2
* Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
3
* Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6
* This code is free software; you can redistribute it and/or modify it
7
* under the terms of the GNU General Public License version 2 only, as
8
* published by the Free Software Foundation.
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
26
#include "precompiled.hpp"
27
#include "asm/macroAssembler.inline.hpp"
28
#include "compiler/compiler_globals.hpp"
29
#include "gc/shared/barrierSet.hpp"
30
#include "gc/shared/barrierSetAssembler.hpp"
31
#include "interp_masm_aarch64.hpp"
32
#include "interpreter/interpreter.hpp"
33
#include "interpreter/interpreterRuntime.hpp"
34
#include "logging/log.hpp"
35
#include "oops/arrayOop.hpp"
36
#include "oops/markWord.hpp"
37
#include "oops/method.hpp"
38
#include "oops/methodData.hpp"
39
#include "oops/resolvedFieldEntry.hpp"
40
#include "oops/resolvedIndyEntry.hpp"
41
#include "oops/resolvedMethodEntry.hpp"
42
#include "prims/jvmtiExport.hpp"
43
#include "prims/jvmtiThreadState.hpp"
44
#include "runtime/basicLock.hpp"
45
#include "runtime/frame.inline.hpp"
46
#include "runtime/javaThread.hpp"
47
#include "runtime/safepointMechanism.hpp"
48
#include "runtime/sharedRuntime.hpp"
49
#include "utilities/powerOfTwo.hpp"
51
void InterpreterMacroAssembler::narrow(Register result) {
53
// Get method->_constMethod->_result_type
54
ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
55
ldr(rscratch1, Address(rscratch1, Method::const_offset()));
56
ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
58
Label done, notBool, notByte, notChar;
61
cmpw(rscratch1, T_INT);
62
br(Assembler::EQ, done);
64
// mask integer result to narrower return type.
65
cmpw(rscratch1, T_BOOLEAN);
66
br(Assembler::NE, notBool);
67
andw(result, result, 0x1);
71
cmpw(rscratch1, T_BYTE);
72
br(Assembler::NE, notByte);
73
sbfx(result, result, 0, 8);
77
cmpw(rscratch1, T_CHAR);
78
br(Assembler::NE, notChar);
79
ubfx(result, result, 0, 16); // truncate upper 16 bits
83
sbfx(result, result, 0, 16); // sign-extend short
85
// Nothing to do for T_INT
89
void InterpreterMacroAssembler::jump_to_entry(address entry) {
90
assert(entry, "Entry must have been generated by now");
94
void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
95
if (JvmtiExport::can_pop_frame()) {
97
// Initiate popframe handling only if it is not already being
98
// processed. If the flag has the popframe_processing bit set, it
99
// means that this code is called *during* popframe handling - we
100
// don't want to reenter.
101
// This method is only called just after the call into the vm in
102
// call_VM_base, so the arg registers are available.
103
ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
104
tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
105
tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
106
// Call Interpreter::remove_activation_preserving_args_entry() to get the
107
// address of the same-named entrypoint in the generated interpreter code.
108
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
115
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
116
ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
117
const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
118
const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
119
const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
121
case atos: ldr(r0, oop_addr);
123
interp_verify_oop(r0, state); break;
124
case ltos: ldr(r0, val_addr); break;
125
case btos: // fall through
126
case ztos: // fall through
127
case ctos: // fall through
128
case stos: // fall through
129
case itos: ldrw(r0, val_addr); break;
130
case ftos: ldrs(v0, val_addr); break;
131
case dtos: ldrd(v0, val_addr); break;
132
case vtos: /* nothing to do */ break;
133
default : ShouldNotReachHere();
135
// Clean up tos value in the thread object
136
movw(rscratch1, (int) ilgl);
137
strw(rscratch1, tos_addr);
142
void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
143
if (JvmtiExport::can_force_early_return()) {
145
ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
146
cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit;
148
// Initiate earlyret handling only if it is not already being processed.
149
// If the flag has the earlyret_processing bit set, it means that this code
150
// is called *during* earlyret handling - we don't want to reenter.
151
ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
152
cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
153
br(Assembler::NE, L);
155
// Call Interpreter::remove_activation_early_entry() to get the address of the
156
// same-named entrypoint in the generated interpreter code.
157
ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
158
ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
159
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
165
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
168
assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
169
ldrh(reg, Address(rbcp, bcp_offset));
173
void InterpreterMacroAssembler::get_dispatch() {
175
adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
176
// Use add() here after ARDP, rather than lea().
177
// lea() does not generate anything if its offset is zero.
178
// However, relocs expect to find either an ADD or a load/store
179
// insn after an ADRP. add() always generates an ADD insn, even
180
// for add(Rn, Rn, 0).
181
add(rdispatch, rdispatch, offset);
184
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
187
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
188
if (index_size == sizeof(u2)) {
189
load_unsigned_short(index, Address(rbcp, bcp_offset));
190
} else if (index_size == sizeof(u4)) {
191
// assert(EnableInvokeDynamic, "giant index used only for JSR 292");
192
ldrw(index, Address(rbcp, bcp_offset));
193
} else if (index_size == sizeof(u1)) {
194
load_unsigned_byte(index, Address(rbcp, bcp_offset));
196
ShouldNotReachHere();
200
void InterpreterMacroAssembler::get_method_counters(Register method,
201
Register mcs, Label& skip) {
203
ldr(mcs, Address(method, Method::method_counters_offset()));
204
cbnz(mcs, has_counters);
205
call_VM(noreg, CAST_FROM_FN_PTR(address,
206
InterpreterRuntime::build_method_counters), method);
207
ldr(mcs, Address(method, Method::method_counters_offset()));
208
cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
212
// Load object from cpool->resolved_references(index)
213
void InterpreterMacroAssembler::load_resolved_reference_at_index(
214
Register result, Register index, Register tmp) {
215
assert_different_registers(result, index);
217
get_constant_pool(result);
218
// load pointer for resolved_references[] objArray
219
ldr(result, Address(result, ConstantPool::cache_offset()));
220
ldr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
221
resolve_oop_handle(result, tmp, rscratch2);
223
add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
224
load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2);
227
void InterpreterMacroAssembler::load_resolved_klass_at_offset(
228
Register cpool, Register index, Register klass, Register temp) {
229
add(temp, cpool, index, LSL, LogBytesPerWord);
230
ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
231
ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
232
add(klass, klass, temp, LSL, LogBytesPerWord);
233
ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
236
// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
237
// subtype of super_klass.
241
// Rsub_klass: subklass
245
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
246
Label& ok_is_subtype) {
247
assert(Rsub_klass != r0, "r0 holds superklass");
248
assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
249
assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
251
// Profile the not-null value's klass.
252
profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
255
check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
258
// Java Expression Stack
260
void InterpreterMacroAssembler::pop_ptr(Register r) {
261
ldr(r, post(esp, wordSize));
264
void InterpreterMacroAssembler::pop_i(Register r) {
265
ldrw(r, post(esp, wordSize));
268
void InterpreterMacroAssembler::pop_l(Register r) {
269
ldr(r, post(esp, 2 * Interpreter::stackElementSize));
272
void InterpreterMacroAssembler::push_ptr(Register r) {
273
str(r, pre(esp, -wordSize));
276
void InterpreterMacroAssembler::push_i(Register r) {
277
str(r, pre(esp, -wordSize));
280
void InterpreterMacroAssembler::push_l(Register r) {
281
str(zr, pre(esp, -wordSize));
282
str(r, pre(esp, - wordSize));
285
void InterpreterMacroAssembler::pop_f(FloatRegister r) {
286
ldrs(r, post(esp, wordSize));
289
void InterpreterMacroAssembler::pop_d(FloatRegister r) {
290
ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
293
void InterpreterMacroAssembler::push_f(FloatRegister r) {
294
strs(r, pre(esp, -wordSize));
297
void InterpreterMacroAssembler::push_d(FloatRegister r) {
298
strd(r, pre(esp, 2* -wordSize));
301
void InterpreterMacroAssembler::pop(TosState state) {
303
case atos: pop_ptr(); break;
308
case itos: pop_i(); break;
309
case ltos: pop_l(); break;
310
case ftos: pop_f(); break;
311
case dtos: pop_d(); break;
312
case vtos: /* nothing to do */ break;
313
default: ShouldNotReachHere();
315
interp_verify_oop(r0, state);
318
void InterpreterMacroAssembler::push(TosState state) {
319
interp_verify_oop(r0, state);
321
case atos: push_ptr(); break;
326
case itos: push_i(); break;
327
case ltos: push_l(); break;
328
case ftos: push_f(); break;
329
case dtos: push_d(); break;
330
case vtos: /* nothing to do */ break;
331
default : ShouldNotReachHere();
335
// Helpers for swap and dup
336
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
337
ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
340
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
341
str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
344
void InterpreterMacroAssembler::load_float(Address src) {
348
void InterpreterMacroAssembler::load_double(Address src) {
352
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
354
mov(r19_sender_sp, sp);
356
sub(rscratch1, esp, rfp);
357
asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
358
str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
361
// Jump to from_interpreted entry of a call unless single stepping is possible
362
// in this thread in which case we must call the i2i entry
363
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
364
prepare_to_jump_from_interpreted();
366
if (JvmtiExport::can_post_interpreter_events()) {
367
Label run_compiled_code;
368
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
369
// compiled code in threads for which the event is enabled. Check here for
370
// interp_only_mode if these events CAN be enabled.
371
ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
372
cbzw(rscratch1, run_compiled_code);
373
ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
375
bind(run_compiled_code);
378
ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
382
// The following two routines provide a hook so that an implementation
383
// can schedule the dispatch in two parts. amd64 does not do this.
384
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
387
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
388
dispatch_next(state, step);
391
void InterpreterMacroAssembler::dispatch_base(TosState state,
394
bool generate_poll) {
395
if (VerifyActivationFrameSize) {
399
interp_verify_oop(r0, state);
403
address* const safepoint_table = Interpreter::safept_table(state);
404
bool needs_thread_local_poll = generate_poll && table != safepoint_table;
406
if (needs_thread_local_poll) {
407
NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
408
ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
409
tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
412
if (table == Interpreter::dispatch_table(state)) {
413
addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
414
ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
416
mov(rscratch2, (address)table);
417
ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
421
if (needs_thread_local_poll) {
423
lea(rscratch2, ExternalAddress((address)safepoint_table));
424
ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
429
void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
430
dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
433
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
434
dispatch_base(state, Interpreter::normal_table(state));
437
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
438
dispatch_base(state, Interpreter::normal_table(state), false);
442
void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
443
// load next bytecode
444
ldrb(rscratch1, Address(pre(rbcp, step)));
445
dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll);
448
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
449
// load current bytecode
450
ldrb(rscratch1, Address(rbcp, 0));
451
dispatch_base(state, table);
456
// Apply stack watermark barrier.
457
// Unlock the receiver if this is a synchronized method.
458
// Unlock any Java monitors from synchronized blocks.
459
// Remove the activation from the stack.
461
// If there are locked Java monitors
462
// If throw_monitor_exception
463
// throws IllegalMonitorStateException
464
// Else if install_monitor_exception
465
// installs IllegalMonitorStateException
467
// no error processing
468
void InterpreterMacroAssembler::remove_activation(
470
bool throw_monitor_exception,
471
bool install_monitor_exception,
473
// Note: Registers r3 xmm0 may be in use for the
474
// result check if synchronized method
475
Label unlocked, unlock, no_unlock;
477
// The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
478
// that would normally not be safe to use. Such bad returns into unsafe territory of
479
// the stack, will call InterpreterRuntime::at_unwind.
482
safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */);
483
br(Assembler::AL, fast_path);
486
set_last_Java_frame(esp, rfp, (address)pc(), rscratch1);
487
super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
488
reset_last_Java_frame(true);
492
// get the value of _do_not_unlock_if_synchronized into r3
493
const Address do_not_unlock_if_synchronized(rthread,
494
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
495
ldrb(r3, do_not_unlock_if_synchronized);
496
strb(zr, do_not_unlock_if_synchronized); // reset the flag
498
// get method access flags
499
ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
500
ldr(r2, Address(r1, Method::access_flags_offset()));
501
tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
503
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
508
push(state); // save result
510
// BasicObjectLock will be first in list, since this is a
511
// synchronized method. However, need to check that the object has
512
// not been unlocked by an explicit monitorexit bytecode.
513
const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
514
wordSize - (int) sizeof(BasicObjectLock));
515
// We use c_rarg1 so that if we go slow path it will be the correct
516
// register for unlock_object to pass to VM directly
517
lea(c_rarg1, monitor); // address of first monitor
519
ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
523
if (throw_monitor_exception) {
524
// Entry already unlocked, need to throw exception
525
call_VM(noreg, CAST_FROM_FN_PTR(address,
526
InterpreterRuntime::throw_illegal_monitor_state_exception));
527
should_not_reach_here();
529
// Monitor already unlocked during a stack unroll. If requested,
530
// install an illegal_monitor_state_exception. Continue with
532
if (install_monitor_exception) {
533
call_VM(noreg, CAST_FROM_FN_PTR(address,
534
InterpreterRuntime::new_illegal_monitor_state_exception));
540
unlock_object(c_rarg1);
543
// Check that for block-structured locking (i.e., that all locked
544
// objects has been unlocked)
547
// r0: Might contain return value
549
// Check that all monitors are unlocked
551
Label loop, exception, entry, restart;
552
const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
553
const Address monitor_block_top(
554
rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
555
const Address monitor_block_bot(
556
rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
559
// We use c_rarg1 so that if we go slow path it will be the correct
560
// register for unlock_object to pass to VM directly
561
ldr(c_rarg1, monitor_block_top); // derelativize pointer
562
lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
563
// c_rarg1 points to current entry, starting with top-most entry
565
lea(r19, monitor_block_bot); // points to word before bottom of
569
// Entry already locked, need to throw exception
572
if (throw_monitor_exception) {
574
MacroAssembler::call_VM(noreg,
575
CAST_FROM_FN_PTR(address, InterpreterRuntime::
576
throw_illegal_monitor_state_exception));
577
should_not_reach_here();
579
// Stack unrolling. Unlock object and install illegal_monitor_exception.
580
// Unlock does not block, so don't have to worry about the frame.
581
// We don't have to preserve c_rarg1 since we are going to throw an exception.
584
unlock_object(c_rarg1);
587
if (install_monitor_exception) {
588
call_VM(noreg, CAST_FROM_FN_PTR(address,
590
new_illegal_monitor_state_exception));
597
// check if current entry is used
598
ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
599
cbnz(rscratch1, exception);
601
add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
603
cmp(c_rarg1, r19); // check if bottom reached
604
br(Assembler::NE, loop); // if not at bottom then check this entry
611
notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
613
notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
619
Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
620
if (StackReservedPages > 0) {
621
// testing if reserved zone needs to be re-enabled
622
Label no_reserved_zone_enabling;
624
// check if already enabled - if so no re-enabling needed
625
assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
626
ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
627
cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled);
628
br(Assembler::EQ, no_reserved_zone_enabling);
630
// look for an overflow into the stack reserved zone, i.e.
631
// interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
632
ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
633
cmp(rscratch2, rscratch1);
634
br(Assembler::LS, no_reserved_zone_enabling);
637
CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
638
call_VM(noreg, CAST_FROM_FN_PTR(address,
639
InterpreterRuntime::throw_delayed_StackOverflowError));
640
should_not_reach_here();
642
bind(no_reserved_zone_enabling);
645
// restore sender esp
647
// remove frame anchor
649
// If we're returning to interpreted code we will shortly be
650
// adjusting SP to allow some space for ESP. If we're returning to
651
// compiled code the saved sender SP was saved in sender_sp, so this
659
// c_rarg1: BasicObjectLock to be used for locking
663
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs)
664
// rscratch1, rscratch2 (scratch regs)
665
void InterpreterMacroAssembler::lock_object(Register lock_reg)
667
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
668
if (LockingMode == LM_MONITOR) {
670
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
675
const Register swap_reg = r0;
676
const Register tmp = c_rarg2;
677
const Register obj_reg = c_rarg3; // Will contain the oop
678
const Register tmp2 = c_rarg4;
679
const Register tmp3 = c_rarg5;
681
const int obj_offset = in_bytes(BasicObjectLock::obj_offset());
682
const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
683
const int mark_offset = lock_offset +
684
BasicLock::displaced_header_offset_in_bytes();
688
// Load object pointer into obj_reg %c_rarg3
689
ldr(obj_reg, Address(lock_reg, obj_offset));
691
if (DiagnoseSyncOnValueBasedClasses != 0) {
692
load_klass(tmp, obj_reg);
693
ldrw(tmp, Address(tmp, Klass::access_flags_offset()));
694
tstw(tmp, JVM_ACC_IS_VALUE_BASED_CLASS);
695
br(Assembler::NE, slow_case);
698
if (LockingMode == LM_LIGHTWEIGHT) {
699
lightweight_lock(obj_reg, tmp, tmp2, tmp3, slow_case);
701
} else if (LockingMode == LM_LEGACY) {
702
// Load (object->mark() | 1) into swap_reg
703
ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
704
orr(swap_reg, rscratch1, 1);
706
// Save (object->mark() | 1) into BasicLock's displaced header
707
str(swap_reg, Address(lock_reg, mark_offset));
709
assert(lock_offset == 0,
710
"displached header must be first word in BasicObjectLock");
713
cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr);
715
// Fast check for recursive lock.
717
// Can apply the optimization only if this is a stack lock
718
// allocated in this thread. For efficiency, we can focus on
719
// recently allocated stack locks (instead of reading the stack
720
// base and checking whether 'mark' points inside the current
722
// 1) (mark & 7) == 0, and
723
// 2) sp <= mark < mark + os::pagesize()
725
// Warning: sp + os::pagesize can overflow the stack base. We must
726
// neither apply the optimization for an inflated lock allocated
727
// just above the thread stack (this is why condition 1 matters)
728
// nor apply the optimization if the stack lock is inside the stack
729
// of another thread. The latter is avoided even in case of overflow
730
// because we have guard pages at the end of all stacks. Hence, if
731
// we go over the stack base and hit the stack of another thread,
732
// this should not be in a writeable area that could contain a
733
// stack lock allocated by that thread. As a consequence, a stack
734
// lock less than page size away from sp is guaranteed to be
735
// owned by the current thread.
737
// These 3 tests can be done by evaluating the following
738
// expression: ((mark - sp) & (7 - os::vm_page_size())),
739
// assuming both stack pointer and pagesize have their
740
// least significant 3 bits clear.
741
// NOTE: the mark is in swap_reg %r0 as the result of cmpxchg
742
// NOTE2: aarch64 does not like to subtract sp from rn so take a
745
sub(swap_reg, swap_reg, rscratch1);
746
ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size()));
748
// Save the test result, for recursive case, the result is zero
749
str(swap_reg, Address(lock_reg, mark_offset));
750
br(Assembler::EQ, count);
754
// Call the runtime routine for slow case
755
if (LockingMode == LM_LIGHTWEIGHT) {
757
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj),
761
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
767
increment(Address(rthread, JavaThread::held_monitor_count_offset()));
774
// Unlocks an object. Used in monitorexit bytecode and
775
// remove_activation. Throws an IllegalMonitorException if object is
776
// not locked by current thread.
779
// c_rarg1: BasicObjectLock for lock
783
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
784
// rscratch1, rscratch2 (scratch regs)
785
void InterpreterMacroAssembler::unlock_object(Register lock_reg)
787
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
789
if (LockingMode == LM_MONITOR) {
790
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
794
const Register swap_reg = r0;
795
const Register header_reg = c_rarg2; // Will contain the old oopMark
796
const Register obj_reg = c_rarg3; // Will contain the oop
797
const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock
799
save_bcp(); // Save in case of exception
801
if (LockingMode != LM_LIGHTWEIGHT) {
802
// Convert from BasicObjectLock structure to object and BasicLock
803
// structure Store the BasicLock address into %r0
804
lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset()));
807
// Load oop into obj_reg(%c_rarg3)
808
ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
811
str(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
813
if (LockingMode == LM_LIGHTWEIGHT) {
815
lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
818
} else if (LockingMode == LM_LEGACY) {
819
// Load the old header from BasicLock structure
820
ldr(header_reg, Address(swap_reg,
821
BasicLock::displaced_header_offset_in_bytes()));
823
// Test for recursion
824
cbz(header_reg, count);
826
// Atomic swap back the old header
827
cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr);
829
// Call the runtime routine for slow case.
830
str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
831
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
835
decrement(Address(rthread, JavaThread::held_monitor_count_offset()));
842
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
843
Label& zero_continue) {
844
assert(ProfileInterpreter, "must be profiling interpreter");
845
ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
846
cbz(mdp, zero_continue);
849
// Set the method data pointer for the current bcp.
850
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
851
assert(ProfileInterpreter, "must be profiling interpreter");
853
stp(r0, r1, Address(pre(sp, -2 * wordSize)));
855
// Test MDO to avoid the call if it is null.
856
ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
858
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
860
// mdo is guaranteed to be non-zero here, we checked for it before the call.
861
ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
862
lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
864
str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
866
ldp(r0, r1, Address(post(sp, 2 * wordSize)));
869
void InterpreterMacroAssembler::verify_method_data_pointer() {
870
assert(ProfileInterpreter, "must be profiling interpreter");
872
Label verify_continue;
873
stp(r0, r1, Address(pre(sp, -2 * wordSize)));
874
stp(r2, r3, Address(pre(sp, -2 * wordSize)));
875
test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
878
// If the mdp is valid, it will point to a DataLayout header which is
879
// consistent with the bcp. The converse is highly probable also.
880
ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
881
ldr(rscratch1, Address(r1, Method::const_offset()));
882
add(r2, r2, rscratch1, Assembler::LSL);
883
lea(r2, Address(r2, ConstMethod::codes_offset()));
885
br(Assembler::EQ, verify_continue);
887
// rbcp: bcp // rbcp == 22
889
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
891
bind(verify_continue);
892
ldp(r2, r3, Address(post(sp, 2 * wordSize)));
893
ldp(r0, r1, Address(post(sp, 2 * wordSize)));
898
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
901
assert(ProfileInterpreter, "must be profiling interpreter");
902
Address data(mdp_in, constant);
907
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
910
increment_mdp_data_at(mdp_in, noreg, constant, decrement);
913
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
917
assert(ProfileInterpreter, "must be profiling interpreter");
918
// %%% this does 64bit counters at best it is wasting space
919
// at worst it is a rare bug when counters overflow
921
assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
923
Address addr1(mdp_in, constant);
924
Address addr2(rscratch2, reg, Address::lsl(0));
925
Address &addr = addr1;
927
lea(rscratch2, addr1);
932
// Decrement the register. Set condition codes.
934
// addptr(data, (int32_t) -DataLayout::counter_increment);
935
// If the decrement causes the counter to overflow, stay negative
937
// jcc(Assembler::negative, L);
938
// addptr(data, (int32_t) DataLayout::counter_increment);
940
ldr(rscratch1, addr);
941
subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
943
br(Assembler::LO, L); // skip store if counter underflow
944
str(rscratch1, addr);
947
assert(DataLayout::counter_increment == 1,
948
"flow-free idiom only works with 1");
950
// Increment the register. Set carry flag.
951
// addptr(data, DataLayout::counter_increment);
952
// If the increment causes the counter to overflow, pull back by 1.
953
// sbbptr(data, (int32_t)0);
955
ldr(rscratch1, addr);
956
adds(rscratch1, rscratch1, DataLayout::counter_increment);
958
br(Assembler::CS, L); // skip store if counter overflow
959
str(rscratch1, addr);
964
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
965
int flag_byte_constant) {
966
assert(ProfileInterpreter, "must be profiling interpreter");
967
int flags_offset = in_bytes(DataLayout::flags_offset());
969
ldrb(rscratch1, Address(mdp_in, flags_offset));
970
orr(rscratch1, rscratch1, flag_byte_constant);
971
strb(rscratch1, Address(mdp_in, flags_offset));
975
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
978
Register test_value_out,
979
Label& not_equal_continue) {
980
assert(ProfileInterpreter, "must be profiling interpreter");
981
if (test_value_out == noreg) {
982
ldr(rscratch1, Address(mdp_in, offset));
983
cmp(value, rscratch1);
985
// Put the test value into a register, so caller can use it:
986
ldr(test_value_out, Address(mdp_in, offset));
987
cmp(value, test_value_out);
989
br(Assembler::NE, not_equal_continue);
993
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
994
int offset_of_disp) {
995
assert(ProfileInterpreter, "must be profiling interpreter");
996
ldr(rscratch1, Address(mdp_in, offset_of_disp));
997
add(mdp_in, mdp_in, rscratch1, LSL);
998
str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1002
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1004
int offset_of_disp) {
1005
assert(ProfileInterpreter, "must be profiling interpreter");
1006
lea(rscratch1, Address(mdp_in, offset_of_disp));
1007
ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
1008
add(mdp_in, mdp_in, rscratch1, LSL);
1009
str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1013
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1015
assert(ProfileInterpreter, "must be profiling interpreter");
1016
add(mdp_in, mdp_in, (unsigned)constant);
1017
str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1021
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1022
assert(ProfileInterpreter, "must be profiling interpreter");
1023
// save/restore across call_VM
1024
stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
1026
CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1028
ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
1032
void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1033
Register bumped_count) {
1034
if (ProfileInterpreter) {
1035
Label profile_continue;
1037
// If no method data exists, go to profile_continue.
1038
// Otherwise, assign to mdp
1039
test_method_data_pointer(mdp, profile_continue);
1041
// We are taking a branch. Increment the taken count.
1042
// We inline increment_mdp_data_at to return bumped_count in a register
1043
//increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1044
Address data(mdp, in_bytes(JumpData::taken_offset()));
1045
ldr(bumped_count, data);
1046
assert(DataLayout::counter_increment == 1,
1047
"flow-free idiom only works with 1");
1048
// Intel does this to catch overflow
1049
// addptr(bumped_count, DataLayout::counter_increment);
1050
// sbbptr(bumped_count, 0);
1052
adds(bumped_count, bumped_count, DataLayout::counter_increment);
1054
br(Assembler::CS, L); // skip store if counter overflow
1055
str(bumped_count, data);
1057
// The method data pointer needs to be updated to reflect the new target.
1058
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1059
bind(profile_continue);
1064
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1065
if (ProfileInterpreter) {
1066
Label profile_continue;
1068
// If no method data exists, go to profile_continue.
1069
test_method_data_pointer(mdp, profile_continue);
1071
// We are taking a branch. Increment the not taken count.
1072
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1074
// The method data pointer needs to be updated to correspond to
1075
// the next bytecode
1076
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1077
bind(profile_continue);
1082
void InterpreterMacroAssembler::profile_call(Register mdp) {
1083
if (ProfileInterpreter) {
1084
Label profile_continue;
1086
// If no method data exists, go to profile_continue.
1087
test_method_data_pointer(mdp, profile_continue);
1089
// We are making a call. Increment the count.
1090
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1092
// The method data pointer needs to be updated to reflect the new target.
1093
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1094
bind(profile_continue);
1098
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1099
if (ProfileInterpreter) {
1100
Label profile_continue;
1102
// If no method data exists, go to profile_continue.
1103
test_method_data_pointer(mdp, profile_continue);
1105
// We are making a call. Increment the count.
1106
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1108
// The method data pointer needs to be updated to reflect the new target.
1109
update_mdp_by_constant(mdp,
1110
in_bytes(VirtualCallData::
1111
virtual_call_data_size()));
1112
bind(profile_continue);
1117
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1120
bool receiver_can_be_null) {
1121
if (ProfileInterpreter) {
1122
Label profile_continue;
1124
// If no method data exists, go to profile_continue.
1125
test_method_data_pointer(mdp, profile_continue);
1127
Label skip_receiver_profile;
1128
if (receiver_can_be_null) {
1130
// We are making a call. Increment the count for null receiver.
1131
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1132
b(skip_receiver_profile);
1136
// Record the receiver type.
1137
record_klass_in_profile(receiver, mdp, reg2);
1138
bind(skip_receiver_profile);
1140
// The method data pointer needs to be updated to reflect the new target.
1141
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1142
bind(profile_continue);
1146
// This routine creates a state machine for updating the multi-row
1147
// type profile at a virtual call site (or other type-sensitive bytecode).
1148
// The machine visits each row (of receiver/count) until the receiver type
1149
// is found, or until it runs out of rows. At the same time, it remembers
1150
// the location of the first empty row. (An empty row records null for its
1151
// receiver, and can be allocated for a newly-observed receiver type.)
1152
// Because there are two degrees of freedom in the state, a simple linear
1153
// search will not work; it must be a decision tree. Hence this helper
1154
// function is recursive, to generate the required tree structured code.
1155
// It's the interpreter, so we are trading off code space for speed.
1156
// See below for example code.
1157
void InterpreterMacroAssembler::record_klass_in_profile_helper(
1158
Register receiver, Register mdp,
1159
Register reg2, int start_row,
1161
if (TypeProfileWidth == 0) {
1162
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1164
record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1165
&VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1169
void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1170
Register reg2, int start_row, Label& done, int total_rows,
1171
OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1172
int last_row = total_rows - 1;
1173
assert(start_row <= last_row, "must be work left to do");
1174
// Test this row for both the item and for null.
1175
// Take any of three different outcomes:
1176
// 1. found item => increment count and goto done
1177
// 2. found null => keep looking for case 1, maybe allocate this cell
1178
// 3. found something else => keep looking for cases 1 and 2
1179
// Case 3 is handled by a recursive call.
1180
for (int row = start_row; row <= last_row; row++) {
1182
bool test_for_null_also = (row == start_row);
1184
// See if the item is item[n].
1185
int item_offset = in_bytes(item_offset_fn(row));
1186
test_mdp_data_at(mdp, item_offset, item,
1187
(test_for_null_also ? reg2 : noreg),
1189
// (Reg2 now contains the item from the CallData.)
1191
// The item is item[n]. Increment count[n].
1192
int count_offset = in_bytes(item_count_offset_fn(row));
1193
increment_mdp_data_at(mdp, count_offset);
1197
if (test_for_null_also) {
1199
// Failed the equality check on item[n]... Test for null.
1200
if (start_row == last_row) {
1201
// The only thing left to do is handle the null case.
1202
cbz(reg2, found_null);
1203
// Item did not match any saved item and there is no empty row for it.
1204
// Increment total counter to indicate polymorphic case.
1205
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1210
// Since null is rare, make it be the branch-taken case.
1211
cbz(reg2, found_null);
1213
// Put all the "Case 3" tests here.
1214
record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1215
item_offset_fn, item_count_offset_fn);
1217
// Found a null. Keep searching for a matching item,
1218
// but remember that this is an empty (unused) slot.
1223
// In the fall-through case, we found no matching item, but we
1224
// observed the item[start_row] is null.
1226
// Fill in the item field and increment the count.
1227
int item_offset = in_bytes(item_offset_fn(start_row));
1228
set_mdp_data_at(mdp, item_offset, item);
1229
int count_offset = in_bytes(item_count_offset_fn(start_row));
1230
mov(reg2, DataLayout::counter_increment);
1231
set_mdp_data_at(mdp, count_offset, reg2);
1232
if (start_row > 0) {
1237
// Example state machine code for three profile rows:
1238
// // main copy of decision tree, rooted at row[1]
1239
// if (row[0].rec == rec) { row[0].incr(); goto done; }
1240
// if (row[0].rec != nullptr) {
1241
// // inner copy of decision tree, rooted at row[1]
1242
// if (row[1].rec == rec) { row[1].incr(); goto done; }
1243
// if (row[1].rec != nullptr) {
1244
// // degenerate decision tree, rooted at row[2]
1245
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1246
// if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1247
// row[2].init(rec); goto done;
1249
// // remember row[1] is empty
1250
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1251
// row[1].init(rec); goto done;
1254
// // remember row[0] is empty
1255
// if (row[1].rec == rec) { row[1].incr(); goto done; }
1256
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1257
// row[0].init(rec); goto done;
1261
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1262
Register mdp, Register reg2) {
1263
assert(ProfileInterpreter, "must be profiling");
1266
record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1271
void InterpreterMacroAssembler::profile_ret(Register return_bci,
1273
if (ProfileInterpreter) {
1274
Label profile_continue;
1277
// If no method data exists, go to profile_continue.
1278
test_method_data_pointer(mdp, profile_continue);
1280
// Update the total ret count.
1281
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1283
for (row = 0; row < RetData::row_limit(); row++) {
1286
// See if return_bci is equal to bci[n]:
1287
test_mdp_data_at(mdp,
1288
in_bytes(RetData::bci_offset(row)),
1292
// return_bci is equal to bci[n]. Increment the count.
1293
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1295
// The method data pointer needs to be updated to reflect the new target.
1296
update_mdp_by_offset(mdp,
1297
in_bytes(RetData::bci_displacement_offset(row)));
1298
b(profile_continue);
1302
update_mdp_for_ret(return_bci);
1304
bind(profile_continue);
1308
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1309
if (ProfileInterpreter) {
1310
Label profile_continue;
1312
// If no method data exists, go to profile_continue.
1313
test_method_data_pointer(mdp, profile_continue);
1315
set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1317
// The method data pointer needs to be updated.
1318
int mdp_delta = in_bytes(BitData::bit_data_size());
1319
if (TypeProfileCasts) {
1320
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1322
update_mdp_by_constant(mdp, mdp_delta);
1324
bind(profile_continue);
1328
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1329
if (ProfileInterpreter) {
1330
Label profile_continue;
1332
// If no method data exists, go to profile_continue.
1333
test_method_data_pointer(mdp, profile_continue);
1335
// The method data pointer needs to be updated.
1336
int mdp_delta = in_bytes(BitData::bit_data_size());
1337
if (TypeProfileCasts) {
1338
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1340
// Record the object type.
1341
record_klass_in_profile(klass, mdp, reg2);
1343
update_mdp_by_constant(mdp, mdp_delta);
1345
bind(profile_continue);
1349
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1350
if (ProfileInterpreter) {
1351
Label profile_continue;
1353
// If no method data exists, go to profile_continue.
1354
test_method_data_pointer(mdp, profile_continue);
1356
// Update the default case count
1357
increment_mdp_data_at(mdp,
1358
in_bytes(MultiBranchData::default_count_offset()));
1360
// The method data pointer needs to be updated.
1361
update_mdp_by_offset(mdp,
1362
in_bytes(MultiBranchData::
1363
default_displacement_offset()));
1365
bind(profile_continue);
1369
void InterpreterMacroAssembler::profile_switch_case(Register index,
1372
if (ProfileInterpreter) {
1373
Label profile_continue;
1375
// If no method data exists, go to profile_continue.
1376
test_method_data_pointer(mdp, profile_continue);
1378
// Build the base (index * per_case_size_in_bytes()) +
1379
// case_array_offset_in_bytes()
1380
movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1381
movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1382
Assembler::maddw(index, index, reg2, rscratch1);
1384
// Update the case count
1385
increment_mdp_data_at(mdp,
1387
in_bytes(MultiBranchData::relative_count_offset()));
1389
// The method data pointer needs to be updated.
1390
update_mdp_by_offset(mdp,
1392
in_bytes(MultiBranchData::
1393
relative_displacement_offset()));
1395
bind(profile_continue);
1399
void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1400
if (state == atos) {
1401
MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1405
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1408
void InterpreterMacroAssembler::notify_method_entry() {
1409
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1410
// track stack depth. If it is possible to enter interp_only_mode we add
1411
// the code to check if the event should be sent.
1412
if (JvmtiExport::can_post_interpreter_events()) {
1414
ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1416
call_VM(noreg, CAST_FROM_FN_PTR(address,
1417
InterpreterRuntime::post_method_entry));
1421
if (DTraceMethodProbes) {
1422
get_method(c_rarg1);
1423
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1427
// RedefineClasses() tracing support for obsolete method entry
1428
if (log_is_enabled(Trace, redefine, class, obsolete)) {
1429
get_method(c_rarg1);
1431
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1438
void InterpreterMacroAssembler::notify_method_exit(
1439
TosState state, NotifyMethodExitMode mode) {
1440
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1441
// track stack depth. If it is possible to enter interp_only_mode we add
1442
// the code to check if the event should be sent.
1443
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1445
// Note: frame::interpreter_frame_result has a dependency on how the
1446
// method result is saved across the call to post_method_exit. If this
1447
// is changed then the interpreter_frame_result implementation will
1448
// need to be updated too.
1450
// template interpreter will leave the result on the top of the stack.
1452
ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1455
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1460
if (DTraceMethodProbes) {
1462
get_method(c_rarg1);
1463
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1470
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1471
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1472
int increment, Address mask,
1473
Register scratch, Register scratch2,
1474
bool preloaded, Condition cond,
1477
ldrw(scratch, counter_addr);
1479
add(scratch, scratch, increment);
1480
strw(scratch, counter_addr);
1481
ldrw(scratch2, mask);
1482
ands(scratch, scratch, scratch2);
1486
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1487
int number_of_arguments) {
1488
// interpreter specific
1490
// Note: No need to save/restore rbcp & rlocals pointer since these
1491
// are callee saved registers and no blocking/ GC can happen
1496
ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1498
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1499
" last_sp != nullptr");
1504
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1507
void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1508
Register java_thread,
1509
Register last_java_sp,
1510
address entry_point,
1511
int number_of_arguments,
1512
bool check_exceptions) {
1513
// interpreter specific
1515
// Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1516
// really make a difference for these runtime calls, since they are
1517
// slow anyway. Btw., bcp must be saved/restored since it may change
1519
// assert(java_thread == noreg , "not expecting a precomputed java thread");
1524
ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1526
stop("InterpreterMacroAssembler::call_VM_base:"
1527
" last_sp != nullptr");
1532
MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1533
entry_point, number_of_arguments,
1535
// interpreter specific
1540
void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1541
assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1542
Label update, next, none;
1547
orptr(mdo_addr, TypeEntries::null_seen);
1551
load_klass(obj, obj);
1553
ldr(rscratch1, mdo_addr);
1554
eor(obj, obj, rscratch1);
1555
tst(obj, TypeEntries::type_klass_mask);
1556
br(Assembler::EQ, next); // klass seen before, nothing to
1557
// do. The unknown bit may have been
1558
// set already but no need to check.
1560
tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1561
// already unknown. Nothing to do anymore.
1563
cbz(rscratch1, none);
1564
cmp(rscratch1, (u1)TypeEntries::null_seen);
1565
br(Assembler::EQ, none);
1566
// There is a chance that the checks above
1567
// fail if another thread has just set the
1568
// profiling to this obj's klass
1569
eor(obj, obj, rscratch1); // get back original value before XOR
1570
ldr(rscratch1, mdo_addr);
1571
eor(obj, obj, rscratch1);
1572
tst(obj, TypeEntries::type_klass_mask);
1573
br(Assembler::EQ, next);
1575
// different than before. Cannot keep accurate profile.
1576
orptr(mdo_addr, TypeEntries::type_unknown);
1580
// first time here. Set profile type.
1583
andr(obj, obj, TypeEntries::type_mask);
1584
verify_klass_ptr(obj);
1590
void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1591
if (!ProfileInterpreter) {
1595
if (MethodData::profile_arguments() || MethodData::profile_return()) {
1596
Label profile_continue;
1598
test_method_data_pointer(mdp, profile_continue);
1600
int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1602
ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1603
cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1604
br(Assembler::NE, profile_continue);
1606
if (MethodData::profile_arguments()) {
1608
int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1610
for (int i = 0; i < TypeProfileArgsLimit; i++) {
1611
if (i > 0 || MethodData::profile_return()) {
1612
// If return value type is profiled we may have no argument to profile
1613
ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1614
sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1615
cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1616
add(rscratch1, mdp, off_to_args);
1617
br(Assembler::LT, done);
1619
ldr(tmp, Address(callee, Method::const_offset()));
1620
load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1621
// stack offset o (zero based) from the start of the argument
1622
// list, for n arguments translates into offset n - o - 1 from
1623
// the end of the argument list
1624
ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1625
sub(tmp, tmp, rscratch1);
1627
Address arg_addr = argument_address(tmp);
1630
Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1631
profile_obj_type(tmp, mdo_arg_addr);
1633
int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1634
off_to_args += to_add;
1637
if (MethodData::profile_return()) {
1638
ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1639
sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1642
add(rscratch1, mdp, off_to_args);
1644
mov(mdp, rscratch1);
1646
if (MethodData::profile_return()) {
1647
// We're right after the type profile for the last
1648
// argument. tmp is the number of cells left in the
1649
// CallTypeData/VirtualCallTypeData to reach its end. Non null
1650
// if there's a return to profile.
1651
assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1652
add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1654
str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1656
assert(MethodData::profile_return(), "either profile call args or call ret");
1657
update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1660
// mdp points right after the end of the
1661
// CallTypeData/VirtualCallTypeData, right after the cells for the
1662
// return value type if there's one
1664
bind(profile_continue);
1668
void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1669
assert_different_registers(mdp, ret, tmp, rbcp);
1670
if (ProfileInterpreter && MethodData::profile_return()) {
1671
Label profile_continue, done;
1673
test_method_data_pointer(mdp, profile_continue);
1675
if (MethodData::profile_return_jsr292_only()) {
1676
assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1678
// If we don't profile all invoke bytecodes we must make sure
1679
// it's a bytecode we indeed profile. We can't go back to the
1680
// beginning of the ProfileData we intend to update to check its
1681
// type because we're right after it and we don't known its
1684
ldrb(rscratch1, Address(rbcp, 0));
1685
cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1686
br(Assembler::EQ, do_profile);
1687
cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1688
br(Assembler::EQ, do_profile);
1690
ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset()));
1691
subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1692
br(Assembler::NE, profile_continue);
1697
Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1699
profile_obj_type(tmp, mdo_ret_addr);
1701
bind(profile_continue);
1705
void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1706
assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1707
if (ProfileInterpreter && MethodData::profile_parameters()) {
1708
Label profile_continue, done;
1710
test_method_data_pointer(mdp, profile_continue);
1712
// Load the offset of the area within the MDO used for
1713
// parameters. If it's negative we're not profiling any parameters
1714
ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1715
tbnz(tmp1, 31, profile_continue); // i.e. sign bit set
1717
// Compute a pointer to the area for parameters from the offset
1718
// and move the pointer to the slot for the last
1719
// parameters. Collect profiling from last parameter down.
1720
// mdo start + parameters offset + array length - 1
1721
add(mdp, mdp, tmp1);
1722
ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1723
sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1728
int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1729
int type_base = in_bytes(ParametersTypeData::type_offset(0));
1730
int per_arg_scale = exact_log2(DataLayout::cell_size);
1731
add(rscratch1, mdp, off_base);
1732
add(rscratch2, mdp, type_base);
1734
Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1735
Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1737
// load offset on the stack from the slot for this parameter
1740
// read the parameter from the local area
1741
ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1743
// profile the parameter
1744
profile_obj_type(tmp2, arg_type);
1746
// go to next parameter
1747
subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1748
br(Assembler::GE, loop);
1750
bind(profile_continue);
1754
void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1755
// Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1756
get_cache_index_at_bcp(index, 1, sizeof(u4));
1757
// Get address of invokedynamic array
1758
ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1759
// Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1760
lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1761
add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1762
lea(cache, Address(cache, index));
1765
void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1766
// Get index out of bytecode pointer
1767
get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1768
// Take shortcut if the size is a power of 2
1769
if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1770
lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1772
mov(cache, sizeof(ResolvedFieldEntry));
1773
mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1775
// Get address of field entries array
1776
ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset()));
1777
add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
1778
lea(cache, Address(cache, index));
1779
// Prevents stale data from being read after the bytecode is patched to the fast bytecode
1780
membar(MacroAssembler::LoadLoad);
1783
void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1784
// Get index out of bytecode pointer
1785
get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1786
mov(cache, sizeof(ResolvedMethodEntry));
1787
mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1789
// Get address of field entries array
1790
ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset()));
1791
add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1792
lea(cache, Address(cache, index));