jdk

Форк
0
/
interp_masm_aarch64.cpp 
1793 строки · 65.4 Кб
1
/*
2
 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved.
3
 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
 *
6
 * This code is free software; you can redistribute it and/or modify it
7
 * under the terms of the GNU General Public License version 2 only, as
8
 * published by the Free Software Foundation.
9
 *
10
 * This code is distributed in the hope that it will be useful, but WITHOUT
11
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13
 * version 2 for more details (a copy is included in the LICENSE file that
14
 * accompanied this code).
15
 *
16
 * You should have received a copy of the GNU General Public License version
17
 * 2 along with this work; if not, write to the Free Software Foundation,
18
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
 *
20
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
 * or visit www.oracle.com if you need additional information or have any
22
 * questions.
23
 *
24
 */
25

26
#include "precompiled.hpp"
27
#include "asm/macroAssembler.inline.hpp"
28
#include "compiler/compiler_globals.hpp"
29
#include "gc/shared/barrierSet.hpp"
30
#include "gc/shared/barrierSetAssembler.hpp"
31
#include "interp_masm_aarch64.hpp"
32
#include "interpreter/interpreter.hpp"
33
#include "interpreter/interpreterRuntime.hpp"
34
#include "logging/log.hpp"
35
#include "oops/arrayOop.hpp"
36
#include "oops/markWord.hpp"
37
#include "oops/method.hpp"
38
#include "oops/methodData.hpp"
39
#include "oops/resolvedFieldEntry.hpp"
40
#include "oops/resolvedIndyEntry.hpp"
41
#include "oops/resolvedMethodEntry.hpp"
42
#include "prims/jvmtiExport.hpp"
43
#include "prims/jvmtiThreadState.hpp"
44
#include "runtime/basicLock.hpp"
45
#include "runtime/frame.inline.hpp"
46
#include "runtime/javaThread.hpp"
47
#include "runtime/safepointMechanism.hpp"
48
#include "runtime/sharedRuntime.hpp"
49
#include "utilities/powerOfTwo.hpp"
50

51
void InterpreterMacroAssembler::narrow(Register result) {
52

53
  // Get method->_constMethod->_result_type
54
  ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
55
  ldr(rscratch1, Address(rscratch1, Method::const_offset()));
56
  ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
57

58
  Label done, notBool, notByte, notChar;
59

60
  // common case first
61
  cmpw(rscratch1, T_INT);
62
  br(Assembler::EQ, done);
63

64
  // mask integer result to narrower return type.
65
  cmpw(rscratch1, T_BOOLEAN);
66
  br(Assembler::NE, notBool);
67
  andw(result, result, 0x1);
68
  b(done);
69

70
  bind(notBool);
71
  cmpw(rscratch1, T_BYTE);
72
  br(Assembler::NE, notByte);
73
  sbfx(result, result, 0, 8);
74
  b(done);
75

76
  bind(notByte);
77
  cmpw(rscratch1, T_CHAR);
78
  br(Assembler::NE, notChar);
79
  ubfx(result, result, 0, 16);  // truncate upper 16 bits
80
  b(done);
81

82
  bind(notChar);
83
  sbfx(result, result, 0, 16);     // sign-extend short
84

85
  // Nothing to do for T_INT
86
  bind(done);
87
}
88

89
void InterpreterMacroAssembler::jump_to_entry(address entry) {
90
  assert(entry, "Entry must have been generated by now");
91
  b(entry);
92
}
93

94
void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
95
  if (JvmtiExport::can_pop_frame()) {
96
    Label L;
97
    // Initiate popframe handling only if it is not already being
98
    // processed.  If the flag has the popframe_processing bit set, it
99
    // means that this code is called *during* popframe handling - we
100
    // don't want to reenter.
101
    // This method is only called just after the call into the vm in
102
    // call_VM_base, so the arg registers are available.
103
    ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
104
    tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
105
    tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
106
    // Call Interpreter::remove_activation_preserving_args_entry() to get the
107
    // address of the same-named entrypoint in the generated interpreter code.
108
    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
109
    br(r0);
110
    bind(L);
111
  }
112
}
113

114

115
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
116
  ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
117
  const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
118
  const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
119
  const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
120
  switch (state) {
121
    case atos: ldr(r0, oop_addr);
122
               str(zr, oop_addr);
123
               interp_verify_oop(r0, state);        break;
124
    case ltos: ldr(r0, val_addr);                   break;
125
    case btos:                                   // fall through
126
    case ztos:                                   // fall through
127
    case ctos:                                   // fall through
128
    case stos:                                   // fall through
129
    case itos: ldrw(r0, val_addr);                  break;
130
    case ftos: ldrs(v0, val_addr);                  break;
131
    case dtos: ldrd(v0, val_addr);                  break;
132
    case vtos: /* nothing to do */                  break;
133
    default  : ShouldNotReachHere();
134
  }
135
  // Clean up tos value in the thread object
136
  movw(rscratch1, (int) ilgl);
137
  strw(rscratch1, tos_addr);
138
  strw(zr, val_addr);
139
}
140

141

142
void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
143
  if (JvmtiExport::can_force_early_return()) {
144
    Label L;
145
    ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
146
    cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit;
147

148
    // Initiate earlyret handling only if it is not already being processed.
149
    // If the flag has the earlyret_processing bit set, it means that this code
150
    // is called *during* earlyret handling - we don't want to reenter.
151
    ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
152
    cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
153
    br(Assembler::NE, L);
154

155
    // Call Interpreter::remove_activation_early_entry() to get the address of the
156
    // same-named entrypoint in the generated interpreter code.
157
    ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
158
    ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
159
    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
160
    br(r0);
161
    bind(L);
162
  }
163
}
164

165
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
166
  Register reg,
167
  int bcp_offset) {
168
  assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
169
  ldrh(reg, Address(rbcp, bcp_offset));
170
  rev16(reg, reg);
171
}
172

173
void InterpreterMacroAssembler::get_dispatch() {
174
  uint64_t offset;
175
  adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
176
  // Use add() here after ARDP, rather than lea().
177
  // lea() does not generate anything if its offset is zero.
178
  // However, relocs expect to find either an ADD or a load/store
179
  // insn after an ADRP.  add() always generates an ADD insn, even
180
  // for add(Rn, Rn, 0).
181
  add(rdispatch, rdispatch, offset);
182
}
183

184
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
185
                                                       int bcp_offset,
186
                                                       size_t index_size) {
187
  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
188
  if (index_size == sizeof(u2)) {
189
    load_unsigned_short(index, Address(rbcp, bcp_offset));
190
  } else if (index_size == sizeof(u4)) {
191
    // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
192
    ldrw(index, Address(rbcp, bcp_offset));
193
  } else if (index_size == sizeof(u1)) {
194
    load_unsigned_byte(index, Address(rbcp, bcp_offset));
195
  } else {
196
    ShouldNotReachHere();
197
  }
198
}
199

200
void InterpreterMacroAssembler::get_method_counters(Register method,
201
                                                    Register mcs, Label& skip) {
202
  Label has_counters;
203
  ldr(mcs, Address(method, Method::method_counters_offset()));
204
  cbnz(mcs, has_counters);
205
  call_VM(noreg, CAST_FROM_FN_PTR(address,
206
          InterpreterRuntime::build_method_counters), method);
207
  ldr(mcs, Address(method, Method::method_counters_offset()));
208
  cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
209
  bind(has_counters);
210
}
211

212
// Load object from cpool->resolved_references(index)
213
void InterpreterMacroAssembler::load_resolved_reference_at_index(
214
                                           Register result, Register index, Register tmp) {
215
  assert_different_registers(result, index);
216

217
  get_constant_pool(result);
218
  // load pointer for resolved_references[] objArray
219
  ldr(result, Address(result, ConstantPool::cache_offset()));
220
  ldr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
221
  resolve_oop_handle(result, tmp, rscratch2);
222
  // Add in the index
223
  add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
224
  load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2);
225
}
226

227
void InterpreterMacroAssembler::load_resolved_klass_at_offset(
228
                             Register cpool, Register index, Register klass, Register temp) {
229
  add(temp, cpool, index, LSL, LogBytesPerWord);
230
  ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
231
  ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
232
  add(klass, klass, temp, LSL, LogBytesPerWord);
233
  ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
234
}
235

236
// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
237
// subtype of super_klass.
238
//
239
// Args:
240
//      r0: superklass
241
//      Rsub_klass: subklass
242
//
243
// Kills:
244
//      r2, r5
245
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
246
                                                  Label& ok_is_subtype) {
247
  assert(Rsub_klass != r0, "r0 holds superklass");
248
  assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
249
  assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
250

251
  // Profile the not-null value's klass.
252
  profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
253

254
  // Do the check.
255
  check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
256
}
257

258
// Java Expression Stack
259

260
void InterpreterMacroAssembler::pop_ptr(Register r) {
261
  ldr(r, post(esp, wordSize));
262
}
263

264
void InterpreterMacroAssembler::pop_i(Register r) {
265
  ldrw(r, post(esp, wordSize));
266
}
267

268
void InterpreterMacroAssembler::pop_l(Register r) {
269
  ldr(r, post(esp, 2 * Interpreter::stackElementSize));
270
}
271

272
void InterpreterMacroAssembler::push_ptr(Register r) {
273
  str(r, pre(esp, -wordSize));
274
 }
275

276
void InterpreterMacroAssembler::push_i(Register r) {
277
  str(r, pre(esp, -wordSize));
278
}
279

280
void InterpreterMacroAssembler::push_l(Register r) {
281
  str(zr, pre(esp, -wordSize));
282
  str(r, pre(esp, - wordSize));
283
}
284

285
void InterpreterMacroAssembler::pop_f(FloatRegister r) {
286
  ldrs(r, post(esp, wordSize));
287
}
288

289
void InterpreterMacroAssembler::pop_d(FloatRegister r) {
290
  ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
291
}
292

293
void InterpreterMacroAssembler::push_f(FloatRegister r) {
294
  strs(r, pre(esp, -wordSize));
295
}
296

297
void InterpreterMacroAssembler::push_d(FloatRegister r) {
298
  strd(r, pre(esp, 2* -wordSize));
299
}
300

301
void InterpreterMacroAssembler::pop(TosState state) {
302
  switch (state) {
303
  case atos: pop_ptr();                 break;
304
  case btos:
305
  case ztos:
306
  case ctos:
307
  case stos:
308
  case itos: pop_i();                   break;
309
  case ltos: pop_l();                   break;
310
  case ftos: pop_f();                   break;
311
  case dtos: pop_d();                   break;
312
  case vtos: /* nothing to do */        break;
313
  default:   ShouldNotReachHere();
314
  }
315
  interp_verify_oop(r0, state);
316
}
317

318
void InterpreterMacroAssembler::push(TosState state) {
319
  interp_verify_oop(r0, state);
320
  switch (state) {
321
  case atos: push_ptr();                break;
322
  case btos:
323
  case ztos:
324
  case ctos:
325
  case stos:
326
  case itos: push_i();                  break;
327
  case ltos: push_l();                  break;
328
  case ftos: push_f();                  break;
329
  case dtos: push_d();                  break;
330
  case vtos: /* nothing to do */        break;
331
  default  : ShouldNotReachHere();
332
  }
333
}
334

335
// Helpers for swap and dup
336
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
337
  ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
338
}
339

340
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
341
  str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
342
}
343

344
void InterpreterMacroAssembler::load_float(Address src) {
345
  ldrs(v0, src);
346
}
347

348
void InterpreterMacroAssembler::load_double(Address src) {
349
  ldrd(v0, src);
350
}
351

352
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
353
  // set sender sp
354
  mov(r19_sender_sp, sp);
355
  // record last_sp
356
  sub(rscratch1, esp, rfp);
357
  asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
358
  str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
359
}
360

361
// Jump to from_interpreted entry of a call unless single stepping is possible
362
// in this thread in which case we must call the i2i entry
363
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
364
  prepare_to_jump_from_interpreted();
365

366
  if (JvmtiExport::can_post_interpreter_events()) {
367
    Label run_compiled_code;
368
    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
369
    // compiled code in threads for which the event is enabled.  Check here for
370
    // interp_only_mode if these events CAN be enabled.
371
    ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
372
    cbzw(rscratch1, run_compiled_code);
373
    ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
374
    br(rscratch1);
375
    bind(run_compiled_code);
376
  }
377

378
  ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
379
  br(rscratch1);
380
}
381

382
// The following two routines provide a hook so that an implementation
383
// can schedule the dispatch in two parts.  amd64 does not do this.
384
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
385
}
386

387
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
388
    dispatch_next(state, step);
389
}
390

391
void InterpreterMacroAssembler::dispatch_base(TosState state,
392
                                              address* table,
393
                                              bool verifyoop,
394
                                              bool generate_poll) {
395
  if (VerifyActivationFrameSize) {
396
    Unimplemented();
397
  }
398
  if (verifyoop) {
399
    interp_verify_oop(r0, state);
400
  }
401

402
  Label safepoint;
403
  address* const safepoint_table = Interpreter::safept_table(state);
404
  bool needs_thread_local_poll = generate_poll && table != safepoint_table;
405

406
  if (needs_thread_local_poll) {
407
    NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
408
    ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
409
    tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
410
  }
411

412
  if (table == Interpreter::dispatch_table(state)) {
413
    addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
414
    ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
415
  } else {
416
    mov(rscratch2, (address)table);
417
    ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
418
  }
419
  br(rscratch2);
420

421
  if (needs_thread_local_poll) {
422
    bind(safepoint);
423
    lea(rscratch2, ExternalAddress((address)safepoint_table));
424
    ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
425
    br(rscratch2);
426
  }
427
}
428

429
void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
430
  dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
431
}
432

433
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
434
  dispatch_base(state, Interpreter::normal_table(state));
435
}
436

437
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
438
  dispatch_base(state, Interpreter::normal_table(state), false);
439
}
440

441

442
void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
443
  // load next bytecode
444
  ldrb(rscratch1, Address(pre(rbcp, step)));
445
  dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll);
446
}
447

448
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
449
  // load current bytecode
450
  ldrb(rscratch1, Address(rbcp, 0));
451
  dispatch_base(state, table);
452
}
453

454
// remove activation
455
//
456
// Apply stack watermark barrier.
457
// Unlock the receiver if this is a synchronized method.
458
// Unlock any Java monitors from synchronized blocks.
459
// Remove the activation from the stack.
460
//
461
// If there are locked Java monitors
462
//    If throw_monitor_exception
463
//       throws IllegalMonitorStateException
464
//    Else if install_monitor_exception
465
//       installs IllegalMonitorStateException
466
//    Else
467
//       no error processing
468
void InterpreterMacroAssembler::remove_activation(
469
        TosState state,
470
        bool throw_monitor_exception,
471
        bool install_monitor_exception,
472
        bool notify_jvmdi) {
473
  // Note: Registers r3 xmm0 may be in use for the
474
  // result check if synchronized method
475
  Label unlocked, unlock, no_unlock;
476

477
  // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
478
  // that would normally not be safe to use. Such bad returns into unsafe territory of
479
  // the stack, will call InterpreterRuntime::at_unwind.
480
  Label slow_path;
481
  Label fast_path;
482
  safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */);
483
  br(Assembler::AL, fast_path);
484
  bind(slow_path);
485
  push(state);
486
  set_last_Java_frame(esp, rfp, (address)pc(), rscratch1);
487
  super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
488
  reset_last_Java_frame(true);
489
  pop(state);
490
  bind(fast_path);
491

492
  // get the value of _do_not_unlock_if_synchronized into r3
493
  const Address do_not_unlock_if_synchronized(rthread,
494
    in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
495
  ldrb(r3, do_not_unlock_if_synchronized);
496
  strb(zr, do_not_unlock_if_synchronized); // reset the flag
497

498
 // get method access flags
499
  ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
500
  ldr(r2, Address(r1, Method::access_flags_offset()));
501
  tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
502

503
  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
504
  // is set.
505
  cbnz(r3, no_unlock);
506

507
  // unlock monitor
508
  push(state); // save result
509

510
  // BasicObjectLock will be first in list, since this is a
511
  // synchronized method. However, need to check that the object has
512
  // not been unlocked by an explicit monitorexit bytecode.
513
  const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
514
                        wordSize - (int) sizeof(BasicObjectLock));
515
  // We use c_rarg1 so that if we go slow path it will be the correct
516
  // register for unlock_object to pass to VM directly
517
  lea(c_rarg1, monitor); // address of first monitor
518

519
  ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
520
  cbnz(r0, unlock);
521

522
  pop(state);
523
  if (throw_monitor_exception) {
524
    // Entry already unlocked, need to throw exception
525
    call_VM(noreg, CAST_FROM_FN_PTR(address,
526
                   InterpreterRuntime::throw_illegal_monitor_state_exception));
527
    should_not_reach_here();
528
  } else {
529
    // Monitor already unlocked during a stack unroll. If requested,
530
    // install an illegal_monitor_state_exception.  Continue with
531
    // stack unrolling.
532
    if (install_monitor_exception) {
533
      call_VM(noreg, CAST_FROM_FN_PTR(address,
534
                     InterpreterRuntime::new_illegal_monitor_state_exception));
535
    }
536
    b(unlocked);
537
  }
538

539
  bind(unlock);
540
  unlock_object(c_rarg1);
541
  pop(state);
542

543
  // Check that for block-structured locking (i.e., that all locked
544
  // objects has been unlocked)
545
  bind(unlocked);
546

547
  // r0: Might contain return value
548

549
  // Check that all monitors are unlocked
550
  {
551
    Label loop, exception, entry, restart;
552
    const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
553
    const Address monitor_block_top(
554
        rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
555
    const Address monitor_block_bot(
556
        rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
557

558
    bind(restart);
559
    // We use c_rarg1 so that if we go slow path it will be the correct
560
    // register for unlock_object to pass to VM directly
561
    ldr(c_rarg1, monitor_block_top); // derelativize pointer
562
    lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
563
    // c_rarg1 points to current entry, starting with top-most entry
564

565
    lea(r19, monitor_block_bot);  // points to word before bottom of
566
                                  // monitor block
567
    b(entry);
568

569
    // Entry already locked, need to throw exception
570
    bind(exception);
571

572
    if (throw_monitor_exception) {
573
      // Throw exception
574
      MacroAssembler::call_VM(noreg,
575
                              CAST_FROM_FN_PTR(address, InterpreterRuntime::
576
                                   throw_illegal_monitor_state_exception));
577
      should_not_reach_here();
578
    } else {
579
      // Stack unrolling. Unlock object and install illegal_monitor_exception.
580
      // Unlock does not block, so don't have to worry about the frame.
581
      // We don't have to preserve c_rarg1 since we are going to throw an exception.
582

583
      push(state);
584
      unlock_object(c_rarg1);
585
      pop(state);
586

587
      if (install_monitor_exception) {
588
        call_VM(noreg, CAST_FROM_FN_PTR(address,
589
                                        InterpreterRuntime::
590
                                        new_illegal_monitor_state_exception));
591
      }
592

593
      b(restart);
594
    }
595

596
    bind(loop);
597
    // check if current entry is used
598
    ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
599
    cbnz(rscratch1, exception);
600

601
    add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
602
    bind(entry);
603
    cmp(c_rarg1, r19); // check if bottom reached
604
    br(Assembler::NE, loop); // if not at bottom then check this entry
605
  }
606

607
  bind(no_unlock);
608

609
  // jvmti support
610
  if (notify_jvmdi) {
611
    notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
612
  } else {
613
    notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
614
  }
615

616
  // remove activation
617
  // get sender esp
618
  ldr(rscratch2,
619
      Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
620
  if (StackReservedPages > 0) {
621
    // testing if reserved zone needs to be re-enabled
622
    Label no_reserved_zone_enabling;
623

624
    // check if already enabled - if so no re-enabling needed
625
    assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
626
    ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
627
    cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled);
628
    br(Assembler::EQ, no_reserved_zone_enabling);
629

630
    // look for an overflow into the stack reserved zone, i.e.
631
    // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
632
    ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
633
    cmp(rscratch2, rscratch1);
634
    br(Assembler::LS, no_reserved_zone_enabling);
635

636
    call_VM_leaf(
637
      CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
638
    call_VM(noreg, CAST_FROM_FN_PTR(address,
639
                   InterpreterRuntime::throw_delayed_StackOverflowError));
640
    should_not_reach_here();
641

642
    bind(no_reserved_zone_enabling);
643
  }
644

645
  // restore sender esp
646
  mov(esp, rscratch2);
647
  // remove frame anchor
648
  leave();
649
  // If we're returning to interpreted code we will shortly be
650
  // adjusting SP to allow some space for ESP.  If we're returning to
651
  // compiled code the saved sender SP was saved in sender_sp, so this
652
  // restores it.
653
  andr(sp, esp, -16);
654
}
655

656
// Lock object
657
//
658
// Args:
659
//      c_rarg1: BasicObjectLock to be used for locking
660
//
661
// Kills:
662
//      r0
663
//      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs)
664
//      rscratch1, rscratch2 (scratch regs)
665
void InterpreterMacroAssembler::lock_object(Register lock_reg)
666
{
667
  assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
668
  if (LockingMode == LM_MONITOR) {
669
    call_VM(noreg,
670
            CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
671
            lock_reg);
672
  } else {
673
    Label count, done;
674

675
    const Register swap_reg = r0;
676
    const Register tmp = c_rarg2;
677
    const Register obj_reg = c_rarg3; // Will contain the oop
678
    const Register tmp2 = c_rarg4;
679
    const Register tmp3 = c_rarg5;
680

681
    const int obj_offset = in_bytes(BasicObjectLock::obj_offset());
682
    const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
683
    const int mark_offset = lock_offset +
684
                            BasicLock::displaced_header_offset_in_bytes();
685

686
    Label slow_case;
687

688
    // Load object pointer into obj_reg %c_rarg3
689
    ldr(obj_reg, Address(lock_reg, obj_offset));
690

691
    if (DiagnoseSyncOnValueBasedClasses != 0) {
692
      load_klass(tmp, obj_reg);
693
      ldrw(tmp, Address(tmp, Klass::access_flags_offset()));
694
      tstw(tmp, JVM_ACC_IS_VALUE_BASED_CLASS);
695
      br(Assembler::NE, slow_case);
696
    }
697

698
    if (LockingMode == LM_LIGHTWEIGHT) {
699
      lightweight_lock(obj_reg, tmp, tmp2, tmp3, slow_case);
700
      b(count);
701
    } else if (LockingMode == LM_LEGACY) {
702
      // Load (object->mark() | 1) into swap_reg
703
      ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
704
      orr(swap_reg, rscratch1, 1);
705

706
      // Save (object->mark() | 1) into BasicLock's displaced header
707
      str(swap_reg, Address(lock_reg, mark_offset));
708

709
      assert(lock_offset == 0,
710
             "displached header must be first word in BasicObjectLock");
711

712
      Label fail;
713
      cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr);
714

715
      // Fast check for recursive lock.
716
      //
717
      // Can apply the optimization only if this is a stack lock
718
      // allocated in this thread. For efficiency, we can focus on
719
      // recently allocated stack locks (instead of reading the stack
720
      // base and checking whether 'mark' points inside the current
721
      // thread stack):
722
      //  1) (mark & 7) == 0, and
723
      //  2) sp <= mark < mark + os::pagesize()
724
      //
725
      // Warning: sp + os::pagesize can overflow the stack base. We must
726
      // neither apply the optimization for an inflated lock allocated
727
      // just above the thread stack (this is why condition 1 matters)
728
      // nor apply the optimization if the stack lock is inside the stack
729
      // of another thread. The latter is avoided even in case of overflow
730
      // because we have guard pages at the end of all stacks. Hence, if
731
      // we go over the stack base and hit the stack of another thread,
732
      // this should not be in a writeable area that could contain a
733
      // stack lock allocated by that thread. As a consequence, a stack
734
      // lock less than page size away from sp is guaranteed to be
735
      // owned by the current thread.
736
      //
737
      // These 3 tests can be done by evaluating the following
738
      // expression: ((mark - sp) & (7 - os::vm_page_size())),
739
      // assuming both stack pointer and pagesize have their
740
      // least significant 3 bits clear.
741
      // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg
742
      // NOTE2: aarch64 does not like to subtract sp from rn so take a
743
      // copy
744
      mov(rscratch1, sp);
745
      sub(swap_reg, swap_reg, rscratch1);
746
      ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size()));
747

748
      // Save the test result, for recursive case, the result is zero
749
      str(swap_reg, Address(lock_reg, mark_offset));
750
      br(Assembler::EQ, count);
751
    }
752
    bind(slow_case);
753

754
    // Call the runtime routine for slow case
755
    if (LockingMode == LM_LIGHTWEIGHT) {
756
      call_VM(noreg,
757
              CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj),
758
              obj_reg);
759
    } else {
760
      call_VM(noreg,
761
              CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
762
              lock_reg);
763
    }
764
    b(done);
765

766
    bind(count);
767
    increment(Address(rthread, JavaThread::held_monitor_count_offset()));
768

769
    bind(done);
770
  }
771
}
772

773

774
// Unlocks an object. Used in monitorexit bytecode and
775
// remove_activation.  Throws an IllegalMonitorException if object is
776
// not locked by current thread.
777
//
778
// Args:
779
//      c_rarg1: BasicObjectLock for lock
780
//
781
// Kills:
782
//      r0
783
//      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
784
//      rscratch1, rscratch2 (scratch regs)
785
void InterpreterMacroAssembler::unlock_object(Register lock_reg)
786
{
787
  assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
788

789
  if (LockingMode == LM_MONITOR) {
790
    call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
791
  } else {
792
    Label count, done;
793

794
    const Register swap_reg   = r0;
795
    const Register header_reg = c_rarg2;  // Will contain the old oopMark
796
    const Register obj_reg    = c_rarg3;  // Will contain the oop
797
    const Register tmp_reg    = c_rarg4;  // Temporary used by lightweight_unlock
798

799
    save_bcp(); // Save in case of exception
800

801
    if (LockingMode != LM_LIGHTWEIGHT) {
802
      // Convert from BasicObjectLock structure to object and BasicLock
803
      // structure Store the BasicLock address into %r0
804
      lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset()));
805
    }
806

807
    // Load oop into obj_reg(%c_rarg3)
808
    ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
809

810
    // Free entry
811
    str(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
812

813
    if (LockingMode == LM_LIGHTWEIGHT) {
814
      Label slow_case;
815
      lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
816
      b(count);
817
      bind(slow_case);
818
    } else if (LockingMode == LM_LEGACY) {
819
      // Load the old header from BasicLock structure
820
      ldr(header_reg, Address(swap_reg,
821
                              BasicLock::displaced_header_offset_in_bytes()));
822

823
      // Test for recursion
824
      cbz(header_reg, count);
825

826
      // Atomic swap back the old header
827
      cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr);
828
    }
829
    // Call the runtime routine for slow case.
830
    str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
831
    call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
832
    b(done);
833

834
    bind(count);
835
    decrement(Address(rthread, JavaThread::held_monitor_count_offset()));
836

837
    bind(done);
838
    restore_bcp();
839
  }
840
}
841

842
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
843
                                                         Label& zero_continue) {
844
  assert(ProfileInterpreter, "must be profiling interpreter");
845
  ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
846
  cbz(mdp, zero_continue);
847
}
848

849
// Set the method data pointer for the current bcp.
850
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
851
  assert(ProfileInterpreter, "must be profiling interpreter");
852
  Label set_mdp;
853
  stp(r0, r1, Address(pre(sp, -2 * wordSize)));
854

855
  // Test MDO to avoid the call if it is null.
856
  ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
857
  cbz(r0, set_mdp);
858
  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
859
  // r0: mdi
860
  // mdo is guaranteed to be non-zero here, we checked for it before the call.
861
  ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
862
  lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
863
  add(r0, r1, r0);
864
  str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
865
  bind(set_mdp);
866
  ldp(r0, r1, Address(post(sp, 2 * wordSize)));
867
}
868

869
void InterpreterMacroAssembler::verify_method_data_pointer() {
870
  assert(ProfileInterpreter, "must be profiling interpreter");
871
#ifdef ASSERT
872
  Label verify_continue;
873
  stp(r0, r1, Address(pre(sp, -2 * wordSize)));
874
  stp(r2, r3, Address(pre(sp, -2 * wordSize)));
875
  test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
876
  get_method(r1);
877

878
  // If the mdp is valid, it will point to a DataLayout header which is
879
  // consistent with the bcp.  The converse is highly probable also.
880
  ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
881
  ldr(rscratch1, Address(r1, Method::const_offset()));
882
  add(r2, r2, rscratch1, Assembler::LSL);
883
  lea(r2, Address(r2, ConstMethod::codes_offset()));
884
  cmp(r2, rbcp);
885
  br(Assembler::EQ, verify_continue);
886
  // r1: method
887
  // rbcp: bcp // rbcp == 22
888
  // r3: mdp
889
  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
890
               r1, rbcp, r3);
891
  bind(verify_continue);
892
  ldp(r2, r3, Address(post(sp, 2 * wordSize)));
893
  ldp(r0, r1, Address(post(sp, 2 * wordSize)));
894
#endif // ASSERT
895
}
896

897

898
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
899
                                                int constant,
900
                                                Register value) {
901
  assert(ProfileInterpreter, "must be profiling interpreter");
902
  Address data(mdp_in, constant);
903
  str(value, data);
904
}
905

906

907
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
908
                                                      int constant,
909
                                                      bool decrement) {
910
  increment_mdp_data_at(mdp_in, noreg, constant, decrement);
911
}
912

913
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
914
                                                      Register reg,
915
                                                      int constant,
916
                                                      bool decrement) {
917
  assert(ProfileInterpreter, "must be profiling interpreter");
918
  // %%% this does 64bit counters at best it is wasting space
919
  // at worst it is a rare bug when counters overflow
920

921
  assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
922

923
  Address addr1(mdp_in, constant);
924
  Address addr2(rscratch2, reg, Address::lsl(0));
925
  Address &addr = addr1;
926
  if (reg != noreg) {
927
    lea(rscratch2, addr1);
928
    addr = addr2;
929
  }
930

931
  if (decrement) {
932
    // Decrement the register.  Set condition codes.
933
    // Intel does this
934
    // addptr(data, (int32_t) -DataLayout::counter_increment);
935
    // If the decrement causes the counter to overflow, stay negative
936
    // Label L;
937
    // jcc(Assembler::negative, L);
938
    // addptr(data, (int32_t) DataLayout::counter_increment);
939
    // so we do this
940
    ldr(rscratch1, addr);
941
    subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
942
    Label L;
943
    br(Assembler::LO, L);       // skip store if counter underflow
944
    str(rscratch1, addr);
945
    bind(L);
946
  } else {
947
    assert(DataLayout::counter_increment == 1,
948
           "flow-free idiom only works with 1");
949
    // Intel does this
950
    // Increment the register.  Set carry flag.
951
    // addptr(data, DataLayout::counter_increment);
952
    // If the increment causes the counter to overflow, pull back by 1.
953
    // sbbptr(data, (int32_t)0);
954
    // so we do this
955
    ldr(rscratch1, addr);
956
    adds(rscratch1, rscratch1, DataLayout::counter_increment);
957
    Label L;
958
    br(Assembler::CS, L);       // skip store if counter overflow
959
    str(rscratch1, addr);
960
    bind(L);
961
  }
962
}
963

964
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
965
                                                int flag_byte_constant) {
966
  assert(ProfileInterpreter, "must be profiling interpreter");
967
  int flags_offset = in_bytes(DataLayout::flags_offset());
968
  // Set the flag
969
  ldrb(rscratch1, Address(mdp_in, flags_offset));
970
  orr(rscratch1, rscratch1, flag_byte_constant);
971
  strb(rscratch1, Address(mdp_in, flags_offset));
972
}
973

974

975
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
976
                                                 int offset,
977
                                                 Register value,
978
                                                 Register test_value_out,
979
                                                 Label& not_equal_continue) {
980
  assert(ProfileInterpreter, "must be profiling interpreter");
981
  if (test_value_out == noreg) {
982
    ldr(rscratch1, Address(mdp_in, offset));
983
    cmp(value, rscratch1);
984
  } else {
985
    // Put the test value into a register, so caller can use it:
986
    ldr(test_value_out, Address(mdp_in, offset));
987
    cmp(value, test_value_out);
988
  }
989
  br(Assembler::NE, not_equal_continue);
990
}
991

992

993
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
994
                                                     int offset_of_disp) {
995
  assert(ProfileInterpreter, "must be profiling interpreter");
996
  ldr(rscratch1, Address(mdp_in, offset_of_disp));
997
  add(mdp_in, mdp_in, rscratch1, LSL);
998
  str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
999
}
1000

1001

1002
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1003
                                                     Register reg,
1004
                                                     int offset_of_disp) {
1005
  assert(ProfileInterpreter, "must be profiling interpreter");
1006
  lea(rscratch1, Address(mdp_in, offset_of_disp));
1007
  ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
1008
  add(mdp_in, mdp_in, rscratch1, LSL);
1009
  str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1010
}
1011

1012

1013
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1014
                                                       int constant) {
1015
  assert(ProfileInterpreter, "must be profiling interpreter");
1016
  add(mdp_in, mdp_in, (unsigned)constant);
1017
  str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1018
}
1019

1020

1021
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1022
  assert(ProfileInterpreter, "must be profiling interpreter");
1023
  // save/restore across call_VM
1024
  stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
1025
  call_VM(noreg,
1026
          CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1027
          return_bci);
1028
  ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
1029
}
1030

1031

1032
void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1033
                                                     Register bumped_count) {
1034
  if (ProfileInterpreter) {
1035
    Label profile_continue;
1036

1037
    // If no method data exists, go to profile_continue.
1038
    // Otherwise, assign to mdp
1039
    test_method_data_pointer(mdp, profile_continue);
1040

1041
    // We are taking a branch.  Increment the taken count.
1042
    // We inline increment_mdp_data_at to return bumped_count in a register
1043
    //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1044
    Address data(mdp, in_bytes(JumpData::taken_offset()));
1045
    ldr(bumped_count, data);
1046
    assert(DataLayout::counter_increment == 1,
1047
            "flow-free idiom only works with 1");
1048
    // Intel does this to catch overflow
1049
    // addptr(bumped_count, DataLayout::counter_increment);
1050
    // sbbptr(bumped_count, 0);
1051
    // so we do this
1052
    adds(bumped_count, bumped_count, DataLayout::counter_increment);
1053
    Label L;
1054
    br(Assembler::CS, L);       // skip store if counter overflow
1055
    str(bumped_count, data);
1056
    bind(L);
1057
    // The method data pointer needs to be updated to reflect the new target.
1058
    update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1059
    bind(profile_continue);
1060
  }
1061
}
1062

1063

1064
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1065
  if (ProfileInterpreter) {
1066
    Label profile_continue;
1067

1068
    // If no method data exists, go to profile_continue.
1069
    test_method_data_pointer(mdp, profile_continue);
1070

1071
    // We are taking a branch.  Increment the not taken count.
1072
    increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1073

1074
    // The method data pointer needs to be updated to correspond to
1075
    // the next bytecode
1076
    update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1077
    bind(profile_continue);
1078
  }
1079
}
1080

1081

1082
void InterpreterMacroAssembler::profile_call(Register mdp) {
1083
  if (ProfileInterpreter) {
1084
    Label profile_continue;
1085

1086
    // If no method data exists, go to profile_continue.
1087
    test_method_data_pointer(mdp, profile_continue);
1088

1089
    // We are making a call.  Increment the count.
1090
    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1091

1092
    // The method data pointer needs to be updated to reflect the new target.
1093
    update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1094
    bind(profile_continue);
1095
  }
1096
}
1097

1098
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1099
  if (ProfileInterpreter) {
1100
    Label profile_continue;
1101

1102
    // If no method data exists, go to profile_continue.
1103
    test_method_data_pointer(mdp, profile_continue);
1104

1105
    // We are making a call.  Increment the count.
1106
    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1107

1108
    // The method data pointer needs to be updated to reflect the new target.
1109
    update_mdp_by_constant(mdp,
1110
                           in_bytes(VirtualCallData::
1111
                                    virtual_call_data_size()));
1112
    bind(profile_continue);
1113
  }
1114
}
1115

1116

1117
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1118
                                                     Register mdp,
1119
                                                     Register reg2,
1120
                                                     bool receiver_can_be_null) {
1121
  if (ProfileInterpreter) {
1122
    Label profile_continue;
1123

1124
    // If no method data exists, go to profile_continue.
1125
    test_method_data_pointer(mdp, profile_continue);
1126

1127
    Label skip_receiver_profile;
1128
    if (receiver_can_be_null) {
1129
      Label not_null;
1130
      // We are making a call.  Increment the count for null receiver.
1131
      increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1132
      b(skip_receiver_profile);
1133
      bind(not_null);
1134
    }
1135

1136
    // Record the receiver type.
1137
    record_klass_in_profile(receiver, mdp, reg2);
1138
    bind(skip_receiver_profile);
1139

1140
    // The method data pointer needs to be updated to reflect the new target.
1141
    update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1142
    bind(profile_continue);
1143
  }
1144
}
1145

1146
// This routine creates a state machine for updating the multi-row
1147
// type profile at a virtual call site (or other type-sensitive bytecode).
1148
// The machine visits each row (of receiver/count) until the receiver type
1149
// is found, or until it runs out of rows.  At the same time, it remembers
1150
// the location of the first empty row.  (An empty row records null for its
1151
// receiver, and can be allocated for a newly-observed receiver type.)
1152
// Because there are two degrees of freedom in the state, a simple linear
1153
// search will not work; it must be a decision tree.  Hence this helper
1154
// function is recursive, to generate the required tree structured code.
1155
// It's the interpreter, so we are trading off code space for speed.
1156
// See below for example code.
1157
void InterpreterMacroAssembler::record_klass_in_profile_helper(
1158
                                        Register receiver, Register mdp,
1159
                                        Register reg2, int start_row,
1160
                                        Label& done) {
1161
  if (TypeProfileWidth == 0) {
1162
    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1163
  } else {
1164
    record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1165
        &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1166
  }
1167
}
1168

1169
void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1170
                                        Register reg2, int start_row, Label& done, int total_rows,
1171
                                        OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1172
  int last_row = total_rows - 1;
1173
  assert(start_row <= last_row, "must be work left to do");
1174
  // Test this row for both the item and for null.
1175
  // Take any of three different outcomes:
1176
  //   1. found item => increment count and goto done
1177
  //   2. found null => keep looking for case 1, maybe allocate this cell
1178
  //   3. found something else => keep looking for cases 1 and 2
1179
  // Case 3 is handled by a recursive call.
1180
  for (int row = start_row; row <= last_row; row++) {
1181
    Label next_test;
1182
    bool test_for_null_also = (row == start_row);
1183

1184
    // See if the item is item[n].
1185
    int item_offset = in_bytes(item_offset_fn(row));
1186
    test_mdp_data_at(mdp, item_offset, item,
1187
                     (test_for_null_also ? reg2 : noreg),
1188
                     next_test);
1189
    // (Reg2 now contains the item from the CallData.)
1190

1191
    // The item is item[n].  Increment count[n].
1192
    int count_offset = in_bytes(item_count_offset_fn(row));
1193
    increment_mdp_data_at(mdp, count_offset);
1194
    b(done);
1195
    bind(next_test);
1196

1197
    if (test_for_null_also) {
1198
      Label found_null;
1199
      // Failed the equality check on item[n]...  Test for null.
1200
      if (start_row == last_row) {
1201
        // The only thing left to do is handle the null case.
1202
        cbz(reg2, found_null);
1203
        // Item did not match any saved item and there is no empty row for it.
1204
        // Increment total counter to indicate polymorphic case.
1205
        increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1206
        b(done);
1207
        bind(found_null);
1208
        break;
1209
      }
1210
      // Since null is rare, make it be the branch-taken case.
1211
      cbz(reg2, found_null);
1212

1213
      // Put all the "Case 3" tests here.
1214
      record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1215
        item_offset_fn, item_count_offset_fn);
1216

1217
      // Found a null.  Keep searching for a matching item,
1218
      // but remember that this is an empty (unused) slot.
1219
      bind(found_null);
1220
    }
1221
  }
1222

1223
  // In the fall-through case, we found no matching item, but we
1224
  // observed the item[start_row] is null.
1225

1226
  // Fill in the item field and increment the count.
1227
  int item_offset = in_bytes(item_offset_fn(start_row));
1228
  set_mdp_data_at(mdp, item_offset, item);
1229
  int count_offset = in_bytes(item_count_offset_fn(start_row));
1230
  mov(reg2, DataLayout::counter_increment);
1231
  set_mdp_data_at(mdp, count_offset, reg2);
1232
  if (start_row > 0) {
1233
    b(done);
1234
  }
1235
}
1236

1237
// Example state machine code for three profile rows:
1238
//   // main copy of decision tree, rooted at row[1]
1239
//   if (row[0].rec == rec) { row[0].incr(); goto done; }
1240
//   if (row[0].rec != nullptr) {
1241
//     // inner copy of decision tree, rooted at row[1]
1242
//     if (row[1].rec == rec) { row[1].incr(); goto done; }
1243
//     if (row[1].rec != nullptr) {
1244
//       // degenerate decision tree, rooted at row[2]
1245
//       if (row[2].rec == rec) { row[2].incr(); goto done; }
1246
//       if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1247
//       row[2].init(rec); goto done;
1248
//     } else {
1249
//       // remember row[1] is empty
1250
//       if (row[2].rec == rec) { row[2].incr(); goto done; }
1251
//       row[1].init(rec); goto done;
1252
//     }
1253
//   } else {
1254
//     // remember row[0] is empty
1255
//     if (row[1].rec == rec) { row[1].incr(); goto done; }
1256
//     if (row[2].rec == rec) { row[2].incr(); goto done; }
1257
//     row[0].init(rec); goto done;
1258
//   }
1259
//   done:
1260

1261
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1262
                                                        Register mdp, Register reg2) {
1263
  assert(ProfileInterpreter, "must be profiling");
1264
  Label done;
1265

1266
  record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1267

1268
  bind (done);
1269
}
1270

1271
void InterpreterMacroAssembler::profile_ret(Register return_bci,
1272
                                            Register mdp) {
1273
  if (ProfileInterpreter) {
1274
    Label profile_continue;
1275
    uint row;
1276

1277
    // If no method data exists, go to profile_continue.
1278
    test_method_data_pointer(mdp, profile_continue);
1279

1280
    // Update the total ret count.
1281
    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1282

1283
    for (row = 0; row < RetData::row_limit(); row++) {
1284
      Label next_test;
1285

1286
      // See if return_bci is equal to bci[n]:
1287
      test_mdp_data_at(mdp,
1288
                       in_bytes(RetData::bci_offset(row)),
1289
                       return_bci, noreg,
1290
                       next_test);
1291

1292
      // return_bci is equal to bci[n].  Increment the count.
1293
      increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1294

1295
      // The method data pointer needs to be updated to reflect the new target.
1296
      update_mdp_by_offset(mdp,
1297
                           in_bytes(RetData::bci_displacement_offset(row)));
1298
      b(profile_continue);
1299
      bind(next_test);
1300
    }
1301

1302
    update_mdp_for_ret(return_bci);
1303

1304
    bind(profile_continue);
1305
  }
1306
}
1307

1308
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1309
  if (ProfileInterpreter) {
1310
    Label profile_continue;
1311

1312
    // If no method data exists, go to profile_continue.
1313
    test_method_data_pointer(mdp, profile_continue);
1314

1315
    set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1316

1317
    // The method data pointer needs to be updated.
1318
    int mdp_delta = in_bytes(BitData::bit_data_size());
1319
    if (TypeProfileCasts) {
1320
      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1321
    }
1322
    update_mdp_by_constant(mdp, mdp_delta);
1323

1324
    bind(profile_continue);
1325
  }
1326
}
1327

1328
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1329
  if (ProfileInterpreter) {
1330
    Label profile_continue;
1331

1332
    // If no method data exists, go to profile_continue.
1333
    test_method_data_pointer(mdp, profile_continue);
1334

1335
    // The method data pointer needs to be updated.
1336
    int mdp_delta = in_bytes(BitData::bit_data_size());
1337
    if (TypeProfileCasts) {
1338
      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1339

1340
      // Record the object type.
1341
      record_klass_in_profile(klass, mdp, reg2);
1342
    }
1343
    update_mdp_by_constant(mdp, mdp_delta);
1344

1345
    bind(profile_continue);
1346
  }
1347
}
1348

1349
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1350
  if (ProfileInterpreter) {
1351
    Label profile_continue;
1352

1353
    // If no method data exists, go to profile_continue.
1354
    test_method_data_pointer(mdp, profile_continue);
1355

1356
    // Update the default case count
1357
    increment_mdp_data_at(mdp,
1358
                          in_bytes(MultiBranchData::default_count_offset()));
1359

1360
    // The method data pointer needs to be updated.
1361
    update_mdp_by_offset(mdp,
1362
                         in_bytes(MultiBranchData::
1363
                                  default_displacement_offset()));
1364

1365
    bind(profile_continue);
1366
  }
1367
}
1368

1369
void InterpreterMacroAssembler::profile_switch_case(Register index,
1370
                                                    Register mdp,
1371
                                                    Register reg2) {
1372
  if (ProfileInterpreter) {
1373
    Label profile_continue;
1374

1375
    // If no method data exists, go to profile_continue.
1376
    test_method_data_pointer(mdp, profile_continue);
1377

1378
    // Build the base (index * per_case_size_in_bytes()) +
1379
    // case_array_offset_in_bytes()
1380
    movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1381
    movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1382
    Assembler::maddw(index, index, reg2, rscratch1);
1383

1384
    // Update the case count
1385
    increment_mdp_data_at(mdp,
1386
                          index,
1387
                          in_bytes(MultiBranchData::relative_count_offset()));
1388

1389
    // The method data pointer needs to be updated.
1390
    update_mdp_by_offset(mdp,
1391
                         index,
1392
                         in_bytes(MultiBranchData::
1393
                                  relative_displacement_offset()));
1394

1395
    bind(profile_continue);
1396
  }
1397
}
1398

1399
void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1400
  if (state == atos) {
1401
    MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1402
  }
1403
}
1404

1405
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1406

1407

1408
void InterpreterMacroAssembler::notify_method_entry() {
1409
  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1410
  // track stack depth.  If it is possible to enter interp_only_mode we add
1411
  // the code to check if the event should be sent.
1412
  if (JvmtiExport::can_post_interpreter_events()) {
1413
    Label L;
1414
    ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1415
    cbzw(r3, L);
1416
    call_VM(noreg, CAST_FROM_FN_PTR(address,
1417
                                    InterpreterRuntime::post_method_entry));
1418
    bind(L);
1419
  }
1420

1421
  if (DTraceMethodProbes) {
1422
    get_method(c_rarg1);
1423
    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1424
                 rthread, c_rarg1);
1425
  }
1426

1427
  // RedefineClasses() tracing support for obsolete method entry
1428
  if (log_is_enabled(Trace, redefine, class, obsolete)) {
1429
    get_method(c_rarg1);
1430
    call_VM_leaf(
1431
      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1432
      rthread, c_rarg1);
1433
  }
1434

1435
 }
1436

1437

1438
void InterpreterMacroAssembler::notify_method_exit(
1439
    TosState state, NotifyMethodExitMode mode) {
1440
  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1441
  // track stack depth.  If it is possible to enter interp_only_mode we add
1442
  // the code to check if the event should be sent.
1443
  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1444
    Label L;
1445
    // Note: frame::interpreter_frame_result has a dependency on how the
1446
    // method result is saved across the call to post_method_exit. If this
1447
    // is changed then the interpreter_frame_result implementation will
1448
    // need to be updated too.
1449

1450
    // template interpreter will leave the result on the top of the stack.
1451
    push(state);
1452
    ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1453
    cbz(r3, L);
1454
    call_VM(noreg,
1455
            CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1456
    bind(L);
1457
    pop(state);
1458
  }
1459

1460
  if (DTraceMethodProbes) {
1461
    push(state);
1462
    get_method(c_rarg1);
1463
    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1464
                 rthread, c_rarg1);
1465
    pop(state);
1466
  }
1467
}
1468

1469

1470
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1471
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1472
                                                        int increment, Address mask,
1473
                                                        Register scratch, Register scratch2,
1474
                                                        bool preloaded, Condition cond,
1475
                                                        Label* where) {
1476
  if (!preloaded) {
1477
    ldrw(scratch, counter_addr);
1478
  }
1479
  add(scratch, scratch, increment);
1480
  strw(scratch, counter_addr);
1481
  ldrw(scratch2, mask);
1482
  ands(scratch, scratch, scratch2);
1483
  br(cond, *where);
1484
}
1485

1486
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1487
                                                  int number_of_arguments) {
1488
  // interpreter specific
1489
  //
1490
  // Note: No need to save/restore rbcp & rlocals pointer since these
1491
  //       are callee saved registers and no blocking/ GC can happen
1492
  //       in leaf calls.
1493
#ifdef ASSERT
1494
  {
1495
    Label L;
1496
    ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1497
    cbz(rscratch1, L);
1498
    stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1499
         " last_sp != nullptr");
1500
    bind(L);
1501
  }
1502
#endif /* ASSERT */
1503
  // super call
1504
  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1505
}
1506

1507
void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1508
                                             Register java_thread,
1509
                                             Register last_java_sp,
1510
                                             address  entry_point,
1511
                                             int      number_of_arguments,
1512
                                             bool     check_exceptions) {
1513
  // interpreter specific
1514
  //
1515
  // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1516
  //       really make a difference for these runtime calls, since they are
1517
  //       slow anyway. Btw., bcp must be saved/restored since it may change
1518
  //       due to GC.
1519
  // assert(java_thread == noreg , "not expecting a precomputed java thread");
1520
  save_bcp();
1521
#ifdef ASSERT
1522
  {
1523
    Label L;
1524
    ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1525
    cbz(rscratch1, L);
1526
    stop("InterpreterMacroAssembler::call_VM_base:"
1527
         " last_sp != nullptr");
1528
    bind(L);
1529
  }
1530
#endif /* ASSERT */
1531
  // super call
1532
  MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1533
                               entry_point, number_of_arguments,
1534
                     check_exceptions);
1535
// interpreter specific
1536
  restore_bcp();
1537
  restore_locals();
1538
}
1539

1540
void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1541
  assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1542
  Label update, next, none;
1543

1544
  verify_oop(obj);
1545

1546
  cbnz(obj, update);
1547
  orptr(mdo_addr, TypeEntries::null_seen);
1548
  b(next);
1549

1550
  bind(update);
1551
  load_klass(obj, obj);
1552

1553
  ldr(rscratch1, mdo_addr);
1554
  eor(obj, obj, rscratch1);
1555
  tst(obj, TypeEntries::type_klass_mask);
1556
  br(Assembler::EQ, next); // klass seen before, nothing to
1557
                           // do. The unknown bit may have been
1558
                           // set already but no need to check.
1559

1560
  tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1561
  // already unknown. Nothing to do anymore.
1562

1563
  cbz(rscratch1, none);
1564
  cmp(rscratch1, (u1)TypeEntries::null_seen);
1565
  br(Assembler::EQ, none);
1566
  // There is a chance that the checks above
1567
  // fail if another thread has just set the
1568
  // profiling to this obj's klass
1569
  eor(obj, obj, rscratch1); // get back original value before XOR
1570
  ldr(rscratch1, mdo_addr);
1571
  eor(obj, obj, rscratch1);
1572
  tst(obj, TypeEntries::type_klass_mask);
1573
  br(Assembler::EQ, next);
1574

1575
  // different than before. Cannot keep accurate profile.
1576
  orptr(mdo_addr, TypeEntries::type_unknown);
1577
  b(next);
1578

1579
  bind(none);
1580
  // first time here. Set profile type.
1581
  str(obj, mdo_addr);
1582
#ifdef ASSERT
1583
  andr(obj, obj, TypeEntries::type_mask);
1584
  verify_klass_ptr(obj);
1585
#endif
1586

1587
  bind(next);
1588
}
1589

1590
void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1591
  if (!ProfileInterpreter) {
1592
    return;
1593
  }
1594

1595
  if (MethodData::profile_arguments() || MethodData::profile_return()) {
1596
    Label profile_continue;
1597

1598
    test_method_data_pointer(mdp, profile_continue);
1599

1600
    int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1601

1602
    ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1603
    cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1604
    br(Assembler::NE, profile_continue);
1605

1606
    if (MethodData::profile_arguments()) {
1607
      Label done;
1608
      int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1609

1610
      for (int i = 0; i < TypeProfileArgsLimit; i++) {
1611
        if (i > 0 || MethodData::profile_return()) {
1612
          // If return value type is profiled we may have no argument to profile
1613
          ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1614
          sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1615
          cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1616
          add(rscratch1, mdp, off_to_args);
1617
          br(Assembler::LT, done);
1618
        }
1619
        ldr(tmp, Address(callee, Method::const_offset()));
1620
        load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1621
        // stack offset o (zero based) from the start of the argument
1622
        // list, for n arguments translates into offset n - o - 1 from
1623
        // the end of the argument list
1624
        ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1625
        sub(tmp, tmp, rscratch1);
1626
        sub(tmp, tmp, 1);
1627
        Address arg_addr = argument_address(tmp);
1628
        ldr(tmp, arg_addr);
1629

1630
        Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1631
        profile_obj_type(tmp, mdo_arg_addr);
1632

1633
        int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1634
        off_to_args += to_add;
1635
      }
1636

1637
      if (MethodData::profile_return()) {
1638
        ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1639
        sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1640
      }
1641

1642
      add(rscratch1, mdp, off_to_args);
1643
      bind(done);
1644
      mov(mdp, rscratch1);
1645

1646
      if (MethodData::profile_return()) {
1647
        // We're right after the type profile for the last
1648
        // argument. tmp is the number of cells left in the
1649
        // CallTypeData/VirtualCallTypeData to reach its end. Non null
1650
        // if there's a return to profile.
1651
        assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1652
        add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1653
      }
1654
      str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1655
    } else {
1656
      assert(MethodData::profile_return(), "either profile call args or call ret");
1657
      update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1658
    }
1659

1660
    // mdp points right after the end of the
1661
    // CallTypeData/VirtualCallTypeData, right after the cells for the
1662
    // return value type if there's one
1663

1664
    bind(profile_continue);
1665
  }
1666
}
1667

1668
void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1669
  assert_different_registers(mdp, ret, tmp, rbcp);
1670
  if (ProfileInterpreter && MethodData::profile_return()) {
1671
    Label profile_continue, done;
1672

1673
    test_method_data_pointer(mdp, profile_continue);
1674

1675
    if (MethodData::profile_return_jsr292_only()) {
1676
      assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1677

1678
      // If we don't profile all invoke bytecodes we must make sure
1679
      // it's a bytecode we indeed profile. We can't go back to the
1680
      // beginning of the ProfileData we intend to update to check its
1681
      // type because we're right after it and we don't known its
1682
      // length
1683
      Label do_profile;
1684
      ldrb(rscratch1, Address(rbcp, 0));
1685
      cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1686
      br(Assembler::EQ, do_profile);
1687
      cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1688
      br(Assembler::EQ, do_profile);
1689
      get_method(tmp);
1690
      ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset()));
1691
      subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1692
      br(Assembler::NE, profile_continue);
1693

1694
      bind(do_profile);
1695
    }
1696

1697
    Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1698
    mov(tmp, ret);
1699
    profile_obj_type(tmp, mdo_ret_addr);
1700

1701
    bind(profile_continue);
1702
  }
1703
}
1704

1705
void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1706
  assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1707
  if (ProfileInterpreter && MethodData::profile_parameters()) {
1708
    Label profile_continue, done;
1709

1710
    test_method_data_pointer(mdp, profile_continue);
1711

1712
    // Load the offset of the area within the MDO used for
1713
    // parameters. If it's negative we're not profiling any parameters
1714
    ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1715
    tbnz(tmp1, 31, profile_continue);  // i.e. sign bit set
1716

1717
    // Compute a pointer to the area for parameters from the offset
1718
    // and move the pointer to the slot for the last
1719
    // parameters. Collect profiling from last parameter down.
1720
    // mdo start + parameters offset + array length - 1
1721
    add(mdp, mdp, tmp1);
1722
    ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1723
    sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1724

1725
    Label loop;
1726
    bind(loop);
1727

1728
    int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1729
    int type_base = in_bytes(ParametersTypeData::type_offset(0));
1730
    int per_arg_scale = exact_log2(DataLayout::cell_size);
1731
    add(rscratch1, mdp, off_base);
1732
    add(rscratch2, mdp, type_base);
1733

1734
    Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1735
    Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1736

1737
    // load offset on the stack from the slot for this parameter
1738
    ldr(tmp2, arg_off);
1739
    neg(tmp2, tmp2);
1740
    // read the parameter from the local area
1741
    ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1742

1743
    // profile the parameter
1744
    profile_obj_type(tmp2, arg_type);
1745

1746
    // go to next parameter
1747
    subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1748
    br(Assembler::GE, loop);
1749

1750
    bind(profile_continue);
1751
  }
1752
}
1753

1754
void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1755
  // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1756
  get_cache_index_at_bcp(index, 1, sizeof(u4));
1757
  // Get address of invokedynamic array
1758
  ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1759
  // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1760
  lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1761
  add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1762
  lea(cache, Address(cache, index));
1763
}
1764

1765
void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1766
  // Get index out of bytecode pointer
1767
  get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1768
  // Take shortcut if the size is a power of 2
1769
  if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1770
    lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1771
  } else {
1772
    mov(cache, sizeof(ResolvedFieldEntry));
1773
    mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1774
  }
1775
  // Get address of field entries array
1776
  ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset()));
1777
  add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
1778
  lea(cache, Address(cache, index));
1779
  // Prevents stale data from being read after the bytecode is patched to the fast bytecode
1780
  membar(MacroAssembler::LoadLoad);
1781
}
1782

1783
void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1784
  // Get index out of bytecode pointer
1785
  get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1786
  mov(cache, sizeof(ResolvedMethodEntry));
1787
  mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1788

1789
  // Get address of field entries array
1790
  ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset()));
1791
  add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1792
  lea(cache, Address(cache, index));
1793
}
1794

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.