicate_in_bytes > 0) {
3490
    for (int i = PRegister::number_of_registers - 1; i >= 0; i--) {
3491
      sve_ldr(as_PRegister(i), Address(sp, i));
3492
    }
3493
    add(sp, sp, total_predicate_in_bytes);
3494
  }
3495
  if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) {
3496
    for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) {
3497
      sve_ldr(as_FloatRegister(i), Address(sp, i));
3498
    }
3499
    add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers);
3500
  } else {
3501
    int step = (restore_vectors ? 8 : 4) * wordSize;
3502
    for (int i = 0; i <= 28; i += 4)
3503
      ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3504
          as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step)));
3505
  }
3506

3507
  // We may use predicate registers and rely on ptrue with SVE,
3508
  // regardless of wide vector (> 8 bytes) used or not.
3509
  if (use_sve) {
3510
    reinitialize_ptrue();
3511
  }
3512

3513
  // integer registers except lr & sp
3514
  pop(RegSet::range(r0, r17), sp);
3515
#ifdef R18_RESERVED
3516
  ldp(zr, r19, Address(post(sp, 2 * wordSize)));
3517
  pop(RegSet::range(r20, r29), sp);
3518
#else
3519
  pop(RegSet::range(r18_tls, r29), sp);
3520
#endif
3521
}
3522

3523
/**
3524
 * Helpers for multiply_to_len().
3525
 */
3526
void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
3527
                                     Register src1, Register src2) {
3528
  adds(dest_lo, dest_lo, src1);
3529
  adc(dest_hi, dest_hi, zr);
3530
  adds(dest_lo, dest_lo, src2);
3531
  adc(final_dest_hi, dest_hi, zr);
3532
}
3533

3534
// Generate an address from (r + r1 extend offset).  "size" is the
3535
// size of the operand.  The result may be in rscratch2.
3536
Address MacroAssembler::offsetted_address(Register r, Register r1,
3537
                                          Address::extend ext, int offset, int size) {
3538
  if (offset || (ext.shift() % size != 0)) {
3539
    lea(rscratch2, Address(r, r1, ext));
3540
    return Address(rscratch2, offset);
3541
  } else {
3542
    return Address(r, r1, ext);
3543
  }
3544
}
3545

3546
Address MacroAssembler::spill_address(int size, int offset, Register tmp)
3547
{
3548
  assert(offset >= 0, "spill to negative address?");
3549
  // Offset reachable ?
3550
  //   Not aligned - 9 bits signed offset
3551
  //   Aligned - 12 bits unsigned offset shifted
3552
  Register base = sp;
3553
  if ((offset & (size-1)) && offset >= (1<<8)) {
3554
    add(tmp, base, offset & ((1<<12)-1));
3555
    base = tmp;
3556
    offset &= -1u<<12;
3557
  }
3558

3559
  if (offset >= (1<<12) * size) {
3560
    add(tmp, base, offset & (((1<<12)-1)<<12));
3561
    base = tmp;
3562
    offset &= ~(((1<<12)-1)<<12);
3563
  }
3564

3565
  return Address(base, offset);
3566
}
3567

3568
Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) {
3569
  assert(offset >= 0, "spill to negative address?");
3570

3571
  Register base = sp;
3572

3573
  // An immediate offset in the range 0 to 255 which is multiplied
3574
  // by the current vector or predicate register size in bytes.
3575
  if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) {
3576
    return Address(base, offset / sve_reg_size_in_bytes);
3577
  }
3578

3579
  add(tmp, base, offset);
3580
  return Address(tmp);
3581
}
3582

3583
// Checks whether offset is aligned.
3584
// Returns true if it is, else false.
3585
bool MacroAssembler::merge_alignment_check(Register base,
3586
                                           size_t size,
3587
                                           int64_t cur_offset,
3588
                                           int64_t prev_offset) const {
3589
  if (AvoidUnalignedAccesses) {
3590
    if (base == sp) {
3591
      // Checks whether low offset if aligned to pair of registers.
3592
      int64_t pair_mask = size * 2 - 1;
3593
      int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset;
3594
      return (offset & pair_mask) == 0;
3595
    } else { // If base is not sp, we can't guarantee the access is aligned.
3596
      return false;
3597
    }
3598
  } else {
3599
    int64_t mask = size - 1;
3600
    // Load/store pair instruction only supports element size aligned offset.
3601
    return (cur_offset & mask) == 0 && (prev_offset & mask) == 0;
3602
  }
3603
}
3604

3605
// Checks whether current and previous loads/stores can be merged.
3606
// Returns true if it can be merged, else false.
3607
bool MacroAssembler::ldst_can_merge(Register rt,
3608
                                    const Address &adr,
3609
                                    size_t cur_size_in_bytes,
3610
                                    bool is_store) const {
3611
  address prev = pc() - NativeInstruction::instruction_size;
3612
  address last = code()->last_insn();
3613

3614
  if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) {
3615
    return false;
3616
  }
3617

3618
  if (adr.getMode() != Address::base_plus_offset || prev != last) {
3619
    return false;
3620
  }
3621

3622
  NativeLdSt* prev_ldst = NativeLdSt_at(prev);
3623
  size_t prev_size_in_bytes = prev_ldst->size_in_bytes();
3624

3625
  assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging.");
3626
  assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging.");
3627

3628
  if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) {
3629
    return false;
3630
  }
3631

3632
  int64_t max_offset = 63 * prev_size_in_bytes;
3633
  int64_t min_offset = -64 * prev_size_in_bytes;
3634

3635
  assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged.");
3636

3637
  // Only same base can be merged.
3638
  if (adr.base() != prev_ldst->base()) {
3639
    return false;
3640
  }
3641

3642
  int64_t cur_offset = adr.offset();
3643
  int64_t prev_offset = prev_ldst->offset();
3644
  size_t diff = abs(cur_offset - prev_offset);
3645
  if (diff != prev_size_in_bytes) {
3646
    return false;
3647
  }
3648

3649
  // Following cases can not be merged:
3650
  // ldr x2, [x2, #8]
3651
  // ldr x3, [x2, #16]
3652
  // or:
3653
  // ldr x2, [x3, #8]
3654
  // ldr x2, [x3, #16]
3655
  // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL.
3656
  if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) {
3657
    return false;
3658
  }
3659

3660
  int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset;
3661
  // Offset range must be in ldp/stp instruction's range.
3662
  if (low_offset > max_offset || low_offset < min_offset) {
3663
    return false;
3664
  }
3665

3666
  if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) {
3667
    return true;
3668
  }
3669

3670
  return false;
3671
}
3672

3673
// Merge current load/store with previous load/store into ldp/stp.
3674
void MacroAssembler::merge_ldst(Register rt,
3675
                                const Address &adr,
3676
                                size_t cur_size_in_bytes,
3677
                                bool is_store) {
3678

3679
  assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged.");
3680

3681
  Register rt_low, rt_high;
3682
  address prev = pc() - NativeInstruction::instruction_size;
3683
  NativeLdSt* prev_ldst = NativeLdSt_at(prev);
3684

3685
  int64_t offset;
3686

3687
  if (adr.offset() < prev_ldst->offset()) {
3688
    offset = adr.offset();
3689
    rt_low = rt;
3690
    rt_high = prev_ldst->target();
3691
  } else {
3692
    offset = prev_ldst->offset();
3693
    rt_low = prev_ldst->target();
3694
    rt_high = rt;
3695
  }
3696

3697
  Address adr_p = Address(prev_ldst->base(), offset);
3698
  // Overwrite previous generated binary.
3699
  code_section()->set_end(prev);
3700

3701
  const size_t sz = prev_ldst->size_in_bytes();
3702
  assert(sz == 8 || sz == 4, "only supports 64/32bit merging.");
3703
  if (!is_store) {
3704
    BLOCK_COMMENT("merged ldr pair");
3705
    if (sz == 8) {
3706
      ldp(rt_low, rt_high, adr_p);
3707
    } else {
3708
      ldpw(rt_low, rt_high, adr_p);
3709
    }
3710
  } else {
3711
    BLOCK_COMMENT("merged str pair");
3712
    if (sz == 8) {
3713
      stp(rt_low, rt_high, adr_p);
3714
    } else {
3715
      stpw(rt_low, rt_high, adr_p);
3716
    }
3717
  }
3718
}
3719

3720
/**
3721
 * Multiply 64 bit by 64 bit first loop.
3722
 */
3723
void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
3724
                                           Register y, Register y_idx, Register z,
3725
                                           Register carry, Register product,
3726
                                           Register idx, Register kdx) {
3727
  //
3728
  //  jlong carry, x[], y[], z[];
3729
  //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
3730
  //    huge_128 product = y[idx] * x[xstart] + carry;
3731
  //    z[kdx] = (jlong)product;
3732
  //    carry  = (jlong)(product >>> 64);
3733
  //  }
3734
  //  z[xstart] = carry;
3735
  //
3736

3737
  Label L_first_loop, L_first_loop_exit;
3738
  Label L_one_x, L_one_y, L_multiply;
3739

3740
  subsw(xstart, xstart, 1);
3741
  br(Assembler::MI, L_one_x);
3742

3743
  lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
3744
  ldr(x_xstart, Address(rscratch1));
3745
  ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
3746

3747
  bind(L_first_loop);
3748
  subsw(idx, idx, 1);
3749
  br(Assembler::MI, L_first_loop_exit);
3750
  subsw(idx, idx, 1);
3751
  br(Assembler::MI, L_one_y);
3752
  lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3753
  ldr(y_idx, Address(rscratch1));
3754
  ror(y_idx, y_idx, 32); // convert big-endian to little-endian
3755
  bind(L_multiply);
3756

3757
  // AArch64 has a multiply-accumulate instruction that we can't use
3758
  // here because it has no way to process carries, so we have to use
3759
  // separate add and adc instructions.  Bah.
3760
  umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
3761
  mul(product, x_xstart, y_idx);
3762
  adds(product, product, carry);
3763
  adc(carry, rscratch1, zr);   // x_xstart * y_idx + carry -> carry:product
3764

3765
  subw(kdx, kdx, 2);
3766
  ror(product, product, 32); // back to big-endian
3767
  str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
3768

3769
  b(L_first_loop);
3770

3771
  bind(L_one_y);
3772
  ldrw(y_idx, Address(y,  0));
3773
  b(L_multiply);
3774

3775
  bind(L_one_x);
3776
  ldrw(x_xstart, Address(x,  0));
3777
  b(L_first_loop);
3778

3779
  bind(L_first_loop_exit);
3780
}
3781

3782
/**
3783
 * Multiply 128 bit by 128. Unrolled inner loop.
3784
 *
3785
 */
3786
void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
3787
                                             Register carry, Register carry2,
3788
                                             Register idx, Register jdx,
3789
                                             Register yz_idx1, Register yz_idx2,
3790
                                             Register tmp, Register tmp3, Register tmp4,
3791
                                             Register tmp6, Register product_hi) {
3792

3793
  //   jlong carry, x[], y[], z[];
3794
  //   int kdx = ystart+1;
3795
  //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
3796
  //     huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
3797
  //     jlong carry2  = (jlong)(tmp3 >>> 64);
3798
  //     huge_128 tmp4 = (y[idx]   * product_hi) + z[kdx+idx] + carry2;
3799
  //     carry  = (jlong)(tmp4 >>> 64);
3800
  //     z[kdx+idx+1] = (jlong)tmp3;
3801
  //     z[kdx+idx] = (jlong)tmp4;
3802
  //   }
3803
  //   idx += 2;
3804
  //   if (idx > 0) {
3805
  //     yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
3806
  //     z[kdx+idx] = (jlong)yz_idx1;
3807
  //     carry  = (jlong)(yz_idx1 >>> 64);
3808
  //   }
3809
  //
3810

3811
  Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
3812

3813
  lsrw(jdx, idx, 2);
3814

3815
  bind(L_third_loop);
3816

3817
  subsw(jdx, jdx, 1);
3818
  br(Assembler::MI, L_third_loop_exit);
3819
  subw(idx, idx, 4);
3820

3821
  lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3822

3823
  ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
3824

3825
  lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3826

3827
  ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
3828
  ror(yz_idx2, yz_idx2, 32);
3829

3830
  ldp(rscratch2, rscratch1, Address(tmp6, 0));
3831

3832
  mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
3833
  umulh(tmp4, product_hi, yz_idx1);
3834

3835
  ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
3836
  ror(rscratch2, rscratch2, 32);
3837

3838
  mul(tmp, product_hi, yz_idx2);   //  yz_idx2 * product_hi -> carry2:tmp
3839
  umulh(carry2, product_hi, yz_idx2);
3840

3841
  // propagate sum of both multiplications into carry:tmp4:tmp3
3842
  adds(tmp3, tmp3, carry);
3843
  adc(tmp4, tmp4, zr);
3844
  adds(tmp3, tmp3, rscratch1);
3845
  adcs(tmp4, tmp4, tmp);
3846
  adc(carry, carry2, zr);
3847
  adds(tmp4, tmp4, rscratch2);
3848
  adc(carry, carry, zr);
3849

3850
  ror(tmp3, tmp3, 32); // convert little-endian to big-endian
3851
  ror(tmp4, tmp4, 32);
3852
  stp(tmp4, tmp3, Address(tmp6, 0));
3853

3854
  b(L_third_loop);
3855
  bind (L_third_loop_exit);
3856

3857
  andw (idx, idx, 0x3);
3858
  cbz(idx, L_post_third_loop_done);
3859

3860
  Label L_check_1;
3861
  subsw(idx, idx, 2);
3862
  br(Assembler::MI, L_check_1);
3863

3864
  lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3865
  ldr(yz_idx1, Address(rscratch1, 0));
3866
  ror(yz_idx1, yz_idx1, 32);
3867
  mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
3868
  umulh(tmp4, product_hi, yz_idx1);
3869
  lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3870
  ldr(yz_idx2, Address(rscratch1, 0));
3871
  ror(yz_idx2, yz_idx2, 32);
3872

3873
  add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
3874

3875
  ror(tmp3, tmp3, 32);
3876
  str(tmp3, Address(rscratch1, 0));
3877

3878
  bind (L_check_1);
3879

3880
  andw (idx, idx, 0x1);
3881
  subsw(idx, idx, 1);
3882
  br(Assembler::MI, L_post_third_loop_done);
3883
  ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3884
  mul(tmp3, tmp4, product_hi);  //  tmp4 * product_hi -> carry2:tmp3
3885
  umulh(carry2, tmp4, product_hi);
3886
  ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3887

3888
  add2_with_carry(carry2, tmp3, tmp4, carry);
3889

3890
  strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3891
  extr(carry, carry2, tmp3, 32);
3892

3893
  bind(L_post_third_loop_done);
3894
}
3895

3896
/**
3897
 * Code for BigInteger::multiplyToLen() intrinsic.
3898
 *
3899
 * r0: x
3900
 * r1: xlen
3901
 * r2: y
3902
 * r3: ylen
3903
 * r4:  z
3904
 * r5: tmp0
3905
 * r10: tmp1
3906
 * r11: tmp2
3907
 * r12: tmp3
3908
 * r13: tmp4
3909
 * r14: tmp5
3910
 * r15: tmp6
3911
 * r16: tmp7
3912
 *
3913
 */
3914
void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
3915
                                     Register z, Register tmp0,
3916
                                     Register tmp1, Register tmp2, Register tmp3, Register tmp4,
3917
                                     Register tmp5, Register tmp6, Register product_hi) {
3918

3919
  assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi);
3920

3921
  const Register idx = tmp1;
3922
  const Register kdx = tmp2;
3923
  const Register xstart = tmp3;
3924

3925
  const Register y_idx = tmp4;
3926
  const Register carry = tmp5;
3927
  const Register product  = xlen;
3928
  const Register x_xstart = tmp0;
3929

3930
  // First Loop.
3931
  //
3932
  //  final static long LONG_MASK = 0xffffffffL;
3933
  //  int xstart = xlen - 1;
3934
  //  int ystart = ylen - 1;
3935
  //  long carry = 0;
3936
  //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
3937
  //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
3938
  //    z[kdx] = (int)product;
3939
  //    carry = product >>> 32;
3940
  //  }
3941
  //  z[xstart] = (int)carry;
3942
  //
3943

3944
  movw(idx, ylen);       // idx = ylen;
3945
  addw(kdx, xlen, ylen); // kdx = xlen+ylen;
3946
  mov(carry, zr);        // carry = 0;
3947

3948
  Label L_done;
3949

3950
  movw(xstart, xlen);
3951
  subsw(xstart, xstart, 1);
3952
  br(Assembler::MI, L_done);
3953

3954
  multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
3955

3956
  Label L_second_loop;
3957
  cbzw(kdx, L_second_loop);
3958

3959
  Label L_carry;
3960
  subw(kdx, kdx, 1);
3961
  cbzw(kdx, L_carry);
3962

3963
  strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
3964
  lsr(carry, carry, 32);
3965
  subw(kdx, kdx, 1);
3966

3967
  bind(L_carry);
3968
  strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
3969

3970
  // Second and third (nested) loops.
3971
  //
3972
  // for (int i = xstart-1; i >= 0; i--) { // Second loop
3973
  //   carry = 0;
3974
  //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
3975
  //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
3976
  //                    (z[k] & LONG_MASK) + carry;
3977
  //     z[k] = (int)product;
3978
  //     carry = product >>> 32;
3979
  //   }
3980
  //   z[i] = (int)carry;
3981
  // }
3982
  //
3983
  // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
3984

3985
  const Register jdx = tmp1;
3986

3987
  bind(L_second_loop);
3988
  mov(carry, zr);                // carry = 0;
3989
  movw(jdx, ylen);               // j = ystart+1
3990

3991
  subsw(xstart, xstart, 1);      // i = xstart-1;
3992
  br(Assembler::MI, L_done);
3993

3994
  str(z, Address(pre(sp, -4 * wordSize)));
3995

3996
  Label L_last_x;
3997
  lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
3998
  subsw(xstart, xstart, 1);       // i = xstart-1;
3999
  br(Assembler::MI, L_last_x);
4000

4001
  lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
4002
  ldr(product_hi, Address(rscratch1));
4003
  ror(product_hi, product_hi, 32);  // convert big-endian to little-endian
4004

4005
  Label L_third_loop_prologue;
4006
  bind(L_third_loop_prologue);
4007

4008
  str(ylen, Address(sp, wordSize));
4009
  stp(x, xstart, Address(sp, 2 * wordSize));
4010
  multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
4011
                          tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
4012
  ldp(z, ylen, Address(post(sp, 2 * wordSize)));
4013
  ldp(x, xlen, Address(post(sp, 2 * wordSize)));   // copy old xstart -> xlen
4014

4015
  addw(tmp3, xlen, 1);
4016
  strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
4017
  subsw(tmp3, tmp3, 1);
4018
  br(Assembler::MI, L_done);
4019

4020
  lsr(carry, carry, 32);
4021
  strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
4022
  b(L_second_loop);
4023

4024
  // Next infrequent code is moved outside loops.
4025
  bind(L_last_x);
4026
  ldrw(product_hi, Address(x,  0));
4027
  b(L_third_loop_prologue);
4028

4029
  bind(L_done);
4030
}
4031

4032
// Code for BigInteger::mulAdd intrinsic
4033
// out     = r0
4034
// in      = r1
4035
// offset  = r2  (already out.length-offset)
4036
// len     = r3
4037
// k       = r4
4038
//
4039
// pseudo code from java implementation:
4040
// carry = 0;
4041
// offset = out.length-offset - 1;
4042
// for (int j=len-1; j >= 0; j--) {
4043
//     product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry;
4044
//     out[offset--] = (int)product;
4045
//     carry = product >>> 32;
4046
// }
4047
// return (int)carry;
4048
void MacroAssembler::mul_add(Register out, Register in, Register offset,
4049
      Register len, Register k) {
4050
    Label LOOP, END;
4051
    // pre-loop
4052
    cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches
4053
    csel(out, zr, out, Assembler::EQ);
4054
    br(Assembler::EQ, END);
4055
    add(in, in, len, LSL, 2); // in[j+1] address
4056
    add(offset, out, offset, LSL, 2); // out[offset + 1] address
4057
    mov(out, zr); // used to keep carry now
4058
    BIND(LOOP);
4059
    ldrw(rscratch1, Address(pre(in, -4)));
4060
    madd(rscratch1, rscratch1, k, out);
4061
    ldrw(rscratch2, Address(pre(offset, -4)));
4062
    add(rscratch1, rscratch1, rscratch2);
4063
    strw(rscratch1, Address(offset));
4064
    lsr(out, rscratch1, 32);
4065
    subs(len, len, 1);
4066
    br(Assembler::NE, LOOP);
4067
    BIND(END);
4068
}
4069

4070
/**
4071
 * Emits code to update CRC-32 with a byte value according to constants in table
4072
 *
4073
 * @param [in,out]crc   Register containing the crc.
4074
 * @param [in]val       Register containing the byte to fold into the CRC.
4075
 * @param [in]table     Register containing the table of crc constants.
4076
 *
4077
 * uint32_t crc;
4078
 * val = crc_table[(val ^ crc) & 0xFF];
4079
 * crc = val ^ (crc >> 8);
4080
 *
4081
 */
4082
void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
4083
  eor(val, val, crc);
4084
  andr(val, val, 0xff);
4085
  ldrw(val, Address(table, val, Address::lsl(2)));
4086
  eor(crc, val, crc, Assembler::LSR, 8);
4087
}
4088

4089
/**
4090
 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
4091
 *
4092
 * @param [in,out]crc   Register containing the crc.
4093
 * @param [in]v         Register containing the 32-bit to fold into the CRC.
4094
 * @param [in]table0    Register containing table 0 of crc constants.
4095
 * @param [in]table1    Register containing table 1 of crc constants.
4096
 * @param [in]table2    Register containing table 2 of crc constants.
4097
 * @param [in]table3    Register containing table 3 of crc constants.
4098
 *
4099
 * uint32_t crc;
4100
 *   v = crc ^ v
4101
 *   crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
4102
 *
4103
 */
4104
void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
4105
        Register table0, Register table1, Register table2, Register table3,
4106
        bool upper) {
4107
  eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
4108
  uxtb(tmp, v);
4109
  ldrw(crc, Address(table3, tmp, Address::lsl(2)));
4110
  ubfx(tmp, v, 8, 8);
4111
  ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
4112
  eor(crc, crc, tmp);
4113
  ubfx(tmp, v, 16, 8);
4114
  ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
4115
  eor(crc, crc, tmp);
4116
  ubfx(tmp, v, 24, 8);
4117
  ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
4118
  eor(crc, crc, tmp);
4119
}
4120

4121
void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf,
4122
        Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) {
4123
    Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit;
4124
    assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4125

4126
    subs(tmp0, len, 384);
4127
    mvnw(crc, crc);
4128
    br(Assembler::GE, CRC_by128_pre);
4129
  BIND(CRC_less128);
4130
    subs(len, len, 32);
4131
    br(Assembler::GE, CRC_by32_loop);
4132
  BIND(CRC_less32);
4133
    adds(len, len, 32 - 4);
4134
    br(Assembler::GE, CRC_by4_loop);
4135
    adds(len, len, 4);
4136
    br(Assembler::GT, CRC_by1_loop);
4137
    b(L_exit);
4138

4139
  BIND(CRC_by32_loop);
4140
    ldp(tmp0, tmp1, Address(buf));
4141
    crc32x(crc, crc, tmp0);
4142
    ldp(tmp2, tmp3, Address(buf, 16));
4143
    crc32x(crc, crc, tmp1);
4144
    add(buf, buf, 32);
4145
    crc32x(crc, crc, tmp2);
4146
    subs(len, len, 32);
4147
    crc32x(crc, crc, tmp3);
4148
    br(Assembler::GE, CRC_by32_loop);
4149
    cmn(len, (u1)32);
4150
    br(Assembler::NE, CRC_less32);
4151
    b(L_exit);
4152

4153
  BIND(CRC_by4_loop);
4154
    ldrw(tmp0, Address(post(buf, 4)));
4155
    subs(len, len, 4);
4156
    crc32w(crc, crc, tmp0);
4157
    br(Assembler::GE, CRC_by4_loop);
4158
    adds(len, len, 4);
4159
    br(Assembler::LE, L_exit);
4160
  BIND(CRC_by1_loop);
4161
    ldrb(tmp0, Address(post(buf, 1)));
4162
    subs(len, len, 1);
4163
    crc32b(crc, crc, tmp0);
4164
    br(Assembler::GT, CRC_by1_loop);
4165
    b(L_exit);
4166

4167
  BIND(CRC_by128_pre);
4168
    kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2,
4169
      4*256*sizeof(juint) + 8*sizeof(juint));
4170
    mov(crc, 0);
4171
    crc32x(crc, crc, tmp0);
4172
    crc32x(crc, crc, tmp1);
4173

4174
    cbnz(len, CRC_less128);
4175

4176
  BIND(L_exit);
4177
    mvnw(crc, crc);
4178
}
4179

4180
void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf,
4181
        Register len, Register tmp0, Register tmp1, Register tmp2,
4182
        Register tmp3) {
4183
    Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
4184
    assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
4185

4186
    mvnw(crc, crc);
4187

4188
    subs(len, len, 128);
4189
    br(Assembler::GE, CRC_by64_pre);
4190
  BIND(CRC_less64);
4191
    adds(len, len, 128-32);
4192
    br(Assembler::GE, CRC_by32_loop);
4193
  BIND(CRC_less32);
4194
    adds(len, len, 32-4);
4195
    br(Assembler::GE, CRC_by4_loop);
4196
    adds(len, len, 4);
4197
    br(Assembler::GT, CRC_by1_loop);
4198
    b(L_exit);
4199

4200
  BIND(CRC_by32_loop);
4201
    ldp(tmp0, tmp1, Address(post(buf, 16)));
4202
    subs(len, len, 32);
4203
    crc32x(crc, crc, tmp0);
4204
    ldr(tmp2, Address(post(buf, 8)));
4205
    crc32x(crc, crc, tmp1);
4206
    ldr(tmp3, Address(post(buf, 8)));
4207
    crc32x(crc, crc, tmp2);
4208
    crc32x(crc, crc, tmp3);
4209
    br(Assembler::GE, CRC_by32_loop);
4210
    cmn(len, (u1)32);
4211
    br(Assembler::NE, CRC_less32);
4212
    b(L_exit);
4213

4214
  BIND(CRC_by4_loop);
4215
    ldrw(tmp0, Address(post(buf, 4)));
4216
    subs(len, len, 4);
4217
    crc32w(crc, crc, tmp0);
4218
    br(Assembler::GE, CRC_by4_loop);
4219
    adds(len, len, 4);
4220
    br(Assembler::LE, L_exit);
4221
  BIND(CRC_by1_loop);
4222
    ldrb(tmp0, Address(post(buf, 1)));
4223
    subs(len, len, 1);
4224
    crc32b(crc, crc, tmp0);
4225
    br(Assembler::GT, CRC_by1_loop);
4226
    b(L_exit);
4227

4228
  BIND(CRC_by64_pre);
4229
    sub(buf, buf, 8);
4230
    ldp(tmp0, tmp1, Address(buf, 8));
4231
    crc32x(crc, crc, tmp0);
4232
    ldr(tmp2, Address(buf, 24));
4233
    crc32x(crc, crc, tmp1);
4234
    ldr(tmp3, Address(buf, 32));
4235
    crc32x(crc, crc, tmp2);
4236
    ldr(tmp0, Address(buf, 40));
4237
    crc32x(crc, crc, tmp3);
4238
    ldr(tmp1, Address(buf, 48));
4239
    crc32x(crc, crc, tmp0);
4240
    ldr(tmp2, Address(buf, 56));
4241
    crc32x(crc, crc, tmp1);
4242
    ldr(tmp3, Address(pre(buf, 64)));
4243

4244
    b(CRC_by64_loop);
4245

4246
    align(CodeEntryAlignment);
4247
  BIND(CRC_by64_loop);
4248
    subs(len, len, 64);
4249
    crc32x(crc, crc, tmp2);
4250
    ldr(tmp0, Address(buf, 8));
4251
    crc32x(crc, crc, tmp3);
4252
    ldr(tmp1, Address(buf, 16));
4253
    crc32x(crc, crc, tmp0);
4254
    ldr(tmp2, Address(buf, 24));
4255
    crc32x(crc, crc, tmp1);
4256
    ldr(tmp3, Address(buf, 32));
4257
    crc32x(crc, crc, tmp2);
4258
    ldr(tmp0, Address(buf, 40));
4259
    crc32x(crc, crc, tmp3);
4260
    ldr(tmp1, Address(buf, 48));
4261
    crc32x(crc, crc, tmp0);
4262
    ldr(tmp2, Address(buf, 56));
4263
    crc32x(crc, crc, tmp1);
4264
    ldr(tmp3, Address(pre(buf, 64)));
4265
    br(Assembler::GE, CRC_by64_loop);
4266

4267
    // post-loop
4268
    crc32x(crc, crc, tmp2);
4269
    crc32x(crc, crc, tmp3);
4270

4271
    sub(len, len, 64);
4272
    add(buf, buf, 8);
4273
    cmn(len, (u1)128);
4274
    br(Assembler::NE, CRC_less64);
4275
  BIND(L_exit);
4276
    mvnw(crc, crc);
4277
}
4278

4279
/**
4280
 * @param crc   register containing existing CRC (32-bit)
4281
 * @param buf   register pointing to input byte buffer (byte*)
4282
 * @param len   register containing number of bytes
4283
 * @param table register that will contain address of CRC table
4284
 * @param tmp   scratch register
4285
 */
4286
void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
4287
        Register table0, Register table1, Register table2, Register table3,
4288
        Register tmp, Register tmp2, Register tmp3) {
4289
  Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
4290

4291
  if (UseCryptoPmullForCRC32) {
4292
      kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3);
4293
      return;
4294
  }
4295

4296
  if (UseCRC32) {
4297
      kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3);
4298
      return;
4299
  }
4300

4301
    mvnw(crc, crc);
4302

4303
    {
4304
      uint64_t offset;
4305
      adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
4306
      add(table0, table0, offset);
4307
    }
4308
    add(table1, table0, 1*256*sizeof(juint));
4309
    add(table2, table0, 2*256*sizeof(juint));
4310
    add(table3, table0, 3*256*sizeof(juint));
4311

4312
    { // Neon code start
4313
      cmp(len, (u1)64);
4314
      br(Assembler::LT, L_by16);
4315
      eor(v16, T16B, v16, v16);
4316

4317
    Label L_fold;
4318

4319
      add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
4320

4321
      ld1(v0, v1, T2D, post(buf, 32));
4322
      ld1r(v4, T2D, post(tmp, 8));
4323
      ld1r(v5, T2D, post(tmp, 8));
4324
      ld1r(v6, T2D, post(tmp, 8));
4325
      ld1r(v7, T2D, post(tmp, 8));
4326
      mov(v16, S, 0, crc);
4327

4328
      eor(v0, T16B, v0, v16);
4329
      sub(len, len, 64);
4330

4331
    BIND(L_fold);
4332
      pmull(v22, T8H, v0, v5, T8B);
4333
      pmull(v20, T8H, v0, v7, T8B);
4334
      pmull(v23, T8H, v0, v4, T8B);
4335
      pmull(v21, T8H, v0, v6, T8B);
4336

4337
      pmull2(v18, T8H, v0, v5, T16B);
4338
      pmull2(v16, T8H, v0, v7, T16B);
4339
      pmull2(v19, T8H, v0, v4, T16B);
4340
      pmull2(v17, T8H, v0, v6, T16B);
4341

4342
      uzp1(v24, T8H, v20, v22);
4343
      uzp2(v25, T8H, v20, v22);
4344
      eor(v20, T16B, v24, v25);
4345

4346
      uzp1(v26, T8H, v16, v18);
4347
      uzp2(v27, T8H, v16, v18);
4348
      eor(v16, T16B, v26, v27);
4349

4350
      ushll2(v22, T4S, v20, T8H, 8);
4351
      ushll(v20, T4S, v20, T4H, 8);
4352

4353
      ushll2(v18, T4S, v16, T8H, 8);
4354
      ushll(v16, T4S, v16, T4H, 8);
4355

4356
      eor(v22, T16B, v23, v22);
4357
      eor(v18, T16B, v19, v18);
4358
      eor(v20, T16B, v21, v20);
4359
      eor(v16, T16B, v17, v16);
4360

4361
      uzp1(v17, T2D, v16, v20);
4362
      uzp2(v21, T2D, v16, v20);
4363
      eor(v17, T16B, v17, v21);
4364

4365
      ushll2(v20, T2D, v17, T4S, 16);
4366
      ushll(v16, T2D, v17, T2S, 16);
4367

4368
      eor(v20, T16B, v20, v22);
4369
      eor(v16, T16B, v16, v18);
4370

4371
      uzp1(v17, T2D, v20, v16);
4372
      uzp2(v21, T2D, v20, v16);
4373
      eor(v28, T16B, v17, v21);
4374

4375
      pmull(v22, T8H, v1, v5, T8B);
4376
      pmull(v20, T8H, v1, v7, T8B);
4377
      pmull(v23, T8H, v1, v4, T8B);
4378
      pmull(v21, T8H, v1, v6, T8B);
4379

4380
      pmull2(v18, T8H, v1, v5, T16B);
4381
      pmull2(v16, T8H, v1, v7, T16B);
4382
      pmull2(v19, T8H, v1, v4, T16B);
4383
      pmull2(v17, T8H, v1, v6, T16B);
4384

4385
      ld1(v0, v1, T2D, post(buf, 32));
4386

4387
      uzp1(v24, T8H, v20, v22);
4388
      uzp2(v25, T8H, v20, v22);
4389
      eor(v20, T16B, v24, v25);
4390

4391
      uzp1(v26, T8H, v16, v18);
4392
      uzp2(v27, T8H, v16, v18);
4393
      eor(v16, T16B, v26, v27);
4394

4395
      ushll2(v22, T4S, v20, T8H, 8);
4396
      ushll(v20, T4S, v20, T4H, 8);
4397

4398
      ushll2(v18, T4S, v16, T8H, 8);
4399
      ushll(v16, T4S, v16, T4H, 8);
4400

4401
      eor(v22, T16B, v23, v22);
4402
      eor(v18, T16B, v19, v18);
4403
      eor(v20, T16B, v21, v20);
4404
      eor(v16, T16B, v17, v16);
4405

4406
      uzp1(v17, T2D, v16, v20);
4407
      uzp2(v21, T2D, v16, v20);
4408
      eor(v16, T16B, v17, v21);
4409

4410
      ushll2(v20, T2D, v16, T4S, 16);
4411
      ushll(v16, T2D, v16, T2S, 16);
4412

4413
      eor(v20, T16B, v22, v20);
4414
      eor(v16, T16B, v16, v18);
4415

4416
      uzp1(v17, T2D, v20, v16);
4417
      uzp2(v21, T2D, v20, v16);
4418
      eor(v20, T16B, v17, v21);
4419

4420
      shl(v16, T2D, v28, 1);
4421
      shl(v17, T2D, v20, 1);
4422

4423
      eor(v0, T16B, v0, v16);
4424
      eor(v1, T16B, v1, v17);
4425

4426
      subs(len, len, 32);
4427
      br(Assembler::GE, L_fold);
4428

4429
      mov(crc, 0);
4430
      mov(tmp, v0, D, 0);
4431
      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4432
      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4433
      mov(tmp, v0, D, 1);
4434
      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4435
      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4436
      mov(tmp, v1, D, 0);
4437
      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4438
      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4439
      mov(tmp, v1, D, 1);
4440
      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4441
      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4442

4443
      add(len, len, 32);
4444
    } // Neon code end
4445

4446
  BIND(L_by16);
4447
    subs(len, len, 16);
4448
    br(Assembler::GE, L_by16_loop);
4449
    adds(len, len, 16-4);
4450
    br(Assembler::GE, L_by4_loop);
4451
    adds(len, len, 4);
4452
    br(Assembler::GT, L_by1_loop);
4453
    b(L_exit);
4454

4455
  BIND(L_by4_loop);
4456
    ldrw(tmp, Address(post(buf, 4)));
4457
    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
4458
    subs(len, len, 4);
4459
    br(Assembler::GE, L_by4_loop);
4460
    adds(len, len, 4);
4461
    br(Assembler::LE, L_exit);
4462
  BIND(L_by1_loop);
4463
    subs(len, len, 1);
4464
    ldrb(tmp, Address(post(buf, 1)));
4465
    update_byte_crc32(crc, tmp, table0);
4466
    br(Assembler::GT, L_by1_loop);
4467
    b(L_exit);
4468

4469
    align(CodeEntryAlignment);
4470
  BIND(L_by16_loop);
4471
    subs(len, len, 16);
4472
    ldp(tmp, tmp3, Address(post(buf, 16)));
4473
    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4474
    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4475
    update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
4476
    update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
4477
    br(Assembler::GE, L_by16_loop);
4478
    adds(len, len, 16-4);
4479
    br(Assembler::GE, L_by4_loop);
4480
    adds(len, len, 4);
4481
    br(Assembler::GT, L_by1_loop);
4482
  BIND(L_exit);
4483
    mvnw(crc, crc);
4484
}
4485

4486
void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
4487
        Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) {
4488
    Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit;
4489
    assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4490

4491
    subs(tmp0, len, 384);
4492
    br(Assembler::GE, CRC_by128_pre);
4493
  BIND(CRC_less128);
4494
    subs(len, len, 32);
4495
    br(Assembler::GE, CRC_by32_loop);
4496
  BIND(CRC_less32);
4497
    adds(len, len, 32 - 4);
4498
    br(Assembler::GE, CRC_by4_loop);
4499
    adds(len, len, 4);
4500
    br(Assembler::GT, CRC_by1_loop);
4501
    b(L_exit);
4502

4503
  BIND(CRC_by32_loop);
4504
    ldp(tmp0, tmp1, Address(buf));
4505
    crc32cx(crc, crc, tmp0);
4506
    ldr(tmp2, Address(buf, 16));
4507
    crc32cx(crc, crc, tmp1);
4508
    ldr(tmp3, Address(buf, 24));
4509
    crc32cx(crc, crc, tmp2);
4510
    add(buf, buf, 32);
4511
    subs(len, len, 32);
4512
    crc32cx(crc, crc, tmp3);
4513
    br(Assembler::GE, CRC_by32_loop);
4514
    cmn(len, (u1)32);
4515
    br(Assembler::NE, CRC_less32);
4516
    b(L_exit);
4517

4518
  BIND(CRC_by4_loop);
4519
    ldrw(tmp0, Address(post(buf, 4)));
4520
    subs(len, len, 4);
4521
    crc32cw(crc, crc, tmp0);
4522
    br(Assembler::GE, CRC_by4_loop);
4523
    adds(len, len, 4);
4524
    br(Assembler::LE, L_exit);
4525
  BIND(CRC_by1_loop);
4526
    ldrb(tmp0, Address(post(buf, 1)));
4527
    subs(len, len, 1);
4528
    crc32cb(crc, crc, tmp0);
4529
    br(Assembler::GT, CRC_by1_loop);
4530
    b(L_exit);
4531

4532
  BIND(CRC_by128_pre);
4533
    kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2,
4534
      4*256*sizeof(juint) + 8*sizeof(juint) + 0x50);
4535
    mov(crc, 0);
4536
    crc32cx(crc, crc, tmp0);
4537
    crc32cx(crc, crc, tmp1);
4538

4539
    cbnz(len, CRC_less128);
4540

4541
  BIND(L_exit);
4542
}
4543

4544
void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf,
4545
        Register len, Register tmp0, Register tmp1, Register tmp2,
4546
        Register tmp3) {
4547
    Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
4548
    assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
4549

4550
    subs(len, len, 128);
4551
    br(Assembler::GE, CRC_by64_pre);
4552
  BIND(CRC_less64);
4553
    adds(len, len, 128-32);
4554
    br(Assembler::GE, CRC_by32_loop);
4555
  BIND(CRC_less32);
4556
    adds(len, len, 32-4);
4557
    br(Assembler::GE, CRC_by4_loop);
4558
    adds(len, len, 4);
4559
    br(Assembler::GT, CRC_by1_loop);
4560
    b(L_exit);
4561

4562
  BIND(CRC_by32_loop);
4563
    ldp(tmp0, tmp1, Address(post(buf, 16)));
4564
    subs(len, len, 32);
4565
    crc32cx(crc, crc, tmp0);
4566
    ldr(tmp2, Address(post(buf, 8)));
4567
    crc32cx(crc, crc, tmp1);
4568
    ldr(tmp3, Address(post(buf, 8)));
4569
    crc32cx(crc, crc, tmp2);
4570
    crc32cx(crc, crc, tmp3);
4571
    br(Assembler::GE, CRC_by32_loop);
4572
    cmn(len, (u1)32);
4573
    br(Assembler::NE, CRC_less32);
4574
    b(L_exit);
4575

4576
  BIND(CRC_by4_loop);
4577
    ldrw(tmp0, Address(post(buf, 4)));
4578
    subs(len, len, 4);
4579
    crc32cw(crc, crc, tmp0);
4580
    br(Assembler::GE, CRC_by4_loop);
4581
    adds(len, len, 4);
4582
    br(Assembler::LE, L_exit);
4583
  BIND(CRC_by1_loop);
4584
    ldrb(tmp0, Address(post(buf, 1)));
4585
    subs(len, len, 1);
4586
    crc32cb(crc, crc, tmp0);
4587
    br(Assembler::GT, CRC_by1_loop);
4588
    b(L_exit);
4589

4590
  BIND(CRC_by64_pre);
4591
    sub(buf, buf, 8);
4592
    ldp(tmp0, tmp1, Address(buf, 8));
4593
    crc32cx(crc, crc, tmp0);
4594
    ldr(tmp2, Address(buf, 24));
4595
    crc32cx(crc, crc, tmp1);
4596
    ldr(tmp3, Address(buf, 32));
4597
    crc32cx(crc, crc, tmp2);
4598
    ldr(tmp0, Address(buf, 40));
4599
    crc32cx(crc, crc, tmp3);
4600
    ldr(tmp1, Address(buf, 48));
4601
    crc32cx(crc, crc, tmp0);
4602
    ldr(tmp2, Address(buf, 56));
4603
    crc32cx(crc, crc, tmp1);
4604
    ldr(tmp3, Address(pre(buf, 64)));
4605

4606
    b(CRC_by64_loop);
4607

4608
    align(CodeEntryAlignment);
4609
  BIND(CRC_by64_loop);
4610
    subs(len, len, 64);
4611
    crc32cx(crc, crc, tmp2);
4612
    ldr(tmp0, Address(buf, 8));
4613
    crc32cx(crc, crc, tmp3);
4614
    ldr(tmp1, Address(buf, 16));
4615
    crc32cx(crc, crc, tmp0);
4616
    ldr(tmp2, Address(buf, 24));
4617
    crc32cx(crc, crc, tmp1);
4618
    ldr(tmp3, Address(buf, 32));
4619
    crc32cx(crc, crc, tmp2);
4620
    ldr(tmp0, Address(buf, 40));
4621
    crc32cx(crc, crc, tmp3);
4622
    ldr(tmp1, Address(buf, 48));
4623
    crc32cx(crc, crc, tmp0);
4624
    ldr(tmp2, Address(buf, 56));
4625
    crc32cx(crc, crc, tmp1);
4626
    ldr(tmp3, Address(pre(buf, 64)));
4627
    br(Assembler::GE, CRC_by64_loop);
4628

4629
    // post-loop
4630
    crc32cx(crc, crc, tmp2);
4631
    crc32cx(crc, crc, tmp3);
4632

4633
    sub(len, len, 64);
4634
    add(buf, buf, 8);
4635
    cmn(len, (u1)128);
4636
    br(Assembler::NE, CRC_less64);
4637
  BIND(L_exit);
4638
}
4639

4640
/**
4641
 * @param crc   register containing existing CRC (32-bit)
4642
 * @param buf   register pointing to input byte buffer (byte*)
4643
 * @param len   register containing number of bytes
4644
 * @param table register that will contain address of CRC table
4645
 * @param tmp   scratch register
4646
 */
4647
void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len,
4648
        Register table0, Register table1, Register table2, Register table3,
4649
        Register tmp, Register tmp2, Register tmp3) {
4650
  if (UseCryptoPmullForCRC32) {
4651
    kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3);
4652
  } else {
4653
    kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3);
4654
  }
4655
}
4656

4657
void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
4658
        Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) {
4659
    Label CRC_by128_loop;
4660
    assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4661

4662
    sub(len, len, 256);
4663
    Register table = tmp0;
4664
    {
4665
      uint64_t offset;
4666
      adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset);
4667
      add(table, table, offset);
4668
    }
4669
    add(table, table, table_offset);
4670

4671
    // Registers v0..v7 are used as data registers.
4672
    // Registers v16..v31 are used as tmp registers.
4673
    sub(buf, buf, 0x10);
4674
    ldrq(v0, Address(buf, 0x10));
4675
    ldrq(v1, Address(buf, 0x20));
4676
    ldrq(v2, Address(buf, 0x30));
4677
    ldrq(v3, Address(buf, 0x40));
4678
    ldrq(v4, Address(buf, 0x50));
4679
    ldrq(v5, Address(buf, 0x60));
4680
    ldrq(v6, Address(buf, 0x70));
4681
    ldrq(v7, Address(pre(buf, 0x80)));
4682

4683
    movi(v31, T4S, 0);
4684
    mov(v31, S, 0, crc);
4685
    eor(v0, T16B, v0, v31);
4686

4687
    // Register v16 contains constants from the crc table.
4688
    ldrq(v16, Address(table));
4689
    b(CRC_by128_loop);
4690

4691
    align(OptoLoopAlignment);
4692
  BIND(CRC_by128_loop);
4693
    pmull (v17,  T1Q, v0, v16, T1D);
4694
    pmull2(v18, T1Q, v0, v16, T2D);
4695
    ldrq(v0, Address(buf, 0x10));
4696
    eor3(v0, T16B, v17,  v18, v0);
4697

4698
    pmull (v19, T1Q, v1, v16, T1D);
4699
    pmull2(v20, T1Q, v1, v16, T2D);
4700
    ldrq(v1, Address(buf, 0x20));
4701
    eor3(v1, T16B, v19, v20, v1);
4702

4703
    pmull (v21, T1Q, v2, v16, T1D);
4704
    pmull2(v22, T1Q, v2, v16, T2D);
4705
    ldrq(v2, Address(buf, 0x30));
4706
    eor3(v2, T16B, v21, v22, v2);
4707

4708
    pmull (v23, T1Q, v3, v16, T1D);
4709
    pmull2(v24, T1Q, v3, v16, T2D);
4710
    ldrq(v3, Address(buf, 0x40));
4711
    eor3(v3, T16B, v23, v24, v3);
4712

4713
    pmull (v25, T1Q, v4, v16, T1D);
4714
    pmull2(v26, T1Q, v4, v16, T2D);
4715
    ldrq(v4, Address(buf, 0x50));
4716
    eor3(v4, T16B, v25, v26, v4);
4717

4718
    pmull (v27, T1Q, v5, v16, T1D);
4719
    pmull2(v28, T1Q, v5, v16, T2D);
4720
    ldrq(v5, Address(buf, 0x60));
4721
    eor3(v5, T16B, v27, v28, v5);
4722

4723
    pmull (v29, T1Q, v6, v16, T1D);
4724
    pmull2(v30, T1Q, v6, v16, T2D);
4725
    ldrq(v6, Address(buf, 0x70));
4726
    eor3(v6, T16B, v29, v30, v6);
4727

4728
    // Reuse registers v23, v24.
4729
    // Using them won't block the first instruction of the next iteration.
4730
    pmull (v23, T1Q, v7, v16, T1D);
4731
    pmull2(v24, T1Q, v7, v16, T2D);
4732
    ldrq(v7, Address(pre(buf, 0x80)));
4733
    eor3(v7, T16B, v23, v24, v7);
4734

4735
    subs(len, len, 0x80);
4736
    br(Assembler::GE, CRC_by128_loop);
4737

4738
    // fold into 512 bits
4739
    // Use v31 for constants because v16 can be still in use.
4740
    ldrq(v31, Address(table, 0x10));
4741

4742
    pmull (v17,  T1Q, v0, v31, T1D);
4743
    pmull2(v18, T1Q, v0, v31, T2D);
4744
    eor3(v0, T16B, v17, v18, v4);
4745

4746
    pmull (v19, T1Q, v1, v31, T1D);
4747
    pmull2(v20, T1Q, v1, v31, T2D);
4748
    eor3(v1, T16B, v19, v20, v5);
4749

4750
    pmull (v21, T1Q, v2, v31, T1D);
4751
    pmull2(v22, T1Q, v2, v31, T2D);
4752
    eor3(v2, T16B, v21, v22, v6);
4753

4754
    pmull (v23, T1Q, v3, v31, T1D);
4755
    pmull2(v24, T1Q, v3, v31, T2D);
4756
    eor3(v3, T16B, v23, v24, v7);
4757

4758
    // fold into 128 bits
4759
    // Use v17 for constants because v31 can be still in use.
4760
    ldrq(v17, Address(table, 0x20));
4761
    pmull (v25, T1Q, v0, v17, T1D);
4762
    pmull2(v26, T1Q, v0, v17, T2D);
4763
    eor3(v3, T16B, v3, v25, v26);
4764

4765
    // Use v18 for constants because v17 can be still in use.
4766
    ldrq(v18, Address(table, 0x30));
4767
    pmull (v27, T1Q, v1, v18, T1D);
4768
    pmull2(v28, T1Q, v1, v18, T2D);
4769
    eor3(v3, T16B, v3, v27, v28);
4770

4771
    // Use v19 for constants because v18 can be still in use.
4772
    ldrq(v19, Address(table, 0x40));
4773
    pmull (v29, T1Q, v2, v19, T1D);
4774
    pmull2(v30, T1Q, v2, v19, T2D);
4775
    eor3(v0, T16B, v3, v29, v30);
4776

4777
    add(len, len, 0x80);
4778
    add(buf, buf, 0x10);
4779

4780
    mov(tmp0, v0, D, 0);
4781
    mov(tmp1, v0, D, 1);
4782
}
4783

4784
SkipIfEqual::SkipIfEqual(
4785
    MacroAssembler* masm, const bool* flag_addr, bool value) {
4786
  _masm = masm;
4787
  uint64_t offset;
4788
  _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
4789
  _masm->ldrb(rscratch1, Address(rscratch1, offset));
4790
  if (value) {
4791
    _masm->cbnzw(rscratch1, _label);
4792
  } else {
4793
    _masm->cbzw(rscratch1, _label);
4794
  }
4795
}
4796

4797
SkipIfEqual::~SkipIfEqual() {
4798
  _masm->bind(_label);
4799
}
4800

4801
void MacroAssembler::addptr(const Address &dst, int32_t src) {
4802
  Address adr;
4803
  switch(dst.getMode()) {
4804
  case Address::base_plus_offset:
4805
    // This is the expected mode, although we allow all the other
4806
    // forms below.
4807
    adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
4808
    break;
4809
  default:
4810
    lea(rscratch2, dst);
4811
    adr = Address(rscratch2);
4812
    break;
4813
  }
4814
  ldr(rscratch1, adr);
4815
  add(rscratch1, rscratch1, src);
4816
  str(rscratch1, adr);
4817
}
4818

4819
void MacroAssembler::cmpptr(Register src1, Address src2) {
4820
  uint64_t offset;
4821
  adrp(rscratch1, src2, offset);
4822
  ldr(rscratch1, Address(rscratch1, offset));
4823
  cmp(src1, rscratch1);
4824
}
4825

4826
void MacroAssembler::cmpoop(Register obj1, Register obj2) {
4827
  cmp(obj1, obj2);
4828
}
4829

4830
void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
4831
  load_method_holder(rresult, rmethod);
4832
  ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
4833
}
4834

4835
void MacroAssembler::load_method_holder(Register holder, Register method) {
4836
  ldr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
4837
  ldr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
4838
  ldr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
4839
}
4840

4841
void MacroAssembler::load_klass(Register dst, Register src) {
4842
  if (UseCompressedClassPointers) {
4843
    ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4844
    decode_klass_not_null(dst);
4845
  } else {
4846
    ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4847
  }
4848
}
4849

4850
void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) {
4851
  if (RestoreMXCSROnJNICalls) {
4852
    Label OK;
4853
    get_fpcr(tmp1);
4854
    mov(tmp2, tmp1);
4855
    // Set FPCR to the state we need. We do want Round to Nearest. We
4856
    // don't want non-IEEE rounding modes or floating-point traps.
4857
    bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode
4858
    bfi(tmp1, zr, 8, 5);  // Clear exception-control bits (8-12)
4859
    bfi(tmp1, zr, 0, 2);  // Clear AH:FIZ
4860
    eor(tmp2, tmp1, tmp2);
4861
    cbz(tmp2, OK);        // Only reset FPCR if it's wrong
4862
    set_fpcr(tmp1);
4863
    bind(OK);
4864
  }
4865
}
4866

4867
// ((OopHandle)result).resolve();
4868
void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) {
4869
  // OopHandle::resolve is an indirection.
4870
  access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2);
4871
}
4872

4873
// ((WeakHandle)result).resolve();
4874
void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) {
4875
  assert_different_registers(result, tmp1, tmp2);
4876
  Label resolved;
4877

4878
  // A null weak handle resolves to null.
4879
  cbz(result, resolved);
4880

4881
  // Only 64 bit platforms support GCs that require a tmp register
4882
  // WeakHandle::resolve is an indirection like jweak.
4883
  access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4884
                 result, Address(result), tmp1, tmp2);
4885
  bind(resolved);
4886
}
4887

4888
void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) {
4889
  const int mirror_offset = in_bytes(Klass::java_mirror_offset());
4890
  ldr(dst, Address(rmethod, Method::const_offset()));
4891
  ldr(dst, Address(dst, ConstMethod::constants_offset()));
4892
  ldr(dst, Address(dst, ConstantPool::pool_holder_offset()));
4893
  ldr(dst, Address(dst, mirror_offset));
4894
  resolve_oop_handle(dst, tmp1, tmp2);
4895
}
4896

4897
void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
4898
  if (UseCompressedClassPointers) {
4899
    ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4900
    if (CompressedKlassPointers::base() == nullptr) {
4901
      cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift());
4902
      return;
4903
    } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0
4904
               && CompressedKlassPointers::shift() == 0) {
4905
      // Only the bottom 32 bits matter
4906
      cmpw(trial_klass, tmp);
4907
      return;
4908
    }
4909
    decode_klass_not_null(tmp);
4910
  } else {
4911
    ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4912
  }
4913
  cmp(trial_klass, tmp);
4914
}
4915

4916
void MacroAssembler::store_klass(Register dst, Register src) {
4917
  // FIXME: Should this be a store release?  concurrent gcs assumes
4918
  // klass length is valid if klass field is not null.
4919
  if (UseCompressedClassPointers) {
4920
    encode_klass_not_null(src);
4921
    strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4922
  } else {
4923
    str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4924
  }
4925
}
4926

4927
void MacroAssembler::store_klass_gap(Register dst, Register src) {
4928
  if (UseCompressedClassPointers) {
4929
    // Store to klass gap in destination
4930
    strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
4931
  }
4932
}
4933

4934
// Algorithm must match CompressedOops::encode.
4935
void MacroAssembler::encode_heap_oop(Register d, Register s) {
4936
#ifdef ASSERT
4937
  verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
4938
#endif
4939
  verify_oop_msg(s, "broken oop in encode_heap_oop");
4940
  if (CompressedOops::base() == nullptr) {
4941
    if (CompressedOops::shift() != 0) {
4942
      assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
4943
      lsr(d, s, LogMinObjAlignmentInBytes);
4944
    } else {
4945
      mov(d, s);
4946
    }
4947
  } else {
4948
    subs(d, s, rheapbase);
4949
    csel(d, d, zr, Assembler::HS);
4950
    lsr(d, d, LogMinObjAlignmentInBytes);
4951

4952
    /*  Old algorithm: is this any worse?
4953
    Label nonnull;
4954
    cbnz(r, nonnull);
4955
    sub(r, r, rheapbase);
4956
    bind(nonnull);
4957
    lsr(r, r, LogMinObjAlignmentInBytes);
4958
    */
4959
  }
4960
}
4961

4962
void MacroAssembler::encode_heap_oop_not_null(Register r) {
4963
#ifdef ASSERT
4964
  verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
4965
  if (CheckCompressedOops) {
4966
    Label ok;
4967
    cbnz(r, ok);
4968
    stop("null oop passed to encode_heap_oop_not_null");
4969
    bind(ok);
4970
  }
4971
#endif
4972
  verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
4973
  if (CompressedOops::base() != nullptr) {
4974
    sub(r, r, rheapbase);
4975
  }
4976
  if (CompressedOops::shift() != 0) {
4977
    assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
4978
    lsr(r, r, LogMinObjAlignmentInBytes);
4979
  }
4980
}
4981

4982
void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
4983
#ifdef ASSERT
4984
  verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
4985
  if (CheckCompressedOops) {
4986
    Label ok;
4987
    cbnz(src, ok);
4988
    stop("null oop passed to encode_heap_oop_not_null2");
4989
    bind(ok);
4990
  }
4991
#endif
4992
  verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
4993

4994
  Register data = src;
4995
  if (CompressedOops::base() != nullptr) {
4996
    sub(dst, src, rheapbase);
4997
    data = dst;
4998
  }
4999
  if (CompressedOops::shift() != 0) {
5000
    assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5001
    lsr(dst, data, LogMinObjAlignmentInBytes);
5002
    data = dst;
5003
  }
5004
  if (data == src)
5005
    mov(dst, src);
5006
}
5007

5008
void  MacroAssembler::decode_heap_oop(Register d, Register s) {
5009
#ifdef ASSERT
5010
  verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5011
#endif
5012
  if (CompressedOops::base() == nullptr) {
5013
    if (CompressedOops::shift() != 0 || d != s) {
5014
      lsl(d, s, CompressedOops::shift());
5015
    }
5016
  } else {
5017
    Label done;
5018
    if (d != s)
5019
      mov(d, s);
5020
    cbz(s, done);
5021
    add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
5022
    bind(done);
5023
  }
5024
  verify_oop_msg(d, "broken oop in decode_heap_oop");
5025
}
5026

5027
void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5028
  assert (UseCompressedOops, "should only be used for compressed headers");
5029
  assert (Universe::heap() != nullptr, "java heap should be initialized");
5030
  // Cannot assert, unverified entry point counts instructions (see .ad file)
5031
  // vtableStubs also counts instructions in pd_code_size_limit.
5032
  // Also do not verify_oop as this is called by verify_oop.
5033
  if (CompressedOops::shift() != 0) {
5034
    assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5035
    if (CompressedOops::base() != nullptr) {
5036
      add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
5037
    } else {
5038
      add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
5039
    }
5040
  } else {
5041
    assert (CompressedOops::base() == nullptr, "sanity");
5042
  }
5043
}
5044

5045
void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5046
  assert (UseCompressedOops, "should only be used for compressed headers");
5047
  assert (Universe::heap() != nullptr, "java heap should be initialized");
5048
  // Cannot assert, unverified entry point counts instructions (see .ad file)
5049
  // vtableStubs also counts instructions in pd_code_size_limit.
5050
  // Also do not verify_oop as this is called by verify_oop.
5051
  if (CompressedOops::shift() != 0) {
5052
    assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5053
    if (CompressedOops::base() != nullptr) {
5054
      add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
5055
    } else {
5056
      add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
5057
    }
5058
  } else {
5059
    assert (CompressedOops::base() == nullptr, "sanity");
5060
    if (dst != src) {
5061
      mov(dst, src);
5062
    }
5063
  }
5064
}
5065

5066
MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone);
5067

5068
MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() {
5069
  assert(UseCompressedClassPointers, "not using compressed class pointers");
5070
  assert(Metaspace::initialized(), "metaspace not initialized yet");
5071

5072
  if (_klass_decode_mode != KlassDecodeNone) {
5073
    return _klass_decode_mode;
5074
  }
5075

5076
  assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift()
5077
         || 0 == CompressedKlassPointers::shift(), "decode alg wrong");
5078

5079
  if (CompressedKlassPointers::base() == nullptr) {
5080
    return (_klass_decode_mode = KlassDecodeZero);
5081
  }
5082

5083
  if (operand_valid_for_logical_immediate(
5084
        /*is32*/false, (uint64_t)CompressedKlassPointers::base())) {
5085
    const uint64_t range_mask =
5086
      (1ULL << log2i(CompressedKlassPointers::range())) - 1;
5087
    if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) {
5088
      return (_klass_decode_mode = KlassDecodeXor);
5089
    }
5090
  }
5091

5092
  const uint64_t shifted_base =
5093
    (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
5094
  guarantee((shifted_base & 0xffff0000ffffffff) == 0,
5095
            "compressed class base bad alignment");
5096

5097
  return (_klass_decode_mode = KlassDecodeMovk);
5098
}
5099

5100
void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5101
  switch (klass_decode_mode()) {
5102
  case KlassDecodeZero:
5103
    if (CompressedKlassPointers::shift() != 0) {
5104
      lsr(dst, src, LogKlassAlignmentInBytes);
5105
    } else {
5106
      if (dst != src) mov(dst, src);
5107
    }
5108
    break;
5109

5110
  case KlassDecodeXor:
5111
    if (CompressedKlassPointers::shift() != 0) {
5112
      eor(dst, src, (uint64_t)CompressedKlassPointers::base());
5113
      lsr(dst, dst, LogKlassAlignmentInBytes);
5114
    } else {
5115
      eor(dst, src, (uint64_t)CompressedKlassPointers::base());
5116
    }
5117
    break;
5118

5119
  case KlassDecodeMovk:
5120
    if (CompressedKlassPointers::shift() != 0) {
5121
      ubfx(dst, src, LogKlassAlignmentInBytes, 32);
5122
    } else {
5123
      movw(dst, src);
5124
    }
5125
    break;
5126

5127
  case KlassDecodeNone:
5128
    ShouldNotReachHere();
5129
    break;
5130
  }
5131
}
5132

5133
void MacroAssembler::encode_klass_not_null(Register r) {
5134
  encode_klass_not_null(r, r);
5135
}
5136

5137
void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5138
  assert (UseCompressedClassPointers, "should only be used for compressed headers");
5139

5140
  switch (klass_decode_mode()) {
5141
  case KlassDecodeZero:
5142
    if (CompressedKlassPointers::shift() != 0) {
5143
      lsl(dst, src, LogKlassAlignmentInBytes);
5144
    } else {
5145
      if (dst != src) mov(dst, src);
5146
    }
5147
    break;
5148

5149
  case KlassDecodeXor:
5150
    if (CompressedKlassPointers::shift() != 0) {
5151
      lsl(dst, src, LogKlassAlignmentInBytes);
5152
      eor(dst, dst, (uint64_t)CompressedKlassPointers::base());
5153
    } else {
5154
      eor(dst, src, (uint64_t)CompressedKlassPointers::base());
5155
    }
5156
    break;
5157

5158
  case KlassDecodeMovk: {
5159
    const uint64_t shifted_base =
5160
      (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
5161

5162
    if (dst != src) movw(dst, src);
5163
    movk(dst, shifted_base >> 32, 32);
5164

5165
    if (CompressedKlassPointers::shift() != 0) {
5166
      lsl(dst, dst, LogKlassAlignmentInBytes);
5167
    }
5168

5169
    break;
5170
  }
5171

5172
  case KlassDecodeNone:
5173
    ShouldNotReachHere();
5174
    break;
5175
  }
5176
}
5177

5178
void  MacroAssembler::decode_klass_not_null(Register r) {
5179
  decode_klass_not_null(r, r);
5180
}
5181

5182
void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5183
#ifdef ASSERT
5184
  {
5185
    ThreadInVMfromUnknown tiv;
5186
    assert (UseCompressedOops, "should only be used for compressed oops");
5187
    assert (Universe::heap() != nullptr, "java heap should be initialized");
5188
    assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5189
    assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
5190
  }
5191
#endif
5192
  int oop_index = oop_recorder()->find_index(obj);
5193
  InstructionMark im(this);
5194
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
5195
  code_section()->relocate(inst_mark(), rspec);
5196
  movz(dst, 0xDEAD, 16);
5197
  movk(dst, 0xBEEF);
5198
}
5199

5200
void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5201
  assert (UseCompressedClassPointers, "should only be used for compressed headers");
5202
  assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5203
  int index = oop_recorder()->find_index(k);
5204
  assert(! Universe::heap()->is_in(k), "should not be an oop");
5205

5206
  InstructionMark im(this);
5207
  RelocationHolder rspec = metadata_Relocation::spec(index);
5208
  code_section()->relocate(inst_mark(), rspec);
5209
  narrowKlass nk = CompressedKlassPointers::encode(k);
5210
  movz(dst, (nk >> 16), 16);
5211
  movk(dst, nk & 0xffff);
5212
}
5213

5214
void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
5215
                                    Register dst, Address src,
5216
                                    Register tmp1, Register tmp2) {
5217
  BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5218
  decorators = AccessInternal::decorator_fixup(decorators, type);
5219
  bool as_raw = (decorators & AS_RAW) != 0;
5220
  if (as_raw) {
5221
    bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2);
5222
  } else {
5223
    bs->load_at(this, decorators, type, dst, src, tmp1, tmp2);
5224
  }
5225
}
5226

5227
void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
5228
                                     Address dst, Register val,
5229
                                     Register tmp1, Register tmp2, Register tmp3) {
5230
  BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5231
  decorators = AccessInternal::decorator_fixup(decorators, type);
5232
  bool as_raw = (decorators & AS_RAW) != 0;
5233
  if (as_raw) {
5234
    bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5235
  } else {
5236
    bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
5237
  }
5238
}
5239

5240
void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5241
                                   Register tmp2, DecoratorSet decorators) {
5242
  access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5243
}
5244

5245
void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5246
                                            Register tmp2, DecoratorSet decorators) {
5247
  access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2);
5248
}
5249

5250
void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
5251
                                    Register tmp2, Register tmp3, DecoratorSet decorators) {
5252
  access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
5253
}
5254

5255
// Used for storing nulls.
5256
void MacroAssembler::store_heap_oop_null(Address dst) {
5257
  access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
5258
}
5259

5260
Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
5261
  assert(oop_recorder() != nullptr, "this assembler needs a Recorder");
5262
  int index = oop_recorder()->allocate_metadata_index(obj);
5263
  RelocationHolder rspec = metadata_Relocation::spec(index);
5264
  return Address((address)obj, rspec);
5265
}
5266

5267
// Move an oop into a register.
5268
void MacroAssembler::movoop(Register dst, jobject obj) {
5269
  int oop_index;
5270
  if (obj == nullptr) {
5271
    oop_index = oop_recorder()->allocate_oop_index(obj);
5272
  } else {
5273
#ifdef ASSERT
5274
    {
5275
      ThreadInVMfromUnknown tiv;
5276
      assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
5277
    }
5278
#endif
5279
    oop_index = oop_recorder()->find_index(obj);
5280
  }
5281
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
5282

5283
  if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) {
5284
    mov(dst, Address((address)obj, rspec));
5285
  } else {
5286
    address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
5287
    ldr_constant(dst, Address(dummy, rspec));
5288
  }
5289

5290
}
5291

5292
// Move a metadata address into a register.
5293
void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
5294
  int oop_index;
5295
  if (obj == nullptr) {
5296
    oop_index = oop_recorder()->allocate_metadata_index(obj);
5297
  } else {
5298
    oop_index = oop_recorder()->find_index(obj);
5299
  }
5300
  RelocationHolder rspec = metadata_Relocation::spec(oop_index);
5301
  mov(dst, Address((address)obj, rspec));
5302
}
5303

5304
Address MacroAssembler::constant_oop_address(jobject obj) {
5305
#ifdef ASSERT
5306
  {
5307
    ThreadInVMfromUnknown tiv;
5308
    assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
5309
    assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop");
5310
  }
5311
#endif
5312
  int oop_index = oop_recorder()->find_index(obj);
5313
  return Address((address)obj, oop_Relocation::spec(oop_index));
5314
}
5315

5316
// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5317
void MacroAssembler::tlab_allocate(Register obj,
5318
                                   Register var_size_in_bytes,
5319
                                   int con_size_in_bytes,
5320
                                   Register t1,
5321
                                   Register t2,
5322
                                   Label& slow_case) {
5323
  BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
5324
  bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
5325
}
5326

5327
void MacroAssembler::verify_tlab() {
5328
#ifdef ASSERT
5329
  if (UseTLAB && VerifyOops) {
5330
    Label next, ok;
5331

5332
    stp(rscratch2, rscratch1, Address(pre(sp, -16)));
5333

5334
    ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5335
    ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
5336
    cmp(rscratch2, rscratch1);
5337
    br(Assembler::HS, next);
5338
    STOP("assert(top >= start)");
5339
    should_not_reach_here();
5340

5341
    bind(next);
5342
    ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
5343
    ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
5344
    cmp(rscratch2, rscratch1);
5345
    br(Assembler::HS, ok);
5346
    STOP("assert(top <= end)");
5347
    should_not_reach_here();
5348

5349
    bind(ok);
5350
    ldp(rscratch2, rscratch1, Address(post(sp, 16)));
5351
  }
5352
#endif
5353
}
5354

5355
// Writes to stack successive pages until offset reached to check for
5356
// stack overflow + shadow pages.  This clobbers tmp.
5357
void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5358
  assert_different_registers(tmp, size, rscratch1);
5359
  mov(tmp, sp);
5360
  // Bang stack for total size given plus shadow page size.
5361
  // Bang one page at a time because large size can bang beyond yellow and
5362
  // red zones.
5363
  Label loop;
5364
  mov(rscratch1, (int)os::vm_page_size());
5365
  bind(loop);
5366
  lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5367
  subsw(size, size, rscratch1);
5368
  str(size, Address(tmp));
5369
  br(Assembler::GT, loop);
5370

5371
  // Bang down shadow pages too.
5372
  // At this point, (tmp-0) is the last address touched, so don't
5373
  // touch it again.  (It was touched as (tmp-pagesize) but then tmp
5374
  // was post-decremented.)  Skip this address by starting at i=1, and
5375
  // touch a few more pages below.  N.B.  It is important to touch all
5376
  // the way down to and including i=StackShadowPages.
5377
  for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) {
5378
    // this could be any sized move but this is can be a debugging crumb
5379
    // so the bigger the better.
5380
    lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5381
    str(size, Address(tmp));
5382
  }
5383
}
5384

5385
// Move the address of the polling page into dest.
5386
void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) {
5387
  ldr(dest, Address(rthread, JavaThread::polling_page_offset()));
5388
}
5389

5390
// Read the polling page.  The address of the polling page must
5391
// already be in r.
5392
address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
5393
  address mark;
5394
  {
5395
    InstructionMark im(this);
5396
    code_section()->relocate(inst_mark(), rtype);
5397
    ldrw(zr, Address(r, 0));
5398
    mark = inst_mark();
5399
  }
5400
  verify_cross_modify_fence_not_required();
5401
  return mark;
5402
}
5403

5404
void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) {
5405
  relocInfo::relocType rtype = dest.rspec().reloc()->type();
5406
  uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12;
5407
  uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12;
5408
  uint64_t dest_page = (uint64_t)dest.target() >> 12;
5409
  int64_t offset_low = dest_page - low_page;
5410
  int64_t offset_high = dest_page - high_page;
5411

5412
  assert(is_valid_AArch64_address(dest.target()), "bad address");
5413
  assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address");
5414

5415
  InstructionMark im(this);
5416
  code_section()->relocate(inst_mark(), dest.rspec());
5417
  // 8143067: Ensure that the adrp can reach the dest from anywhere within
5418
  // the code cache so that if it is relocated we know it will still reach
5419
  if (offset_high >= -(1<<20) && offset_low < (1<<20)) {
5420
    _adrp(reg1, dest.target());
5421
  } else {
5422
    uint64_t target = (uint64_t)dest.target();
5423
    uint64_t adrp_target
5424
      = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL);
5425

5426
    _adrp(reg1, (address)adrp_target);
5427
    movk(reg1, target >> 32, 32);
5428
  }
5429
  byte_offset = (uint64_t)dest.target() & 0xfff;
5430
}
5431

5432
void MacroAssembler::load_byte_map_base(Register reg) {
5433
  CardTable::CardValue* byte_map_base =
5434
    ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base();
5435

5436
  // Strictly speaking the byte_map_base isn't an address at all, and it might
5437
  // even be negative. It is thus materialised as a constant.
5438
  mov(reg, (uint64_t)byte_map_base);
5439
}
5440

5441
void MacroAssembler::build_frame(int framesize) {
5442
  assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5443
  assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5444
  protect_return_address();
5445
  if (framesize < ((1 << 9) + 2 * wordSize)) {
5446
    sub(sp, sp, framesize);
5447
    stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5448
    if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize);
5449
  } else {
5450
    stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
5451
    if (PreserveFramePointer) mov(rfp, sp);
5452
    if (framesize < ((1 << 12) + 2 * wordSize))
5453
      sub(sp, sp, framesize - 2 * wordSize);
5454
    else {
5455
      mov(rscratch1, framesize - 2 * wordSize);
5456
      sub(sp, sp, rscratch1);
5457
    }
5458
  }
5459
  verify_cross_modify_fence_not_required();
5460
}
5461

5462
void MacroAssembler::remove_frame(int framesize) {
5463
  assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5464
  assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5465
  if (framesize < ((1 << 9) + 2 * wordSize)) {
5466
    ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5467
    add(sp, sp, framesize);
5468
  } else {
5469
    if (framesize < ((1 << 12) + 2 * wordSize))
5470
      add(sp, sp, framesize - 2 * wordSize);
5471
    else {
5472
      mov(rscratch1, framesize - 2 * wordSize);
5473
      add(sp, sp, rscratch1);
5474
    }
5475
    ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5476
  }
5477
  authenticate_return_address();
5478
}
5479

5480

5481
// This method counts leading positive bytes (highest bit not set) in provided byte array
5482
address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
5483
    // Simple and most common case of aligned small array which is not at the
5484
    // end of memory page is placed here. All other cases are in stub.
5485
    Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
5486
    const uint64_t UPPER_BIT_MASK=0x8080808080808080;
5487
    assert_different_registers(ary1, len, result);
5488

5489
    mov(result, len);
5490
    cmpw(len, 0);
5491
    br(LE, DONE);
5492
    cmpw(len, 4 * wordSize);
5493
    br(GE, STUB_LONG); // size > 32 then go to stub
5494

5495
    int shift = 64 - exact_log2(os::vm_page_size());
5496
    lsl(rscratch1, ary1, shift);
5497
    mov(rscratch2, (size_t)(4 * wordSize) << shift);
5498
    adds(rscratch2, rscratch1, rscratch2);  // At end of page?
5499
    br(CS, STUB); // at the end of page then go to stub
5500
    subs(len, len, wordSize);
5501
    br(LT, END);
5502

5503
  BIND(LOOP);
5504
    ldr(rscratch1, Address(post(ary1, wordSize)));
5505
    tst(rscratch1, UPPER_BIT_MASK);
5506
    br(NE, SET_RESULT);
5507
    subs(len, len, wordSize);
5508
    br(GE, LOOP);
5509
    cmpw(len, -wordSize);
5510
    br(EQ, DONE);
5511

5512
  BIND(END);
5513
    ldr(rscratch1, Address(ary1));
5514
    sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes
5515
    lslv(rscratch1, rscratch1, rscratch2);
5516
    tst(rscratch1, UPPER_BIT_MASK);
5517
    br(NE, SET_RESULT);
5518
    b(DONE);
5519

5520
  BIND(STUB);
5521
    RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives());
5522
    assert(count_pos.target() != nullptr, "count_positives stub has not been generated");
5523
    address tpc1 = trampoline_call(count_pos);
5524
    if (tpc1 == nullptr) {
5525
      DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE));
5526
      postcond(pc() == badAddress);
5527
      return nullptr;
5528
    }
5529
    b(DONE);
5530

5531
  BIND(STUB_LONG);
5532
    RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long());
5533
    assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated");
5534
    address tpc2 = trampoline_call(count_pos_long);
5535
    if (tpc2 == nullptr) {
5536
      DEBUG_ONLY(reset_labels(SET_RESULT, DONE));
5537
      postcond(pc() == badAddress);
5538
      return nullptr;
5539
    }
5540
    b(DONE);
5541

5542
  BIND(SET_RESULT);
5543

5544
    add(len, len, wordSize);
5545
    sub(result, result, len);
5546

5547
  BIND(DONE);
5548
  postcond(pc() != badAddress);
5549
  return pc();
5550
}
5551

5552
// Clobbers: rscratch1, rscratch2, rflags
5553
// May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals)
5554
address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3,
5555
                                      Register tmp4, Register tmp5, Register result,
5556
                                      Register cnt1, int elem_size) {
5557
  Label DONE, SAME;
5558
  Register tmp1 = rscratch1;
5559
  Register tmp2 = rscratch2;
5560
  int elem_per_word = wordSize/elem_size;
5561
  int log_elem_size = exact_log2(elem_size);
5562
  int klass_offset  = arrayOopDesc::klass_offset_in_bytes();
5563
  int length_offset = arrayOopDesc::length_offset_in_bytes();
5564
  int base_offset
5565
    = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
5566
  // When the length offset is not aligned to 8 bytes,
5567
  // then we align it down. This is valid because the new
5568
  // offset will always be the klass which is the same
5569
  // for type arrays.
5570
  int start_offset = align_down(length_offset, BytesPerWord);
5571
  int extra_length = base_offset - start_offset;
5572
  assert(start_offset == length_offset || start_offset == klass_offset,
5573
         "start offset must be 8-byte-aligned or be the klass offset");
5574
  assert(base_offset != start_offset, "must include the length field");
5575
  extra_length = extra_length / elem_size; // We count in elements, not bytes.
5576
  int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16);
5577

5578
  assert(elem_size == 1 || elem_size == 2, "must be char or byte");
5579
  assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
5580

5581
#ifndef PRODUCT
5582
  {
5583
    const char kind = (elem_size == 2) ? 'U' : 'L';
5584
    char comment[64];
5585
    snprintf(comment, sizeof comment, "array_equals%c{", kind);
5586
    BLOCK_COMMENT(comment);
5587
  }
5588
#endif
5589

5590
  // if (a1 == a2)
5591
  //     return true;
5592
  cmpoop(a1, a2); // May have read barriers for a1 and a2.
5593
  br(EQ, SAME);
5594

5595
  if (UseSimpleArrayEquals) {
5596
    Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL;
5597
    // if (a1 == nullptr || a2 == nullptr)
5598
    //     return false;
5599
    // a1 & a2 == 0 means (some-pointer is null) or
5600
    // (very-rare-or-even-probably-impossible-pointer-values)
5601
    // so, we can save one branch in most cases
5602
    tst(a1, a2);
5603
    mov(result, false);
5604
    br(EQ, A_MIGHT_BE_NULL);
5605
    // if (a1.length != a2.length)
5606
    //      return false;
5607
    bind(A_IS_NOT_NULL);
5608
    ldrw(cnt1, Address(a1, length_offset));
5609
    // Increase loop counter by diff between base- and actual start-offset.
5610
    addw(cnt1, cnt1, extra_length);
5611
    lea(a1, Address(a1, start_offset));
5612
    lea(a2, Address(a2, start_offset));
5613
    // Check for short strings, i.e. smaller than wordSize.
5614
    subs(cnt1, cnt1, elem_per_word);
5615
    br(Assembler::LT, SHORT);
5616
    // Main 8 byte comparison loop.
5617
    bind(NEXT_WORD); {
5618
      ldr(tmp1, Address(post(a1, wordSize)));
5619
      ldr(tmp2, Address(post(a2, wordSize)));
5620
      subs(cnt1, cnt1, elem_per_word);
5621
      eor(tmp5, tmp1, tmp2);
5622
      cbnz(tmp5, DONE);
5623
    } br(GT, NEXT_WORD);
5624
    // Last longword.  In the case where length == 4 we compare the
5625
    // same longword twice, but that's still faster than another
5626
    // conditional branch.
5627
    // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
5628
    // length == 4.
5629
    if (log_elem_size > 0)
5630
      lsl(cnt1, cnt1, log_elem_size);
5631
    ldr(tmp3, Address(a1, cnt1));
5632
    ldr(tmp4, Address(a2, cnt1));
5633
    eor(tmp5, tmp3, tmp4);
5634
    cbnz(tmp5, DONE);
5635
    b(SAME);
5636
    bind(A_MIGHT_BE_NULL);
5637
    // in case both a1 and a2 are not-null, proceed with loads
5638
    cbz(a1, DONE);
5639
    cbz(a2, DONE);
5640
    b(A_IS_NOT_NULL);
5641
    bind(SHORT);
5642

5643
    tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
5644
    {
5645
      ldrw(tmp1, Address(post(a1, 4)));
5646
      ldrw(tmp2, Address(post(a2, 4)));
5647
      eorw(tmp5, tmp1, tmp2);
5648
      cbnzw(tmp5, DONE);
5649
    }
5650
    bind(TAIL03);
5651
    tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
5652
    {
5653
      ldrh(tmp3, Address(post(a1, 2)));
5654
      ldrh(tmp4, Address(post(a2, 2)));
5655
      eorw(tmp5, tmp3, tmp4);
5656
      cbnzw(tmp5, DONE);
5657
    }
5658
    bind(TAIL01);
5659
    if (elem_size == 1) { // Only needed when comparing byte arrays.
5660
      tbz(cnt1, 0, SAME); // 0-1 bytes left.
5661
      {
5662
        ldrb(tmp1, a1);
5663
        ldrb(tmp2, a2);
5664
        eorw(tmp5, tmp1, tmp2);
5665
        cbnzw(tmp5, DONE);
5666
      }
5667
    }
5668
  } else {
5669
    Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB,
5670
        CSET_EQ, LAST_CHECK;
5671
    mov(result, false);
5672
    cbz(a1, DONE);
5673
    ldrw(cnt1, Address(a1, length_offset));
5674
    cbz(a2, DONE);
5675
    // Increase loop counter by diff between base- and actual start-offset.
5676
    addw(cnt1, cnt1, extra_length);
5677

5678
    // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's
5679
    // faster to perform another branch before comparing a1 and a2
5680
    cmp(cnt1, (u1)elem_per_word);
5681
    br(LE, SHORT); // short or same
5682
    ldr(tmp3, Address(pre(a1, start_offset)));
5683
    subs(zr, cnt1, stubBytesThreshold);
5684
    br(GE, STUB);
5685
    ldr(tmp4, Address(pre(a2, start_offset)));
5686
    sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
5687

5688
    // Main 16 byte comparison loop with 2 exits
5689
    bind(NEXT_DWORD); {
5690
      ldr(tmp1, Address(pre(a1, wordSize)));
5691
      ldr(tmp2, Address(pre(a2, wordSize)));
5692
      subs(cnt1, cnt1, 2 * elem_per_word);
5693
      br(LE, TAIL);
5694
      eor(tmp4, tmp3, tmp4);
5695
      cbnz(tmp4, DONE);
5696
      ldr(tmp3, Address(pre(a1, wordSize)));
5697
      ldr(tmp4, Address(pre(a2, wordSize)));
5698
      cmp(cnt1, (u1)elem_per_word);
5699
      br(LE, TAIL2);
5700
      cmp(tmp1, tmp2);
5701
    } br(EQ, NEXT_DWORD);
5702
    b(DONE);
5703

5704
    bind(TAIL);
5705
    eor(tmp4, tmp3, tmp4);
5706
    eor(tmp2, tmp1, tmp2);
5707
    lslv(tmp2, tmp2, tmp5);
5708
    orr(tmp5, tmp4, tmp2);
5709
    cmp(tmp5, zr);
5710
    b(CSET_EQ);
5711

5712
    bind(TAIL2);
5713
    eor(tmp2, tmp1, tmp2);
5714
    cbnz(tmp2, DONE);
5715
    b(LAST_CHECK);
5716

5717
    bind(STUB);
5718
    ldr(tmp4, Address(pre(a2, start_offset)));
5719
    if (elem_size == 2) { // convert to byte counter
5720
      lsl(cnt1, cnt1, 1);
5721
    }
5722
    eor(tmp5, tmp3, tmp4);
5723
    cbnz(tmp5, DONE);
5724
    RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals());
5725
    assert(stub.target() != nullptr, "array_equals_long stub has not been generated");
5726
    address tpc = trampoline_call(stub);
5727
    if (tpc == nullptr) {
5728
      DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE));
5729
      postcond(pc() == badAddress);
5730
      return nullptr;
5731
    }
5732
    b(DONE);
5733

5734
    // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2)
5735
    // so, if a2 == null => return false(0), else return true, so we can return a2
5736
    mov(result, a2);
5737
    b(DONE);
5738
    bind(SHORT);
5739
    sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
5740
    ldr(tmp3, Address(a1, start_offset));
5741
    ldr(tmp4, Address(a2, start_offset));
5742
    bind(LAST_CHECK);
5743
    eor(tmp4, tmp3, tmp4);
5744
    lslv(tmp5, tmp4, tmp5);
5745
    cmp(tmp5, zr);
5746
    bind(CSET_EQ);
5747
    cset(result, EQ);
5748
    b(DONE);
5749
  }
5750

5751
  bind(SAME);
5752
  mov(result, true);
5753
  // That's it.
5754
  bind(DONE);
5755

5756
  BLOCK_COMMENT("} array_equals");
5757
  postcond(pc() != badAddress);
5758
  return pc();
5759
}
5760

5761
// Compare Strings
5762

5763
// For Strings we're passed the address of the first characters in a1
5764
// and a2 and the length in cnt1.
5765
// There are two implementations.  For arrays >= 8 bytes, all
5766
// comparisons (including the final one, which may overlap) are
5767
// performed 8 bytes at a time.  For strings < 8 bytes, we compare a
5768
// halfword, then a short, and then a byte.
5769

5770
void MacroAssembler::string_equals(Register a1, Register a2,
5771
                                   Register result, Register cnt1)
5772
{
5773
  Label SAME, DONE, SHORT, NEXT_WORD;
5774
  Register tmp1 = rscratch1;
5775
  Register tmp2 = rscratch2;
5776
  Register cnt2 = tmp2;  // cnt2 only used in array length compare
5777

5778
  assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
5779

5780
#ifndef PRODUCT
5781
  {
5782
    char comment[64];
5783
    snprintf(comment, sizeof comment, "{string_equalsL");
5784
    BLOCK_COMMENT(comment);
5785
  }
5786
#endif
5787

5788
  mov(result, false);
5789

5790
  // Check for short strings, i.e. smaller than wordSize.
5791
  subs(cnt1, cnt1, wordSize);
5792
  br(Assembler::LT, SHORT);
5793
  // Main 8 byte comparison loop.
5794
  bind(NEXT_WORD); {
5795
    ldr(tmp1, Address(post(a1, wordSize)));
5796
    ldr(tmp2, Address(post(a2, wordSize)));
5797
    subs(cnt1, cnt1, wordSize);
5798
    eor(tmp1, tmp1, tmp2);
5799
    cbnz(tmp1, DONE);
5800
  } br(GT, NEXT_WORD);
5801
  // Last longword.  In the case where length == 4 we compare the
5802
  // same longword twice, but that's still faster than another
5803
  // conditional branch.
5804
  // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
5805
  // length == 4.
5806
  ldr(tmp1, Address(a1, cnt1));
5807
  ldr(tmp2, Address(a2, cnt1));
5808
  eor(tmp2, tmp1, tmp2);
5809
  cbnz(tmp2, DONE);
5810
  b(SAME);
5811

5812
  bind(SHORT);
5813
  Label TAIL03, TAIL01;
5814

5815
  tbz(cnt1, 2, TAIL03); // 0-7 bytes left.
5816
  {
5817
    ldrw(tmp1, Address(post(a1, 4)));
5818
    ldrw(tmp2, Address(post(a2, 4)));
5819
    eorw(tmp1, tmp1, tmp2);
5820
    cbnzw(tmp1, DONE);
5821
  }
5822
  bind(TAIL03);
5823
  tbz(cnt1, 1, TAIL01); // 0-3 bytes left.
5824
  {
5825
    ldrh(tmp1, Address(post(a1, 2)));
5826
    ldrh(tmp2, Address(post(a2, 2)));
5827
    eorw(tmp1, tmp1, tmp2);
5828
    cbnzw(tmp1, DONE);
5829
  }
5830
  bind(TAIL01);
5831
  tbz(cnt1, 0, SAME); // 0-1 bytes left.
5832
    {
5833
    ldrb(tmp1, a1);
5834
    ldrb(tmp2, a2);
5835
    eorw(tmp1, tmp1, tmp2);
5836
    cbnzw(tmp1, DONE);
5837
  }
5838
  // Arrays are equal.
5839
  bind(SAME);
5840
  mov(result, true);
5841

5842
  // That's it.
5843
  bind(DONE);
5844
  BLOCK_COMMENT("} string_equals");
5845
}
5846

5847

5848
// The size of the blocks erased by the zero_blocks stub.  We must
5849
// handle anything smaller than this ourselves in zero_words().
5850
const int MacroAssembler::zero_words_block_size = 8;
5851

5852
// zero_words() is used by C2 ClearArray patterns and by
5853
// C1_MacroAssembler.  It is as small as possible, handling small word
5854
// counts locally and delegating anything larger to the zero_blocks
5855
// stub.  It is expanded many times in compiled code, so it is
5856
// important to keep it short.
5857

5858
// ptr:   Address of a buffer to be zeroed.
5859
// cnt:   Count in HeapWords.
5860
//
5861
// ptr, cnt, rscratch1, and rscratch2 are clobbered.
5862
address MacroAssembler::zero_words(Register ptr, Register cnt)
5863
{
5864
  assert(is_power_of_2(zero_words_block_size), "adjust this");
5865

5866
  BLOCK_COMMENT("zero_words {");
5867
  assert(ptr == r10 && cnt == r11, "mismatch in register usage");
5868
  RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks());
5869
  assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated");
5870

5871
  subs(rscratch1, cnt, zero_words_block_size);
5872
  Label around;
5873
  br(LO, around);
5874
  {
5875
    RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks());
5876
    assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated");
5877
    // Make sure this is a C2 compilation. C1 allocates space only for
5878
    // trampoline stubs generated by Call LIR ops, and in any case it
5879
    // makes sense for a C1 compilation task to proceed as quickly as
5880
    // possible.
5881
    CompileTask* task;
5882
    if (StubRoutines::aarch64::complete()
5883
        && Thread::current()->is_Compiler_thread()
5884
        && (task = ciEnv::current()->task())
5885
        && is_c2_compile(task->comp_level())) {
5886
      address tpc = trampoline_call(zero_blocks);
5887
      if (tpc == nullptr) {
5888
        DEBUG_ONLY(reset_labels(around));
5889
        return nullptr;
5890
      }
5891
    } else {
5892
      far_call(zero_blocks);
5893
    }
5894
  }
5895
  bind(around);
5896

5897
  // We have a few words left to do. zero_blocks has adjusted r10 and r11
5898
  // for us.
5899
  for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) {
5900
    Label l;
5901
    tbz(cnt, exact_log2(i), l);
5902
    for (int j = 0; j < i; j += 2) {
5903
      stp(zr, zr, post(ptr, 2 * BytesPerWord));
5904
    }
5905
    bind(l);
5906
  }
5907
  {
5908
    Label l;
5909
    tbz(cnt, 0, l);
5910
    str(zr, Address(ptr));
5911
    bind(l);
5912
  }
5913

5914
  BLOCK_COMMENT("} zero_words");
5915
  return pc();
5916
}
5917

5918
// base:         Address of a buffer to be zeroed, 8 bytes aligned.
5919
// cnt:          Immediate count in HeapWords.
5920
//
5921
// r10, r11, rscratch1, and rscratch2 are clobbered.
5922
address MacroAssembler::zero_words(Register base, uint64_t cnt)
5923
{
5924
  assert(wordSize <= BlockZeroingLowLimit,
5925
            "increase BlockZeroingLowLimit");
5926
  address result = nullptr;
5927
  if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) {
5928
#ifndef PRODUCT
5929
    {
5930
      char buf[64];
5931
      snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt);
5932
      BLOCK_COMMENT(buf);
5933
    }
5934
#endif
5935
    if (cnt >= 16) {
5936
      uint64_t loops = cnt/16;
5937
      if (loops > 1) {
5938
        mov(rscratch2, loops - 1);
5939
      }
5940
      {
5941
        Label loop;
5942
        bind(loop);
5943
        for (int i = 0; i < 16; i += 2) {
5944
          stp(zr, zr, Address(base, i * BytesPerWord));
5945
        }
5946
        add(base, base, 16 * BytesPerWord);
5947
        if (loops > 1) {
5948
          subs(rscratch2, rscratch2, 1);
5949
          br(GE, loop);
5950
        }
5951
      }
5952
    }
5953
    cnt %= 16;
5954
    int i = cnt & 1;  // store any odd word to start
5955
    if (i) str(zr, Address(base));
5956
    for (; i < (int)cnt; i += 2) {
5957
      stp(zr, zr, Address(base, i * wordSize));
5958
    }
5959
    BLOCK_COMMENT("} zero_words");
5960
    result = pc();
5961
  } else {
5962
    mov(r10, base); mov(r11, cnt);
5963
    result = zero_words(r10, r11);
5964
  }
5965
  return result;
5966
}
5967

5968
// Zero blocks of memory by using DC ZVA.
5969
//
5970
// Aligns the base address first sufficiently for DC ZVA, then uses
5971
// DC ZVA repeatedly for every full block.  cnt is the size to be
5972
// zeroed in HeapWords.  Returns the count of words left to be zeroed
5973
// in cnt.
5974
//
5975
// NOTE: This is intended to be used in the zero_blocks() stub.  If
5976
// you want to use it elsewhere, note that cnt must be >= 2*zva_length.
5977
void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) {
5978
  Register tmp = rscratch1;
5979
  Register tmp2 = rscratch2;
5980
  int zva_length = VM_Version::zva_length();
5981
  Label initial_table_end, loop_zva;
5982
  Label fini;
5983

5984
  // Base must be 16 byte aligned. If not just return and let caller handle it
5985
  tst(base, 0x0f);
5986
  br(Assembler::NE, fini);
5987
  // Align base with ZVA length.
5988
  neg(tmp, base);
5989
  andr(tmp, tmp, zva_length - 1);
5990

5991
  // tmp: the number of bytes to be filled to align the base with ZVA length.
5992
  add(base, base, tmp);
5993
  sub(cnt, cnt, tmp, Assembler::ASR, 3);
5994
  adr(tmp2, initial_table_end);
5995
  sub(tmp2, tmp2, tmp, Assembler::LSR, 2);
5996
  br(tmp2);
5997

5998
  for (int i = -zva_length + 16; i < 0; i += 16)
5999
    stp(zr, zr, Address(base, i));
6000
  bind(initial_table_end);
6001

6002
  sub(cnt, cnt, zva_length >> 3);
6003
  bind(loop_zva);
6004
  dc(Assembler::ZVA, base);
6005
  subs(cnt, cnt, zva_length >> 3);
6006
  add(base, base, zva_length);
6007
  br(Assembler::GE, loop_zva);
6008
  add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA
6009
  bind(fini);
6010
}
6011

6012
// base:   Address of a buffer to be filled, 8 bytes aligned.
6013
// cnt:    Count in 8-byte unit.
6014
// value:  Value to be filled with.
6015
// base will point to the end of the buffer after filling.
6016
void MacroAssembler::fill_words(Register base, Register cnt, Register value)
6017
{
6018
//  Algorithm:
6019
//
6020
//    if (cnt == 0) {
6021
//      return;
6022
//    }
6023
//    if ((p & 8) != 0) {
6024
//      *p++ = v;
6025
//    }
6026
//
6027
//    scratch1 = cnt & 14;
6028
//    cnt -= scratch1;
6029
//    p += scratch1;
6030
//    switch (scratch1 / 2) {
6031
//      do {
6032
//        cnt -= 16;
6033
//          p[-16] = v;
6034
//          p[-15] = v;
6035
//        case 7:
6036
//          p[-14] = v;
6037
//          p[-13] = v;
6038
//        case 6:
6039
//          p[-12] = v;
6040
//          p[-11] = v;
6041
//          // ...
6042
//        case 1:
6043
//          p[-2] = v;
6044
//          p[-1] = v;
6045
//        case 0:
6046
//          p += 16;
6047
//      } while (cnt);
6048
//    }
6049
//    if ((cnt & 1) == 1) {
6050
//      *p++ = v;
6051
//    }
6052

6053
  assert_different_registers(base, cnt, value, rscratch1, rscratch2);
6054

6055
  Label fini, skip, entry, loop;
6056
  const int unroll = 8; // Number of stp instructions we'll unroll
6057

6058
  cbz(cnt, fini);
6059
  tbz(base, 3, skip);
6060
  str(value, Address(post(base, 8)));
6061
  sub(cnt, cnt, 1);
6062
  bind(skip);
6063

6064
  andr(rscratch1, cnt, (unroll-1) * 2);
6065
  sub(cnt, cnt, rscratch1);
6066
  add(base, base, rscratch1, Assembler::LSL, 3);
6067
  adr(rscratch2, entry);
6068
  sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1);
6069
  br(rscratch2);
6070

6071
  bind(loop);
6072
  add(base, base, unroll * 16);
6073
  for (int i = -unroll; i < 0; i++)
6074
    stp(value, value, Address(base, i * 16));
6075
  bind(entry);
6076
  subs(cnt, cnt, unroll * 2);
6077
  br(Assembler::GE, loop);
6078

6079
  tbz(cnt, 0, fini);
6080
  str(value, Address(post(base, 8)));
6081
  bind(fini);
6082
}
6083

6084
// Intrinsic for
6085
//
6086
// - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray
6087
//     return the number of characters copied.
6088
// - java/lang/StringUTF16.compress
6089
//     return index of non-latin1 character if copy fails, otherwise 'len'.
6090
//
6091
// This version always returns the number of characters copied, and does not
6092
// clobber the 'len' register. A successful copy will complete with the post-
6093
// condition: 'res' == 'len', while an unsuccessful copy will exit with the
6094
// post-condition: 0 <= 'res' < 'len'.
6095
//
6096
// NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to
6097
//       degrade performance (on Ampere Altra - Neoverse N1), to an extent
6098
//       beyond the acceptable, even though the footprint would be smaller.
6099
//       Using 'umaxv' in the ASCII-case comes with a small penalty but does
6100
//       avoid additional bloat.
6101
//
6102
// Clobbers: src, dst, res, rscratch1, rscratch2, rflags
6103
void MacroAssembler::encode_iso_array(Register src, Register dst,
6104
                                      Register len, Register res, bool ascii,
6105
                                      FloatRegister vtmp0, FloatRegister vtmp1,
6106
                                      FloatRegister vtmp2, FloatRegister vtmp3,
6107
                                      FloatRegister vtmp4, FloatRegister vtmp5)
6108
{
6109
  Register cnt = res;
6110
  Register max = rscratch1;
6111
  Register chk = rscratch2;
6112

6113
  prfm(Address(src), PLDL1STRM);
6114
  movw(cnt, len);
6115

6116
#define ASCII(insn) do { if (ascii) { insn; } } while (0)
6117

6118
  Label LOOP_32, DONE_32, FAIL_32;
6119

6120
  BIND(LOOP_32);
6121
  {
6122
    cmpw(cnt, 32);
6123
    br(LT, DONE_32);
6124
    ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64)));
6125
    // Extract lower bytes.
6126
    FloatRegister vlo0 = vtmp4;
6127
    FloatRegister vlo1 = vtmp5;
6128
    uzp1(vlo0, T16B, vtmp0, vtmp1);
6129
    uzp1(vlo1, T16B, vtmp2, vtmp3);
6130
    // Merge bits...
6131
    orr(vtmp0, T16B, vtmp0, vtmp1);
6132
    orr(vtmp2, T16B, vtmp2, vtmp3);
6133
    // Extract merged upper bytes.
6134
    FloatRegister vhix = vtmp0;
6135
    uzp2(vhix, T16B, vtmp0, vtmp2);
6136
    // ISO-check on hi-parts (all zero).
6137
    //                          ASCII-check on lo-parts (no sign).
6138
    FloatRegister vlox = vtmp1; // Merge lower bytes.
6139
                                ASCII(orr(vlox, T16B, vlo0, vlo1));
6140
    umov(chk, vhix, D, 1);      ASCII(cm(LT, vlox, T16B, vlox));
6141
    fmovd(max, vhix);           ASCII(umaxv(vlox, T16B, vlox));
6142
    orr(chk, chk, max);         ASCII(umov(max, vlox, B, 0));
6143
                                ASCII(orr(chk, chk, max));
6144
    cbnz(chk, FAIL_32);
6145
    subw(cnt, cnt, 32);
6146
    st1(vlo0, vlo1, T16B, Address(post(dst, 32)));
6147
    b(LOOP_32);
6148
  }
6149
  BIND(FAIL_32);
6150
  sub(src, src, 64);
6151
  BIND(DONE_32);
6152

6153
  Label LOOP_8, SKIP_8;
6154

6155
  BIND(LOOP_8);
6156
  {
6157
    cmpw(cnt, 8);
6158
    br(LT, SKIP_8);
6159
    FloatRegister vhi = vtmp0;
6160
    FloatRegister vlo = vtmp1;
6161
    ld1(vtmp3, T8H, src);
6162
    uzp1(vlo, T16B, vtmp3, vtmp3);
6163
    uzp2(vhi, T16B, vtmp3, vtmp3);
6164
    // ISO-check on hi-parts (all zero).
6165
    //                          ASCII-check on lo-parts (no sign).
6166
                                ASCII(cm(LT, vtmp2, T16B, vlo));
6167
    fmovd(chk, vhi);            ASCII(umaxv(vtmp2, T16B, vtmp2));
6168
                                ASCII(umov(max, vtmp2, B, 0));
6169
                                ASCII(orr(chk, chk, max));
6170
    cbnz(chk, SKIP_8);
6171

6172
    strd(vlo, Address(post(dst, 8)));
6173
    subw(cnt, cnt, 8);
6174
    add(src, src, 16);
6175
    b(LOOP_8);
6176
  }
6177
  BIND(SKIP_8);
6178

6179
#undef ASCII
6180

6181
  Label LOOP, DONE;
6182

6183
  cbz(cnt, DONE);
6184
  BIND(LOOP);
6185
  {
6186
    Register chr = rscratch1;
6187
    ldrh(chr, Address(post(src, 2)));
6188
    tst(chr, ascii ? 0xff80 : 0xff00);
6189
    br(NE, DONE);
6190
    strb(chr, Address(post(dst, 1)));
6191
    subs(cnt, cnt, 1);
6192
    br(GT, LOOP);
6193
  }
6194
  BIND(DONE);
6195
  // Return index where we stopped.
6196
  subw(res, len, cnt);
6197
}
6198

6199
// Inflate byte[] array to char[].
6200
// Clobbers: src, dst, len, rflags, rscratch1, v0-v6
6201
address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
6202
                                           FloatRegister vtmp1, FloatRegister vtmp2,
6203
                                           FloatRegister vtmp3, Register tmp4) {
6204
  Label big, done, after_init, to_stub;
6205

6206
  assert_different_registers(src, dst, len, tmp4, rscratch1);
6207

6208
  fmovd(vtmp1, 0.0);
6209
  lsrw(tmp4, len, 3);
6210
  bind(after_init);
6211
  cbnzw(tmp4, big);
6212
  // Short string: less than 8 bytes.
6213
  {
6214
    Label loop, tiny;
6215

6216
    cmpw(len, 4);
6217
    br(LT, tiny);
6218
    // Use SIMD to do 4 bytes.
6219
    ldrs(vtmp2, post(src, 4));
6220
    zip1(vtmp3, T8B, vtmp2, vtmp1);
6221
    subw(len, len, 4);
6222
    strd(vtmp3, post(dst, 8));
6223

6224
    cbzw(len, done);
6225

6226
    // Do the remaining bytes by steam.
6227
    bind(loop);
6228
    ldrb(tmp4, post(src, 1));
6229
    strh(tmp4, post(dst, 2));
6230
    subw(len, len, 1);
6231

6232
    bind(tiny);
6233
    cbnz(len, loop);
6234

6235
    b(done);
6236
  }
6237

6238
  if (SoftwarePrefetchHintDistance >= 0) {
6239
    bind(to_stub);
6240
      RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate());
6241
      assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated");
6242
      address tpc = trampoline_call(stub);
6243
      if (tpc == nullptr) {
6244
        DEBUG_ONLY(reset_labels(big, done));
6245
        postcond(pc() == badAddress);
6246
        return nullptr;
6247
      }
6248
      b(after_init);
6249
  }
6250

6251
  // Unpack the bytes 8 at a time.
6252
  bind(big);
6253
  {
6254
    Label loop, around, loop_last, loop_start;
6255

6256
    if (SoftwarePrefetchHintDistance >= 0) {
6257
      const int large_loop_threshold = (64 + 16)/8;
6258
      ldrd(vtmp2, post(src, 8));
6259
      andw(len, len, 7);
6260
      cmp(tmp4, (u1)large_loop_threshold);
6261
      br(GE, to_stub);
6262
      b(loop_start);
6263

6264
      bind(loop);
6265
      ldrd(vtmp2, post(src, 8));
6266
      bind(loop_start);
6267
      subs(tmp4, tmp4, 1);
6268
      br(EQ, loop_last);
6269
      zip1(vtmp2, T16B, vtmp2, vtmp1);
6270
      ldrd(vtmp3, post(src, 8));
6271
      st1(vtmp2, T8H, post(dst, 16));
6272
      subs(tmp4, tmp4, 1);
6273
      zip1(vtmp3, T16B, vtmp3, vtmp1);
6274
      st1(vtmp3, T8H, post(dst, 16));
6275
      br(NE, loop);
6276
      b(around);
6277
      bind(loop_last);
6278
      zip1(vtmp2, T16B, vtmp2, vtmp1);
6279
      st1(vtmp2, T8H, post(dst, 16));
6280
      bind(around);
6281
      cbz(len, done);
6282
    } else {
6283
      andw(len, len, 7);
6284
      bind(loop);
6285
      ldrd(vtmp2, post(src, 8));
6286
      sub(tmp4, tmp4, 1);
6287
      zip1(vtmp3, T16B, vtmp2, vtmp1);
6288
      st1(vtmp3, T8H, post(dst, 16));
6289
      cbnz(tmp4, loop);
6290
    }
6291
  }
6292

6293
  // Do the tail of up to 8 bytes.
6294
  add(src, src, len);
6295
  ldrd(vtmp3, Address(src, -8));
6296
  add(dst, dst, len, ext::uxtw, 1);
6297
  zip1(vtmp3, T16B, vtmp3, vtmp1);
6298
  strq(vtmp3, Address(dst, -16));
6299

6300
  bind(done);
6301
  postcond(pc() != badAddress);
6302
  return pc();
6303
}
6304

6305
// Compress char[] array to byte[].
6306
// Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
6307
// Return the array length if every element in array can be encoded,
6308
// otherwise, the index of first non-latin1 (> 0xff) character.
6309
void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
6310
                                         Register res,
6311
                                         FloatRegister tmp0, FloatRegister tmp1,
6312
                                         FloatRegister tmp2, FloatRegister tmp3,
6313
                                         FloatRegister tmp4, FloatRegister tmp5) {
6314
  encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
6315
}
6316

6317
// java.math.round(double a)
6318
// Returns the closest long to the argument, with ties rounding to
6319
// positive infinity.  This requires some fiddling for corner
6320
// cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5).
6321
void MacroAssembler::java_round_double(Register dst, FloatRegister src,
6322
                                       FloatRegister ftmp) {
6323
  Label DONE;
6324
  BLOCK_COMMENT("java_round_double: { ");
6325
  fmovd(rscratch1, src);
6326
  // Use RoundToNearestTiesAway unless src small and -ve.
6327
  fcvtasd(dst, src);
6328
  // Test if src >= 0 || abs(src) >= 0x1.0p52
6329
  eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit
6330
  mov(rscratch2, julong_cast(0x1.0p52));
6331
  cmp(rscratch1, rscratch2);
6332
  br(HS, DONE); {
6333
    // src < 0 && abs(src) < 0x1.0p52
6334
    // src may have a fractional part, so add 0.5
6335
    fmovd(ftmp, 0.5);
6336
    faddd(ftmp, src, ftmp);
6337
    // Convert double to jlong, use RoundTowardsNegative
6338
    fcvtmsd(dst, ftmp);
6339
  }
6340
  bind(DONE);
6341
  BLOCK_COMMENT("} java_round_double");
6342
}
6343

6344
void MacroAssembler::java_round_float(Register dst, FloatRegister src,
6345
                                      FloatRegister ftmp) {
6346
  Label DONE;
6347
  BLOCK_COMMENT("java_round_float: { ");
6348
  fmovs(rscratch1, src);
6349
  // Use RoundToNearestTiesAway unless src small and -ve.
6350
  fcvtassw(dst, src);
6351
  // Test if src >= 0 || abs(src) >= 0x1.0p23
6352
  eor(rscratch1, rscratch1, 0x80000000); // flip sign bit
6353
  mov(rscratch2, jint_cast(0x1.0p23f));
6354
  cmp(rscratch1, rscratch2);
6355
  br(HS, DONE); {
6356
    // src < 0 && |src| < 0x1.0p23
6357
    // src may have a fractional part, so add 0.5
6358
    fmovs(ftmp, 0.5f);
6359
    fadds(ftmp, src, ftmp);
6360
    // Convert float to jint, use RoundTowardsNegative
6361
    fcvtmssw(dst, ftmp);
6362
  }
6363
  bind(DONE);
6364
  BLOCK_COMMENT("} java_round_float");
6365
}
6366

6367
// get_thread() can be called anywhere inside generated code so we
6368
// need to save whatever non-callee save context might get clobbered
6369
// by the call to JavaThread::aarch64_get_thread_helper() or, indeed,
6370
// the call setup code.
6371
//
6372
// On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags.
6373
// On other systems, the helper is a usual C function.
6374
//
6375
void MacroAssembler::get_thread(Register dst) {
6376
  RegSet saved_regs =
6377
    LINUX_ONLY(RegSet::range(r0, r1)  + lr - dst)
6378
    NOT_LINUX (RegSet::range(r0, r17) + lr - dst);
6379

6380
  protect_return_address();
6381
  push(saved_regs, sp);
6382

6383
  mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
6384
  blr(lr);
6385
  if (dst != c_rarg0) {
6386
    mov(dst, c_rarg0);
6387
  }
6388

6389
  pop(saved_regs, sp);
6390
  authenticate_return_address();
6391
}
6392

6393
void MacroAssembler::cache_wb(Address line) {
6394
  assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
6395
  assert(line.index() == noreg, "index should be noreg");
6396
  assert(line.offset() == 0, "offset should be 0");
6397
  // would like to assert this
6398
  // assert(line._ext.shift == 0, "shift should be zero");
6399
  if (VM_Version::supports_dcpop()) {
6400
    // writeback using clear virtual address to point of persistence
6401
    dc(Assembler::CVAP, line.base());
6402
  } else {
6403
    // no need to generate anything as Unsafe.writebackMemory should
6404
    // never invoke this stub
6405
  }
6406
}
6407

6408
void MacroAssembler::cache_wbsync(bool is_pre) {
6409
  // we only need a barrier post sync
6410
  if (!is_pre) {
6411
    membar(Assembler::AnyAny);
6412
  }
6413
}
6414

6415
void MacroAssembler::verify_sve_vector_length(Register tmp) {
6416
  // Make sure that native code does not change SVE vector length.
6417
  if (!UseSVE) return;
6418
  Label verify_ok;
6419
  movw(tmp, zr);
6420
  sve_inc(tmp, B);
6421
  subsw(zr, tmp, VM_Version::get_initial_sve_vector_length());
6422
  br(EQ, verify_ok);
6423
  stop("Error: SVE vector length has changed since jvm startup");
6424
  bind(verify_ok);
6425
}
6426

6427
void MacroAssembler::verify_ptrue() {
6428
  Label verify_ok;
6429
  if (!UseSVE) {
6430
    return;
6431
  }
6432
  sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count.
6433
  sve_dec(rscratch1, B);
6434
  cbz(rscratch1, verify_ok);
6435
  stop("Error: the preserved predicate register (p7) elements are not all true");
6436
  bind(verify_ok);
6437
}
6438

6439
void MacroAssembler::safepoint_isb() {
6440
  isb();
6441
#ifndef PRODUCT
6442
  if (VerifyCrossModifyFence) {
6443
    // Clear the thread state.
6444
    strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset())));
6445
  }
6446
#endif
6447
}
6448

6449
#ifndef PRODUCT
6450
void MacroAssembler::verify_cross_modify_fence_not_required() {
6451
  if (VerifyCrossModifyFence) {
6452
    // Check if thread needs a cross modify fence.
6453
    ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset())));
6454
    Label fence_not_required;
6455
    cbz(rscratch1, fence_not_required);
6456
    // If it does then fail.
6457
    lea(rscratch1, CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure));
6458
    mov(c_rarg0, rthread);
6459
    blr(rscratch1);
6460
    bind(fence_not_required);
6461
  }
6462
}
6463
#endif
6464

6465
void MacroAssembler::spin_wait() {
6466
  for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) {
6467
    switch (VM_Version::spin_wait_desc().inst()) {
6468
      case SpinWait::NOP:
6469
        nop();
6470
        break;
6471
      case SpinWait::ISB:
6472
        isb();
6473
        break;
6474
      case SpinWait::YIELD:
6475
        yield();
6476
        break;
6477
      default:
6478
        ShouldNotReachHere();
6479
    }
6480
  }
6481
}
6482

6483
// Stack frame creation/removal
6484

6485
void MacroAssembler::enter(bool strip_ret_addr) {
6486
  if (strip_ret_addr) {
6487
    // Addresses can only be signed once. If there are multiple nested frames being created
6488
    // in the same function, then the return address needs stripping first.
6489
    strip_return_address();
6490
  }
6491
  protect_return_address();
6492
  stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
6493
  mov(rfp, sp);
6494
}
6495

6496
void MacroAssembler::leave() {
6497
  mov(sp, rfp);
6498
  ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
6499
  authenticate_return_address();
6500
}
6501

6502
// ROP Protection
6503
// Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/
6504
// destroying stack frames or whenever directly loading/storing the LR to memory.
6505
// If ROP protection is not set then these functions are no-ops.
6506
// For more details on PAC see pauth_aarch64.hpp.
6507

6508
// Sign the LR. Use during construction of a stack frame, before storing the LR to memory.
6509
// Uses value zero as the modifier.
6510
//
6511
void MacroAssembler::protect_return_address() {
6512
  if (VM_Version::use_rop_protection()) {
6513
    check_return_address();
6514
    paciaz();
6515
  }
6516
}
6517

6518
// Sign the return value in the given register. Use before updating the LR in the existing stack
6519
// frame for the current function.
6520
// Uses value zero as the modifier.
6521
//
6522
void MacroAssembler::protect_return_address(Register return_reg) {
6523
  if (VM_Version::use_rop_protection()) {
6524
    check_return_address(return_reg);
6525
    paciza(return_reg);
6526
  }
6527
}
6528

6529
// Authenticate the LR. Use before function return, after restoring FP and loading LR from memory.
6530
// Uses value zero as the modifier.
6531
//
6532
void MacroAssembler::authenticate_return_address() {
6533
  if (VM_Version::use_rop_protection()) {
6534
    autiaz();
6535
    check_return_address();
6536
  }
6537
}
6538

6539
// Authenticate the return value in the given register. Use before updating the LR in the existing
6540
// stack frame for the current function.
6541
// Uses value zero as the modifier.
6542
//
6543
void MacroAssembler::authenticate_return_address(Register return_reg) {
6544
  if (VM_Version::use_rop_protection()) {
6545
    autiza(return_reg);
6546
    check_return_address(return_reg);
6547
  }
6548
}
6549

6550
// Strip any PAC data from LR without performing any authentication. Use with caution - only if
6551
// there is no guaranteed way of authenticating the LR.
6552
//
6553
void MacroAssembler::strip_return_address() {
6554
  if (VM_Version::use_rop_protection()) {
6555
    xpaclri();
6556
  }
6557
}
6558

6559
#ifndef PRODUCT
6560
// PAC failures can be difficult to debug. After an authentication failure, a segfault will only
6561
// occur when the pointer is used - ie when the program returns to the invalid LR. At this point
6562
// it is difficult to debug back to the callee function.
6563
// This function simply loads from the address in the given register.
6564
// Use directly after authentication to catch authentication failures.
6565
// Also use before signing to check that the pointer is valid and hasn't already been signed.
6566
//
6567
void MacroAssembler::check_return_address(Register return_reg) {
6568
  if (VM_Version::use_rop_protection()) {
6569
    ldr(zr, Address(return_reg));
6570
  }
6571
}
6572
#endif
6573

6574
// The java_calling_convention describes stack locations as ideal slots on
6575
// a frame with no abi restrictions. Since we must observe abi restrictions
6576
// (like the placement of the register window) the slots must be biased by
6577
// the following value.
6578
static int reg2offset_in(VMReg r) {
6579
  // Account for saved rfp and lr
6580
  // This should really be in_preserve_stack_slots
6581
  return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
6582
}
6583

6584
static int reg2offset_out(VMReg r) {
6585
  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
6586
}
6587

6588
// On 64bit we will store integer like items to the stack as
6589
// 64bits items (AArch64 ABI) even though java would only store
6590
// 32bits for a parameter. On 32bit it will simply be 32bits
6591
// So this routine will do 32->32 on 32bit and 32->64 on 64bit
6592
void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) {
6593
  if (src.first()->is_stack()) {
6594
    if (dst.first()->is_stack()) {
6595
      // stack to stack
6596
      ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6597
      str(tmp, Address(sp, reg2offset_out(dst.first())));
6598
    } else {
6599
      // stack to reg
6600
      ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
6601
    }
6602
  } else if (dst.first()->is_stack()) {
6603
    // reg to stack
6604
    str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
6605
  } else {
6606
    if (dst.first() != src.first()) {
6607
      sxtw(dst.first()->as_Register(), src.first()->as_Register());
6608
    }
6609
  }
6610
}
6611

6612
// An oop arg. Must pass a handle not the oop itself
6613
void MacroAssembler::object_move(
6614
                        OopMap* map,
6615
                        int oop_handle_offset,
6616
                        int framesize_in_slots,
6617
                        VMRegPair src,
6618
                        VMRegPair dst,
6619
                        bool is_receiver,
6620
                        int* receiver_offset) {
6621

6622
  // must pass a handle. First figure out the location we use as a handle
6623

6624
  Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register();
6625

6626
  // See if oop is null if it is we need no handle
6627

6628
  if (src.first()->is_stack()) {
6629

6630
    // Oop is already on the stack as an argument
6631
    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
6632
    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
6633
    if (is_receiver) {
6634
      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
6635
    }
6636

6637
    ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
6638
    lea(rHandle, Address(rfp, reg2offset_in(src.first())));
6639
    // conditionally move a null
6640
    cmp(rscratch1, zr);
6641
    csel(rHandle, zr, rHandle, Assembler::EQ);
6642
  } else {
6643

6644
    // Oop is in an a register we must store it to the space we reserve
6645
    // on the stack for oop_handles and pass a handle if oop is non-null
6646

6647
    const Register rOop = src.first()->as_Register();
6648
    int oop_slot;
6649
    if (rOop == j_rarg0)
6650
      oop_slot = 0;
6651
    else if (rOop == j_rarg1)
6652
      oop_slot = 1;
6653
    else if (rOop == j_rarg2)
6654
      oop_slot = 2;
6655
    else if (rOop == j_rarg3)
6656
      oop_slot = 3;
6657
    else if (rOop == j_rarg4)
6658
      oop_slot = 4;
6659
    else if (rOop == j_rarg5)
6660
      oop_slot = 5;
6661
    else if (rOop == j_rarg6)
6662
      oop_slot = 6;
6663
    else {
6664
      assert(rOop == j_rarg7, "wrong register");
6665
      oop_slot = 7;
6666
    }
6667

6668
    oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
6669
    int offset = oop_slot*VMRegImpl::stack_slot_size;
6670

6671
    map->set_oop(VMRegImpl::stack2reg(oop_slot));
6672
    // Store oop in handle area, may be null
6673
    str(rOop, Address(sp, offset));
6674
    if (is_receiver) {
6675
      *receiver_offset = offset;
6676
    }
6677

6678
    cmp(rOop, zr);
6679
    lea(rHandle, Address(sp, offset));
6680
    // conditionally move a null
6681
    csel(rHandle, zr, rHandle, Assembler::EQ);
6682
  }
6683

6684
  // If arg is on the stack then place it otherwise it is already in correct reg.
6685
  if (dst.first()->is_stack()) {
6686
    str(rHandle, Address(sp, reg2offset_out(dst.first())));
6687
  }
6688
}
6689

6690
// A float arg may have to do float reg int reg conversion
6691
void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) {
6692
 if (src.first()->is_stack()) {
6693
    if (dst.first()->is_stack()) {
6694
      ldrw(tmp, Address(rfp, reg2offset_in(src.first())));
6695
      strw(tmp, Address(sp, reg2offset_out(dst.first())));
6696
    } else {
6697
      ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first())));
6698
    }
6699
  } else if (src.first() != dst.first()) {
6700
    if (src.is_single_phys_reg() && dst.is_single_phys_reg())
6701
      fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
6702
    else
6703
      strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first())));
6704
  }
6705
}
6706

6707
// A long move
6708
void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) {
6709
  if (src.first()->is_stack()) {
6710
    if (dst.first()->is_stack()) {
6711
      // stack to stack
6712
      ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6713
      str(tmp, Address(sp, reg2offset_out(dst.first())));
6714
    } else {
6715
      // stack to reg
6716
      ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
6717
    }
6718
  } else if (dst.first()->is_stack()) {
6719
    // reg to stack
6720
    // Do we really have to sign extend???
6721
    // __ movslq(src.first()->as_Register(), src.first()->as_Register());
6722
    str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
6723
  } else {
6724
    if (dst.first() != src.first()) {
6725
      mov(dst.first()->as_Register(), src.first()->as_Register());
6726
    }
6727
  }
6728
}
6729

6730

6731
// A double move
6732
void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) {
6733
 if (src.first()->is_stack()) {
6734
    if (dst.first()->is_stack()) {
6735
      ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6736
      str(tmp, Address(sp, reg2offset_out(dst.first())));
6737
    } else {
6738
      ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first())));
6739
    }
6740
  } else if (src.first() != dst.first()) {
6741
    if (src.is_single_phys_reg() && dst.is_single_phys_reg())
6742
      fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
6743
    else
6744
      strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first())));
6745
  }
6746
}
6747

6748
// Implements lightweight-locking.
6749
//
6750
//  - obj: the object to be locked
6751
//  - t1, t2, t3: temporary registers, will be destroyed
6752
//  - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding).
6753
void MacroAssembler::lightweight_lock(Register obj, Register t1, Register t2, Register t3, Label& slow) {
6754
  assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
6755
  assert_different_registers(obj, t1, t2, t3, rscratch1);
6756

6757
  Label push;
6758
  const Register top = t1;
6759
  const Register mark = t2;
6760
  const Register t = t3;
6761

6762
  // Preload the markWord. It is important that this is the first
6763
  // instruction emitted as it is part of C1's null check semantics.
6764
  ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes()));
6765

6766
  // Check if the lock-stack is full.
6767
  ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6768
  cmpw(top, (unsigned)LockStack::end_offset());
6769
  br(Assembler::GE, slow);
6770

6771
  // Check for recursion.
6772
  subw(t, top, oopSize);
6773
  ldr(t, Address(rthread, t));
6774
  cmp(obj, t);
6775
  br(Assembler::EQ, push);
6776

6777
  // Check header for monitor (0b10).
6778
  tst(mark, markWord::monitor_value);
6779
  br(Assembler::NE, slow);
6780

6781
  // Try to lock. Transition lock bits 0b01 => 0b00
6782
  assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
6783
  orr(mark, mark, markWord::unlocked_value);
6784
  eor(t, mark, markWord::unlocked_value);
6785
  cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword,
6786
          /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg);
6787
  br(Assembler::NE, slow);
6788

6789
  bind(push);
6790
  // After successful lock, push object on lock-stack.
6791
  str(obj, Address(rthread, top));
6792
  addw(top, top, oopSize);
6793
  strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6794
}
6795

6796
// Implements lightweight-unlocking.
6797
//
6798
// - obj: the object to be unlocked
6799
// - t1, t2, t3: temporary registers
6800
// - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding).
6801
void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) {
6802
  assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
6803
  // cmpxchg clobbers rscratch1.
6804
  assert_different_registers(obj, t1, t2, t3, rscratch1);
6805

6806
#ifdef ASSERT
6807
  {
6808
    // Check for lock-stack underflow.
6809
    Label stack_ok;
6810
    ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
6811
    cmpw(t1, (unsigned)LockStack::start_offset());
6812
    br(Assembler::GE, stack_ok);
6813
    STOP("Lock-stack underflow");
6814
    bind(stack_ok);
6815
  }
6816
#endif
6817

6818
  Label unlocked, push_and_slow;
6819
  const Register top = t1;
6820
  const Register mark = t2;
6821
  const Register t = t3;
6822

6823
  // Check if obj is top of lock-stack.
6824
  ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6825
  subw(top, top, oopSize);
6826
  ldr(t, Address(rthread, top));
6827
  cmp(obj, t);
6828
  br(Assembler::NE, slow);
6829

6830
  // Pop lock-stack.
6831
  DEBUG_ONLY(str(zr, Address(rthread, top));)
6832
  strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6833

6834
  // Check if recursive.
6835
  subw(t, top, oopSize);
6836
  ldr(t, Address(rthread, t));
6837
  cmp(obj, t);
6838
  br(Assembler::EQ, unlocked);
6839

6840
  // Not recursive. Check header for monitor (0b10).
6841
  ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes()));
6842
  tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow);
6843

6844
#ifdef ASSERT
6845
  // Check header not unlocked (0b01).
6846
  Label not_unlocked;
6847
  tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked);
6848
  stop("lightweight_unlock already unlocked");
6849
  bind(not_unlocked);
6850
#endif
6851

6852
  // Try to unlock. Transition lock bits 0b00 => 0b01
6853
  assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
6854
  orr(t, mark, markWord::unlocked_value);
6855
  cmpxchg(obj, mark, t, Assembler::xword,
6856
          /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg);
6857
  br(Assembler::EQ, unlocked);
6858

6859
  bind(push_and_slow);
6860
  // Restore lock-stack and handle the unlock in runtime.
6861
  DEBUG_ONLY(str(obj, Address(rthread, top));)
6862
  addw(top, top, oopSize);
6863
  strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6864
  b(slow);
6865

6866
  bind(unlocked);
6867
}
6868

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.