jdk

Форк
0
/
frame_aarch64.cpp 
800 строк · 28.6 Кб
1
/*
2
 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
3
 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
 *
6
 * This code is free software; you can redistribute it and/or modify it
7
 * under the terms of the GNU General Public License version 2 only, as
8
 * published by the Free Software Foundation.
9
 *
10
 * This code is distributed in the hope that it will be useful, but WITHOUT
11
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13
 * version 2 for more details (a copy is included in the LICENSE file that
14
 * accompanied this code).
15
 *
16
 * You should have received a copy of the GNU General Public License version
17
 * 2 along with this work; if not, write to the Free Software Foundation,
18
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
 *
20
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
 * or visit www.oracle.com if you need additional information or have any
22
 * questions.
23
 *
24
 */
25

26
#include "precompiled.hpp"
27
#include "compiler/oopMap.hpp"
28
#include "interpreter/interpreter.hpp"
29
#include "memory/resourceArea.hpp"
30
#include "memory/universe.hpp"
31
#include "oops/markWord.hpp"
32
#include "oops/method.hpp"
33
#include "oops/oop.inline.hpp"
34
#include "prims/methodHandles.hpp"
35
#include "runtime/frame.inline.hpp"
36
#include "runtime/handles.inline.hpp"
37
#include "runtime/javaCalls.hpp"
38
#include "runtime/monitorChunk.hpp"
39
#include "runtime/os.inline.hpp"
40
#include "runtime/signature.hpp"
41
#include "runtime/stackWatermarkSet.hpp"
42
#include "runtime/stubCodeGenerator.hpp"
43
#include "runtime/stubRoutines.hpp"
44
#include "vmreg_aarch64.inline.hpp"
45
#ifdef COMPILER1
46
#include "c1/c1_Runtime1.hpp"
47
#include "runtime/vframeArray.hpp"
48
#endif
49

50
#ifdef ASSERT
51
void RegisterMap::check_location_valid() {
52
}
53
#endif
54

55

56
// Profiling/safepoint support
57

58
bool frame::safe_for_sender(JavaThread *thread) {
59
  if (is_heap_frame()) {
60
    return true;
61
  }
62
  address   sp = (address)_sp;
63
  address   fp = (address)_fp;
64
  address   unextended_sp = (address)_unextended_sp;
65

66
  // consider stack guards when trying to determine "safe" stack pointers
67
  // sp must be within the usable part of the stack (not in guards)
68
  if (!thread->is_in_usable_stack(sp)) {
69
    return false;
70
  }
71

72
  // When we are running interpreted code the machine stack pointer, SP, is
73
  // set low enough so that the Java expression stack can grow and shrink
74
  // without ever exceeding the machine stack bounds.  So, ESP >= SP.
75

76
  // When we call out of an interpreted method, SP is incremented so that
77
  // the space between SP and ESP is removed.  The SP saved in the callee's
78
  // frame is the SP *before* this increment.  So, when we walk a stack of
79
  // interpreter frames the sender's SP saved in a frame might be less than
80
  // the SP at the point of call.
81

82
  // So unextended sp must be within the stack but we need not to check
83
  // that unextended sp >= sp
84
  if (!thread->is_in_full_stack_checked(unextended_sp)) {
85
    return false;
86
  }
87

88
  // an fp must be within the stack and above (but not equal) sp
89
  // second evaluation on fp+ is added to handle situation where fp is -1
90
  bool fp_safe = thread->is_in_stack_range_excl(fp, sp) &&
91
                 thread->is_in_full_stack_checked(fp + (return_addr_offset * sizeof(void*)));
92

93
  // We know sp/unextended_sp are safe only fp is questionable here
94

95
  // If the current frame is known to the code cache then we can attempt to
96
  // to construct the sender and do some validation of it. This goes a long way
97
  // toward eliminating issues when we get in frame construction code
98

99
  if (_cb != nullptr ) {
100

101
    // First check if frame is complete and tester is reliable
102
    // Unfortunately we can only check frame complete for runtime stubs and nmethod
103
    // other generic buffer blobs are more problematic so we just assume they are
104
    // ok. adapter blobs never have a frame complete and are never ok.
105

106
    if (!_cb->is_frame_complete_at(_pc)) {
107
      if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
108
        return false;
109
      }
110
    }
111

112
    // Could just be some random pointer within the codeBlob
113
    if (!_cb->code_contains(_pc)) {
114
      return false;
115
    }
116

117
    // Entry frame checks
118
    if (is_entry_frame()) {
119
      // an entry frame must have a valid fp.
120
      return fp_safe && is_entry_frame_valid(thread);
121
    } else if (is_upcall_stub_frame()) {
122
      return fp_safe;
123
    }
124

125
    intptr_t* sender_sp = nullptr;
126
    intptr_t* sender_unextended_sp = nullptr;
127
    address   sender_pc = nullptr;
128
    intptr_t* saved_fp =  nullptr;
129

130
    if (is_interpreted_frame()) {
131
      // fp must be safe
132
      if (!fp_safe) {
133
        return false;
134
      }
135

136
      // for interpreted frames, the value below is the sender "raw" sp,
137
      // which can be different from the sender unextended sp (the sp seen
138
      // by the sender) because of current frame local variables
139
      sender_sp = (intptr_t*) addr_at(sender_sp_offset);
140
      sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset];
141
      saved_fp = (intptr_t*) this->fp()[link_offset];
142
      sender_pc = pauth_strip_verifiable((address) this->fp()[return_addr_offset]);
143
    } else {
144
      // must be some sort of compiled/runtime frame
145
      // fp does not have to be safe (although it could be check for c1?)
146

147
      // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
148
      if (_cb->frame_size() <= 0) {
149
        return false;
150
      }
151

152
      sender_sp = _unextended_sp + _cb->frame_size();
153
      // Is sender_sp safe?
154
      if (!thread->is_in_full_stack_checked((address)sender_sp)) {
155
        return false;
156
      }
157
      sender_unextended_sp = sender_sp;
158
      // Note: frame::sender_sp_offset is only valid for compiled frame
159
      saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset);
160
      // Note: PAC authentication may fail in case broken frame is passed in.
161
      // Just strip it for now.
162
      sender_pc = pauth_strip_pointer((address) *(sender_sp - 1));
163
    }
164

165
    if (Continuation::is_return_barrier_entry(sender_pc)) {
166
      // If our sender_pc is the return barrier, then our "real" sender is the continuation entry
167
      frame s = Continuation::continuation_bottom_sender(thread, *this, sender_sp);
168
      sender_sp = s.sp();
169
      sender_pc = s.pc();
170
    }
171

172
    // If the potential sender is the interpreter then we can do some more checking
173
    if (Interpreter::contains(sender_pc)) {
174

175
      // fp is always saved in a recognizable place in any code we generate. However
176
      // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved fp
177
      // is really a frame pointer.
178

179
      if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) {
180
        return false;
181
      }
182

183
      // construct the potential sender
184

185
      frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
186

187
      return sender.is_interpreted_frame_valid(thread);
188

189
    }
190

191
    // We must always be able to find a recognizable pc
192
    CodeBlob* sender_blob = CodeCache::find_blob(sender_pc);
193
    if (sender_pc == nullptr ||  sender_blob == nullptr) {
194
      return false;
195
    }
196

197
    // Could just be some random pointer within the codeBlob
198
    if (!sender_blob->code_contains(sender_pc)) {
199
      return false;
200
    }
201

202
    // We should never be able to see an adapter if the current frame is something from code cache
203
    if (sender_blob->is_adapter_blob()) {
204
      return false;
205
    }
206

207
    // Could be the call_stub
208
    if (StubRoutines::returns_to_call_stub(sender_pc)) {
209
      if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) {
210
        return false;
211
      }
212

213
      // construct the potential sender
214

215
      frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
216

217
      // Validate the JavaCallWrapper an entry frame must have
218
      address jcw = (address)sender.entry_frame_call_wrapper();
219

220
      return thread->is_in_stack_range_excl(jcw, (address)sender.fp());
221
    } else if (sender_blob->is_upcall_stub()) {
222
      return false;
223
    }
224

225
    nmethod* nm = sender_blob->as_nmethod_or_null();
226
    if (nm != nullptr) {
227
      if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) ||
228
          nm->method()->is_method_handle_intrinsic()) {
229
        return false;
230
      }
231
    }
232

233
    // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
234
    // because the return address counts against the callee's frame.
235

236
    if (sender_blob->frame_size() <= 0) {
237
      assert(!sender_blob->is_nmethod(), "should count return address at least");
238
      return false;
239
    }
240

241
    // We should never be able to see anything here except an nmethod. If something in the
242
    // code cache (current frame) is called by an entity within the code cache that entity
243
    // should not be anything but the call stub (already covered), the interpreter (already covered)
244
    // or an nmethod.
245

246
    if (!sender_blob->is_nmethod()) {
247
        return false;
248
    }
249

250
    // Could put some more validation for the potential non-interpreted sender
251
    // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
252

253
    // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
254

255
    // We've validated the potential sender that would be created
256
    return true;
257
  }
258

259
  // Must be native-compiled frame. Since sender will try and use fp to find
260
  // linkages it must be safe
261

262
  if (!fp_safe) {
263
    return false;
264
  }
265

266
  // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
267

268
  if ( (address) this->fp()[return_addr_offset] == nullptr) return false;
269

270

271
  // could try and do some more potential verification of native frame if we could think of some...
272

273
  return true;
274

275
}
276

277
void frame::patch_pc(Thread* thread, address pc) {
278
  assert(_cb == CodeCache::find_blob(pc), "unexpected pc");
279
  address* pc_addr = &(((address*) sp())[-1]);
280
  address signed_pc = pauth_sign_return_address(pc);
281
  address pc_old = pauth_strip_verifiable(*pc_addr);
282

283
  if (TracePcPatching) {
284
    tty->print("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
285
                  p2i(pc_addr), p2i(pc_old), p2i(pc));
286
    if (VM_Version::use_rop_protection()) {
287
      tty->print(" [signed " INTPTR_FORMAT " -> " INTPTR_FORMAT "]", p2i(*pc_addr), p2i(signed_pc));
288
    }
289
    tty->print_cr("");
290
  }
291

292
  assert(!Continuation::is_return_barrier_entry(pc_old), "return barrier");
293

294
  // Either the return address is the original one or we are going to
295
  // patch in the same address that's already there.
296
  assert(_pc == pc_old || pc == pc_old || pc_old == 0, "");
297
  DEBUG_ONLY(address old_pc = _pc;)
298
  *pc_addr = signed_pc;
299
  _pc = pc; // must be set before call to get_deopt_original_pc
300
  address original_pc = get_deopt_original_pc();
301
  if (original_pc != nullptr) {
302
    assert(original_pc == old_pc, "expected original PC to be stored before patching");
303
    _deopt_state = is_deoptimized;
304
    _pc = original_pc;
305
  } else {
306
    _deopt_state = not_deoptimized;
307
  }
308
}
309

310
intptr_t* frame::entry_frame_argument_at(int offset) const {
311
  // convert offset to index to deal with tsi
312
  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
313
  // Entry frame's arguments are always in relation to unextended_sp()
314
  return &unextended_sp()[index];
315
}
316

317
// locals
318

319
void frame::interpreter_frame_set_locals(intptr_t* locs)  {
320
  assert(is_interpreted_frame(), "interpreted frame expected");
321
  // set relativized locals
322
  ptr_at_put(interpreter_frame_locals_offset, (intptr_t) (locs - fp()));
323
}
324

325
// sender_sp
326

327
intptr_t* frame::interpreter_frame_sender_sp() const {
328
  assert(is_interpreted_frame(), "interpreted frame expected");
329
  return (intptr_t*) at(interpreter_frame_sender_sp_offset);
330
}
331

332
void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
333
  assert(is_interpreted_frame(), "interpreted frame expected");
334
  ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
335
}
336

337

338
// monitor elements
339

340
BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
341
  return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
342
}
343

344
BasicObjectLock* frame::interpreter_frame_monitor_end() const {
345
  BasicObjectLock* result = (BasicObjectLock*) at_relative(interpreter_frame_monitor_block_top_offset);
346
  // make sure the pointer points inside the frame
347
  assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
348
  assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
349
  return result;
350
}
351

352
void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
353
  assert(is_interpreted_frame(), "interpreted frame expected");
354
  // set relativized monitor_block_top
355
  ptr_at_put(interpreter_frame_monitor_block_top_offset, (intptr_t*)value - fp());
356
  assert(at_absolute(interpreter_frame_monitor_block_top_offset) <= interpreter_frame_monitor_block_top_offset, "");
357
}
358

359
// Used by template based interpreter deoptimization
360
void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
361
  assert(is_interpreted_frame(), "interpreted frame expected");
362
  // set relativized last_sp
363
  ptr_at_put(interpreter_frame_last_sp_offset, sp != nullptr ? (sp - fp()) : 0);
364
}
365

366
// Used by template based interpreter deoptimization
367
void frame::interpreter_frame_set_extended_sp(intptr_t* sp) {
368
  assert(is_interpreted_frame(), "interpreted frame expected");
369
  // set relativized extended_sp
370
  ptr_at_put(interpreter_frame_extended_sp_offset, (sp - fp()));
371
}
372

373
frame frame::sender_for_entry_frame(RegisterMap* map) const {
374
  assert(map != nullptr, "map must be set");
375
  // Java frame called from C; skip all C frames and return top C
376
  // frame of that chunk as the sender
377
  JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
378
  assert(!entry_frame_is_first(), "next Java fp must be non zero");
379
  assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
380
  // Since we are walking the stack now this nested anchor is obviously walkable
381
  // even if it wasn't when it was stacked.
382
  jfa->make_walkable();
383
  map->clear();
384
  assert(map->include_argument_oops(), "should be set by clear");
385
  frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
386
  fr.set_sp_is_trusted();
387

388
  return fr;
389
}
390

391
UpcallStub::FrameData* UpcallStub::frame_data_for_frame(const frame& frame) const {
392
  assert(frame.is_upcall_stub_frame(), "wrong frame");
393
  // need unextended_sp here, since normal sp is wrong for interpreter callees
394
  return reinterpret_cast<UpcallStub::FrameData*>(
395
    reinterpret_cast<address>(frame.unextended_sp()) + in_bytes(_frame_data_offset));
396
}
397

398
bool frame::upcall_stub_frame_is_first() const {
399
  assert(is_upcall_stub_frame(), "must be optimzed entry frame");
400
  UpcallStub* blob = _cb->as_upcall_stub();
401
  JavaFrameAnchor* jfa = blob->jfa_for_frame(*this);
402
  return jfa->last_Java_sp() == nullptr;
403
}
404

405
frame frame::sender_for_upcall_stub_frame(RegisterMap* map) const {
406
  assert(map != nullptr, "map must be set");
407
  UpcallStub* blob = _cb->as_upcall_stub();
408
  // Java frame called from C; skip all C frames and return top C
409
  // frame of that chunk as the sender
410
  JavaFrameAnchor* jfa = blob->jfa_for_frame(*this);
411
  assert(!upcall_stub_frame_is_first(), "must have a frame anchor to go back to");
412
  assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
413
  // Since we are walking the stack now this nested anchor is obviously walkable
414
  // even if it wasn't when it was stacked.
415
  jfa->make_walkable();
416
  map->clear();
417
  assert(map->include_argument_oops(), "should be set by clear");
418
  frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
419

420
  return fr;
421
}
422

423
//------------------------------------------------------------------------------
424
// frame::verify_deopt_original_pc
425
//
426
// Verifies the calculated original PC of a deoptimization PC for the
427
// given unextended SP.
428
#ifdef ASSERT
429
void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp) {
430
  frame fr;
431

432
  // This is ugly but it's better than to change {get,set}_original_pc
433
  // to take an SP value as argument.  And it's only a debugging
434
  // method anyway.
435
  fr._unextended_sp = unextended_sp;
436

437
  address original_pc = nm->get_original_pc(&fr);
438
  assert(nm->insts_contains_inclusive(original_pc),
439
         "original PC must be in the main code section of the compiled method (or must be immediately following it)");
440
}
441
#endif
442

443
//------------------------------------------------------------------------------
444
// frame::adjust_unextended_sp
445
#ifdef ASSERT
446
void frame::adjust_unextended_sp() {
447
  // On aarch64, sites calling method handle intrinsics and lambda forms are treated
448
  // as any other call site. Therefore, no special action is needed when we are
449
  // returning to any of these call sites.
450

451
  if (_cb != nullptr) {
452
    nmethod* sender_nm = _cb->as_nmethod_or_null();
453
    if (sender_nm != nullptr) {
454
      // If the sender PC is a deoptimization point, get the original PC.
455
      if (sender_nm->is_deopt_entry(_pc) ||
456
          sender_nm->is_deopt_mh_entry(_pc)) {
457
        verify_deopt_original_pc(sender_nm, _unextended_sp);
458
      }
459
    }
460
  }
461
}
462
#endif
463

464

465
//------------------------------------------------------------------------------
466
// frame::sender_for_interpreter_frame
467
frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
468
  // SP is the raw SP from the sender after adapter or interpreter
469
  // extension.
470
  intptr_t* sender_sp = this->sender_sp();
471

472
  // This is the sp before any possible extension (adapter/locals).
473
  intptr_t* unextended_sp = interpreter_frame_sender_sp();
474
  intptr_t* sender_fp = link();
475

476
#if COMPILER2_OR_JVMCI
477
  if (map->update_map()) {
478
    update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
479
  }
480
#endif // COMPILER2_OR_JVMCI
481

482
  // For ROP protection, Interpreter will have signed the sender_pc,
483
  // but there is no requirement to authenticate it here.
484
  address sender_pc = pauth_strip_verifiable(sender_pc_maybe_signed());
485

486
  if (Continuation::is_return_barrier_entry(sender_pc)) {
487
    if (map->walk_cont()) { // about to walk into an h-stack
488
      return Continuation::top_frame(*this, map);
489
    } else {
490
      return Continuation::continuation_bottom_sender(map->thread(), *this, sender_sp);
491
    }
492
  }
493

494
  return frame(sender_sp, unextended_sp, sender_fp, sender_pc);
495
}
496

497
bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
498
  assert(is_interpreted_frame(), "Not an interpreted frame");
499
  // These are reasonable sanity checks
500
  if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
501
    return false;
502
  }
503
  if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
504
    return false;
505
  }
506
  if (fp() + interpreter_frame_initial_sp_offset < sp()) {
507
    return false;
508
  }
509
  // These are hacks to keep us out of trouble.
510
  // The problem with these is that they mask other problems
511
  if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
512
    return false;
513
  }
514

515
  // do some validation of frame elements
516

517
  // first the method
518

519
  Method* m = safe_interpreter_frame_method();
520

521
  // validate the method we'd find in this potential sender
522
  if (!Method::is_valid_method(m)) return false;
523

524
  // stack frames shouldn't be much larger than max_stack elements
525
  // this test requires the use of unextended_sp which is the sp as seen by
526
  // the current frame, and not sp which is the "raw" pc which could point
527
  // further because of local variables of the callee method inserted after
528
  // method arguments
529
  if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
530
    return false;
531
  }
532

533
  // validate bci/bcx
534

535
  address  bcp    = interpreter_frame_bcp();
536
  if (m->validate_bci_from_bcp(bcp) < 0) {
537
    return false;
538
  }
539

540
  // validate constantPoolCache*
541
  ConstantPoolCache* cp = *interpreter_frame_cache_addr();
542
  if (MetaspaceObj::is_valid(cp) == false) return false;
543

544
  // validate locals
545

546
  address locals =  (address)interpreter_frame_locals();
547
  return thread->is_in_stack_range_incl(locals, (address)fp());
548
}
549

550
BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
551
  assert(is_interpreted_frame(), "interpreted frame expected");
552
  Method* method = interpreter_frame_method();
553
  BasicType type = method->result_type();
554

555
  intptr_t* tos_addr;
556
  if (method->is_native()) {
557
    // TODO : ensure AARCH64 does the same as Intel here i.e. push v0 then r0
558
    // Prior to calling into the runtime to report the method_exit the possible
559
    // return value is pushed to the native stack. If the result is a jfloat/jdouble
560
    // then ST0 is saved before EAX/EDX. See the note in generate_native_result
561
    tos_addr = (intptr_t*)sp();
562
    if (type == T_FLOAT || type == T_DOUBLE) {
563
      // This is times two because we do a push(ltos) after pushing XMM0
564
      // and that takes two interpreter stack slots.
565
      tos_addr += 2 * Interpreter::stackElementWords;
566
    }
567
  } else {
568
    tos_addr = (intptr_t*)interpreter_frame_tos_address();
569
  }
570

571
  switch (type) {
572
    case T_OBJECT  :
573
    case T_ARRAY   : {
574
      oop obj;
575
      if (method->is_native()) {
576
        obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
577
      } else {
578
        oop* obj_p = (oop*)tos_addr;
579
        obj = (obj_p == nullptr) ? (oop)nullptr : *obj_p;
580
      }
581
      assert(Universe::is_in_heap_or_null(obj), "sanity check");
582
      *oop_result = obj;
583
      break;
584
    }
585
    case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
586
    case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
587
    case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
588
    case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
589
    case T_INT     : value_result->i = *(jint*)tos_addr; break;
590
    case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
591
    case T_FLOAT   : {
592
        value_result->f = *(jfloat*)tos_addr;
593
      break;
594
    }
595
    case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
596
    case T_VOID    : /* Nothing to do */ break;
597
    default        : ShouldNotReachHere();
598
  }
599

600
  return type;
601
}
602

603
intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
604
  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
605
  return &interpreter_frame_tos_address()[index];
606
}
607

608
#ifndef PRODUCT
609

610
#define DESCRIBE_FP_OFFSET(name) \
611
  values.describe(frame_no, fp() + frame::name##_offset, #name)
612

613
void frame::describe_pd(FrameValues& values, int frame_no) {
614
  if (is_interpreted_frame()) {
615
    DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
616
    DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
617
    DESCRIBE_FP_OFFSET(interpreter_frame_method);
618
    DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
619
    DESCRIBE_FP_OFFSET(interpreter_frame_extended_sp);
620
    DESCRIBE_FP_OFFSET(interpreter_frame_mirror);
621
    DESCRIBE_FP_OFFSET(interpreter_frame_cache);
622
    DESCRIBE_FP_OFFSET(interpreter_frame_locals);
623
    DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
624
    DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
625
  }
626

627
  if (is_java_frame() || Continuation::is_continuation_enterSpecial(*this)) {
628
    intptr_t* ret_pc_loc;
629
    intptr_t* fp_loc;
630
    if (is_interpreted_frame()) {
631
      ret_pc_loc = fp() + return_addr_offset;
632
      fp_loc = fp();
633
    } else {
634
      ret_pc_loc = real_fp() - return_addr_offset;
635
      fp_loc = real_fp() - sender_sp_offset;
636
    }
637
    address ret_pc = *(address*)ret_pc_loc;
638
    values.describe(frame_no, ret_pc_loc,
639
      Continuation::is_return_barrier_entry(ret_pc) ? "return address (return barrier)" : "return address");
640
    values.describe(-1, fp_loc, "saved fp", 0); // "unowned" as value belongs to sender
641
  }
642
}
643
#endif
644

645
intptr_t *frame::initial_deoptimization_info() {
646
  // Not used on aarch64, but we must return something.
647
  return nullptr;
648
}
649

650
#undef DESCRIBE_FP_OFFSET
651

652
#define DESCRIBE_FP_OFFSET(name)                     \
653
  {                                                  \
654
    uintptr_t *p = (uintptr_t *)fp;                  \
655
    printf(INTPTR_FORMAT " " INTPTR_FORMAT " %s\n",  \
656
           (uintptr_t)(p + frame::name##_offset),    \
657
           p[frame::name##_offset], #name);          \
658
  }
659

660
static THREAD_LOCAL uintptr_t nextfp;
661
static THREAD_LOCAL uintptr_t nextpc;
662
static THREAD_LOCAL uintptr_t nextsp;
663
static THREAD_LOCAL RegisterMap *reg_map;
664

665
static void printbc(Method *m, intptr_t bcx) {
666
  const char *name;
667
  char buf[16];
668
  if (m->validate_bci_from_bcp((address)bcx) < 0
669
      || !m->contains((address)bcx)) {
670
    name = "???";
671
    snprintf(buf, sizeof buf, "(bad)");
672
  } else {
673
    int bci = m->bci_from((address)bcx);
674
    snprintf(buf, sizeof buf, "%d", bci);
675
    name = Bytecodes::name(m->code_at(bci));
676
  }
677
  ResourceMark rm;
678
  printf("%s : %s ==> %s\n", m->name_and_sig_as_C_string(), buf, name);
679
}
680

681
static void internal_pf(uintptr_t sp, uintptr_t fp, uintptr_t pc, uintptr_t bcx) {
682
  if (! fp)
683
    return;
684

685
  DESCRIBE_FP_OFFSET(return_addr);
686
  DESCRIBE_FP_OFFSET(link);
687
  DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
688
  DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
689
  DESCRIBE_FP_OFFSET(interpreter_frame_method);
690
  DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
691
  DESCRIBE_FP_OFFSET(interpreter_frame_extended_sp);
692
  DESCRIBE_FP_OFFSET(interpreter_frame_mirror);
693
  DESCRIBE_FP_OFFSET(interpreter_frame_cache);
694
  DESCRIBE_FP_OFFSET(interpreter_frame_locals);
695
  DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
696
  DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
697
  uintptr_t *p = (uintptr_t *)fp;
698

699
  // We want to see all frames, native and Java.  For compiled and
700
  // interpreted frames we have special information that allows us to
701
  // unwind them; for everything else we assume that the native frame
702
  // pointer chain is intact.
703
  frame this_frame((intptr_t*)sp, (intptr_t*)fp, (address)pc);
704
  if (this_frame.is_compiled_frame() ||
705
      this_frame.is_interpreted_frame()) {
706
    frame sender = this_frame.sender(reg_map);
707
    nextfp = (uintptr_t)sender.fp();
708
    nextpc = (uintptr_t)sender.pc();
709
    nextsp = (uintptr_t)sender.unextended_sp();
710
  } else {
711
    nextfp = p[frame::link_offset];
712
    nextpc = p[frame::return_addr_offset];
713
    nextsp = (uintptr_t)&p[frame::sender_sp_offset];
714
  }
715

716
  if (bcx == -1ULL)
717
    bcx = p[frame::interpreter_frame_bcp_offset];
718

719
  if (Interpreter::contains((address)pc)) {
720
    Method* m = (Method*)p[frame::interpreter_frame_method_offset];
721
    if(m && m->is_method()) {
722
      printbc(m, bcx);
723
    } else
724
      printf("not a Method\n");
725
  } else {
726
    CodeBlob *cb = CodeCache::find_blob((address)pc);
727
    if (cb != nullptr) {
728
      if (cb->is_nmethod()) {
729
        ResourceMark rm;
730
        nmethod* nm = (nmethod*)cb;
731
        printf("nmethod %s\n", nm->method()->name_and_sig_as_C_string());
732
      } else if (cb->name()) {
733
        printf("CodeBlob %s\n", cb->name());
734
      }
735
    }
736
  }
737
}
738

739
extern "C" void npf() {
740
  CodeBlob *cb = CodeCache::find_blob((address)nextpc);
741
  // C2 does not always chain the frame pointers when it can, instead
742
  // preferring to use fixed offsets from SP, so a simple leave() does
743
  // not work.  Instead, it adds the frame size to SP then pops FP and
744
  // LR.  We have to do the same thing to get a good call chain.
745
  if (cb && cb->frame_size())
746
    nextfp = nextsp + wordSize * (cb->frame_size() - 2);
747
  internal_pf (nextsp, nextfp, nextpc, -1);
748
}
749

750
extern "C" void pf(uintptr_t sp, uintptr_t fp, uintptr_t pc,
751
                   uintptr_t bcx, uintptr_t thread) {
752
  if (!reg_map) {
753
    reg_map = NEW_C_HEAP_OBJ(RegisterMap, mtInternal);
754
    ::new (reg_map) RegisterMap(reinterpret_cast<JavaThread*>(thread),
755
                                RegisterMap::UpdateMap::skip,
756
                                RegisterMap::ProcessFrames::include,
757
                                RegisterMap::WalkContinuation::skip);
758
  } else {
759
    *reg_map = RegisterMap(reinterpret_cast<JavaThread*>(thread),
760
                           RegisterMap::UpdateMap::skip,
761
                           RegisterMap::ProcessFrames::include,
762
                           RegisterMap::WalkContinuation::skip);
763
  }
764

765
  {
766
    CodeBlob *cb = CodeCache::find_blob((address)pc);
767
    if (cb && cb->frame_size())
768
      fp = sp + wordSize * (cb->frame_size() - 2);
769
  }
770
  internal_pf(sp, fp, pc, bcx);
771
}
772

773
// support for printing out where we are in a Java method
774
// needs to be passed current fp and bcp register values
775
// prints method name, bc index and bytecode name
776
extern "C" void pm(uintptr_t fp, uintptr_t bcx) {
777
  DESCRIBE_FP_OFFSET(interpreter_frame_method);
778
  uintptr_t *p = (uintptr_t *)fp;
779
  Method* m = (Method*)p[frame::interpreter_frame_method_offset];
780
  printbc(m, bcx);
781
}
782

783
#ifndef PRODUCT
784
// This is a generic constructor which is only used by pns() in debug.cpp.
785
frame::frame(void* sp, void* fp, void* pc) {
786
  init((intptr_t*)sp, (intptr_t*)fp, (address)pc);
787
}
788

789
#endif
790

791
void JavaFrameAnchor::make_walkable() {
792
  // last frame set?
793
  if (last_Java_sp() == nullptr) return;
794
  // already walkable?
795
  if (walkable()) return;
796
  vmassert(last_Java_sp() != nullptr, "not called from Java code?");
797
  vmassert(last_Java_pc() == nullptr, "already walkable");
798
  _last_Java_pc = (address)_last_Java_sp[-1];
799
  vmassert(walkable(), "something went wrong");
800
}
801

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.