cubefs

Форк
0
724 строки · 19.0 Кб
1
// Copyright 2019+ Klaus Post. All rights reserved.
2
// License information can be found in the LICENSE file.
3
// Based on work by Yann Collet, released under BSD License.
4

5
package zstd
6

7
import (
8
	"errors"
9
	"fmt"
10
	"math"
11
)
12

13
const (
14
	// For encoding we only support up to
15
	maxEncTableLog    = 8
16
	maxEncTablesize   = 1 << maxTableLog
17
	maxEncTableMask   = (1 << maxTableLog) - 1
18
	minEncTablelog    = 5
19
	maxEncSymbolValue = maxMatchLengthSymbol
20
)
21

22
// Scratch provides temporary storage for compression and decompression.
23
type fseEncoder struct {
24
	symbolLen      uint16 // Length of active part of the symbol table.
25
	actualTableLog uint8  // Selected tablelog.
26
	ct             cTable // Compression tables.
27
	maxCount       int    // count of the most probable symbol
28
	zeroBits       bool   // no bits has prob > 50%.
29
	clearCount     bool   // clear count
30
	useRLE         bool   // This encoder is for RLE
31
	preDefined     bool   // This encoder is predefined.
32
	reUsed         bool   // Set to know when the encoder has been reused.
33
	rleVal         uint8  // RLE Symbol
34
	maxBits        uint8  // Maximum output bits after transform.
35

36
	// TODO: Technically zstd should be fine with 64 bytes.
37
	count [256]uint32
38
	norm  [256]int16
39
}
40

41
// cTable contains tables used for compression.
42
type cTable struct {
43
	tableSymbol []byte
44
	stateTable  []uint16
45
	symbolTT    []symbolTransform
46
}
47

48
// symbolTransform contains the state transform for a symbol.
49
type symbolTransform struct {
50
	deltaNbBits    uint32
51
	deltaFindState int16
52
	outBits        uint8
53
}
54

55
// String prints values as a human readable string.
56
func (s symbolTransform) String() string {
57
	return fmt.Sprintf("{deltabits: %08x, findstate:%d outbits:%d}", s.deltaNbBits, s.deltaFindState, s.outBits)
58
}
59

60
// Histogram allows to populate the histogram and skip that step in the compression,
61
// It otherwise allows to inspect the histogram when compression is done.
62
// To indicate that you have populated the histogram call HistogramFinished
63
// with the value of the highest populated symbol, as well as the number of entries
64
// in the most populated entry. These are accepted at face value.
65
func (s *fseEncoder) Histogram() *[256]uint32 {
66
	return &s.count
67
}
68

69
// HistogramFinished can be called to indicate that the histogram has been populated.
70
// maxSymbol is the index of the highest set symbol of the next data segment.
71
// maxCount is the number of entries in the most populated entry.
72
// These are accepted at face value.
73
func (s *fseEncoder) HistogramFinished(maxSymbol uint8, maxCount int) {
74
	s.maxCount = maxCount
75
	s.symbolLen = uint16(maxSymbol) + 1
76
	s.clearCount = maxCount != 0
77
}
78

79
// prepare will prepare and allocate scratch tables used for both compression and decompression.
80
func (s *fseEncoder) prepare() (*fseEncoder, error) {
81
	if s == nil {
82
		s = &fseEncoder{}
83
	}
84
	s.useRLE = false
85
	if s.clearCount && s.maxCount == 0 {
86
		for i := range s.count {
87
			s.count[i] = 0
88
		}
89
		s.clearCount = false
90
	}
91
	return s, nil
92
}
93

94
// allocCtable will allocate tables needed for compression.
95
// If existing tables a re big enough, they are simply re-used.
96
func (s *fseEncoder) allocCtable() {
97
	tableSize := 1 << s.actualTableLog
98
	// get tableSymbol that is big enough.
99
	if cap(s.ct.tableSymbol) < tableSize {
100
		s.ct.tableSymbol = make([]byte, tableSize)
101
	}
102
	s.ct.tableSymbol = s.ct.tableSymbol[:tableSize]
103

104
	ctSize := tableSize
105
	if cap(s.ct.stateTable) < ctSize {
106
		s.ct.stateTable = make([]uint16, ctSize)
107
	}
108
	s.ct.stateTable = s.ct.stateTable[:ctSize]
109

110
	if cap(s.ct.symbolTT) < 256 {
111
		s.ct.symbolTT = make([]symbolTransform, 256)
112
	}
113
	s.ct.symbolTT = s.ct.symbolTT[:256]
114
}
115

116
// buildCTable will populate the compression table so it is ready to be used.
117
func (s *fseEncoder) buildCTable() error {
118
	tableSize := uint32(1 << s.actualTableLog)
119
	highThreshold := tableSize - 1
120
	var cumul [256]int16
121

122
	s.allocCtable()
123
	tableSymbol := s.ct.tableSymbol[:tableSize]
124
	// symbol start positions
125
	{
126
		cumul[0] = 0
127
		for ui, v := range s.norm[:s.symbolLen-1] {
128
			u := byte(ui) // one less than reference
129
			if v == -1 {
130
				// Low proba symbol
131
				cumul[u+1] = cumul[u] + 1
132
				tableSymbol[highThreshold] = u
133
				highThreshold--
134
			} else {
135
				cumul[u+1] = cumul[u] + v
136
			}
137
		}
138
		// Encode last symbol separately to avoid overflowing u
139
		u := int(s.symbolLen - 1)
140
		v := s.norm[s.symbolLen-1]
141
		if v == -1 {
142
			// Low proba symbol
143
			cumul[u+1] = cumul[u] + 1
144
			tableSymbol[highThreshold] = byte(u)
145
			highThreshold--
146
		} else {
147
			cumul[u+1] = cumul[u] + v
148
		}
149
		if uint32(cumul[s.symbolLen]) != tableSize {
150
			return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize)
151
		}
152
		cumul[s.symbolLen] = int16(tableSize) + 1
153
	}
154
	// Spread symbols
155
	s.zeroBits = false
156
	{
157
		step := tableStep(tableSize)
158
		tableMask := tableSize - 1
159
		var position uint32
160
		// if any symbol > largeLimit, we may have 0 bits output.
161
		largeLimit := int16(1 << (s.actualTableLog - 1))
162
		for ui, v := range s.norm[:s.symbolLen] {
163
			symbol := byte(ui)
164
			if v > largeLimit {
165
				s.zeroBits = true
166
			}
167
			for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ {
168
				tableSymbol[position] = symbol
169
				position = (position + step) & tableMask
170
				for position > highThreshold {
171
					position = (position + step) & tableMask
172
				} /* Low proba area */
173
			}
174
		}
175

176
		// Check if we have gone through all positions
177
		if position != 0 {
178
			return errors.New("position!=0")
179
		}
180
	}
181

182
	// Build table
183
	table := s.ct.stateTable
184
	{
185
		tsi := int(tableSize)
186
		for u, v := range tableSymbol {
187
			// TableU16 : sorted by symbol order; gives next state value
188
			table[cumul[v]] = uint16(tsi + u)
189
			cumul[v]++
190
		}
191
	}
192

193
	// Build Symbol Transformation Table
194
	{
195
		total := int16(0)
196
		symbolTT := s.ct.symbolTT[:s.symbolLen]
197
		tableLog := s.actualTableLog
198
		tl := (uint32(tableLog) << 16) - (1 << tableLog)
199
		for i, v := range s.norm[:s.symbolLen] {
200
			switch v {
201
			case 0:
202
			case -1, 1:
203
				symbolTT[i].deltaNbBits = tl
204
				symbolTT[i].deltaFindState = total - 1
205
				total++
206
			default:
207
				maxBitsOut := uint32(tableLog) - highBit(uint32(v-1))
208
				minStatePlus := uint32(v) << maxBitsOut
209
				symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus
210
				symbolTT[i].deltaFindState = total - v
211
				total += v
212
			}
213
		}
214
		if total != int16(tableSize) {
215
			return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize)
216
		}
217
	}
218
	return nil
219
}
220

221
var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}
222

223
func (s *fseEncoder) setRLE(val byte) {
224
	s.allocCtable()
225
	s.actualTableLog = 0
226
	s.ct.stateTable = s.ct.stateTable[:1]
227
	s.ct.symbolTT[val] = symbolTransform{
228
		deltaFindState: 0,
229
		deltaNbBits:    0,
230
	}
231
	if debugEncoder {
232
		println("setRLE: val", val, "symbolTT", s.ct.symbolTT[val])
233
	}
234
	s.rleVal = val
235
	s.useRLE = true
236
}
237

238
// setBits will set output bits for the transform.
239
// if nil is provided, the number of bits is equal to the index.
240
func (s *fseEncoder) setBits(transform []byte) {
241
	if s.reUsed || s.preDefined {
242
		return
243
	}
244
	if s.useRLE {
245
		if transform == nil {
246
			s.ct.symbolTT[s.rleVal].outBits = s.rleVal
247
			s.maxBits = s.rleVal
248
			return
249
		}
250
		s.maxBits = transform[s.rleVal]
251
		s.ct.symbolTT[s.rleVal].outBits = s.maxBits
252
		return
253
	}
254
	if transform == nil {
255
		for i := range s.ct.symbolTT[:s.symbolLen] {
256
			s.ct.symbolTT[i].outBits = uint8(i)
257
		}
258
		s.maxBits = uint8(s.symbolLen - 1)
259
		return
260
	}
261
	s.maxBits = 0
262
	for i, v := range transform[:s.symbolLen] {
263
		s.ct.symbolTT[i].outBits = v
264
		if v > s.maxBits {
265
			// We could assume bits always going up, but we play safe.
266
			s.maxBits = v
267
		}
268
	}
269
}
270

271
// normalizeCount will normalize the count of the symbols so
272
// the total is equal to the table size.
273
// If successful, compression tables will also be made ready.
274
func (s *fseEncoder) normalizeCount(length int) error {
275
	if s.reUsed {
276
		return nil
277
	}
278
	s.optimalTableLog(length)
279
	var (
280
		tableLog          = s.actualTableLog
281
		scale             = 62 - uint64(tableLog)
282
		step              = (1 << 62) / uint64(length)
283
		vStep             = uint64(1) << (scale - 20)
284
		stillToDistribute = int16(1 << tableLog)
285
		largest           int
286
		largestP          int16
287
		lowThreshold      = (uint32)(length >> tableLog)
288
	)
289
	if s.maxCount == length {
290
		s.useRLE = true
291
		return nil
292
	}
293
	s.useRLE = false
294
	for i, cnt := range s.count[:s.symbolLen] {
295
		// already handled
296
		// if (count[s] == s.length) return 0;   /* rle special case */
297

298
		if cnt == 0 {
299
			s.norm[i] = 0
300
			continue
301
		}
302
		if cnt <= lowThreshold {
303
			s.norm[i] = -1
304
			stillToDistribute--
305
		} else {
306
			proba := (int16)((uint64(cnt) * step) >> scale)
307
			if proba < 8 {
308
				restToBeat := vStep * uint64(rtbTable[proba])
309
				v := uint64(cnt)*step - (uint64(proba) << scale)
310
				if v > restToBeat {
311
					proba++
312
				}
313
			}
314
			if proba > largestP {
315
				largestP = proba
316
				largest = i
317
			}
318
			s.norm[i] = proba
319
			stillToDistribute -= proba
320
		}
321
	}
322

323
	if -stillToDistribute >= (s.norm[largest] >> 1) {
324
		// corner case, need another normalization method
325
		err := s.normalizeCount2(length)
326
		if err != nil {
327
			return err
328
		}
329
		if debugAsserts {
330
			err = s.validateNorm()
331
			if err != nil {
332
				return err
333
			}
334
		}
335
		return s.buildCTable()
336
	}
337
	s.norm[largest] += stillToDistribute
338
	if debugAsserts {
339
		err := s.validateNorm()
340
		if err != nil {
341
			return err
342
		}
343
	}
344
	return s.buildCTable()
345
}
346

347
// Secondary normalization method.
348
// To be used when primary method fails.
349
func (s *fseEncoder) normalizeCount2(length int) error {
350
	const notYetAssigned = -2
351
	var (
352
		distributed  uint32
353
		total        = uint32(length)
354
		tableLog     = s.actualTableLog
355
		lowThreshold = total >> tableLog
356
		lowOne       = (total * 3) >> (tableLog + 1)
357
	)
358
	for i, cnt := range s.count[:s.symbolLen] {
359
		if cnt == 0 {
360
			s.norm[i] = 0
361
			continue
362
		}
363
		if cnt <= lowThreshold {
364
			s.norm[i] = -1
365
			distributed++
366
			total -= cnt
367
			continue
368
		}
369
		if cnt <= lowOne {
370
			s.norm[i] = 1
371
			distributed++
372
			total -= cnt
373
			continue
374
		}
375
		s.norm[i] = notYetAssigned
376
	}
377
	toDistribute := (1 << tableLog) - distributed
378

379
	if (total / toDistribute) > lowOne {
380
		// risk of rounding to zero
381
		lowOne = (total * 3) / (toDistribute * 2)
382
		for i, cnt := range s.count[:s.symbolLen] {
383
			if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) {
384
				s.norm[i] = 1
385
				distributed++
386
				total -= cnt
387
				continue
388
			}
389
		}
390
		toDistribute = (1 << tableLog) - distributed
391
	}
392
	if distributed == uint32(s.symbolLen)+1 {
393
		// all values are pretty poor;
394
		//   probably incompressible data (should have already been detected);
395
		//   find max, then give all remaining points to max
396
		var maxV int
397
		var maxC uint32
398
		for i, cnt := range s.count[:s.symbolLen] {
399
			if cnt > maxC {
400
				maxV = i
401
				maxC = cnt
402
			}
403
		}
404
		s.norm[maxV] += int16(toDistribute)
405
		return nil
406
	}
407

408
	if total == 0 {
409
		// all of the symbols were low enough for the lowOne or lowThreshold
410
		for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) {
411
			if s.norm[i] > 0 {
412
				toDistribute--
413
				s.norm[i]++
414
			}
415
		}
416
		return nil
417
	}
418

419
	var (
420
		vStepLog = 62 - uint64(tableLog)
421
		mid      = uint64((1 << (vStepLog - 1)) - 1)
422
		rStep    = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining
423
		tmpTotal = mid
424
	)
425
	for i, cnt := range s.count[:s.symbolLen] {
426
		if s.norm[i] == notYetAssigned {
427
			var (
428
				end    = tmpTotal + uint64(cnt)*rStep
429
				sStart = uint32(tmpTotal >> vStepLog)
430
				sEnd   = uint32(end >> vStepLog)
431
				weight = sEnd - sStart
432
			)
433
			if weight < 1 {
434
				return errors.New("weight < 1")
435
			}
436
			s.norm[i] = int16(weight)
437
			tmpTotal = end
438
		}
439
	}
440
	return nil
441
}
442

443
// optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
444
func (s *fseEncoder) optimalTableLog(length int) {
445
	tableLog := uint8(maxEncTableLog)
446
	minBitsSrc := highBit(uint32(length)) + 1
447
	minBitsSymbols := highBit(uint32(s.symbolLen-1)) + 2
448
	minBits := uint8(minBitsSymbols)
449
	if minBitsSrc < minBitsSymbols {
450
		minBits = uint8(minBitsSrc)
451
	}
452

453
	maxBitsSrc := uint8(highBit(uint32(length-1))) - 2
454
	if maxBitsSrc < tableLog {
455
		// Accuracy can be reduced
456
		tableLog = maxBitsSrc
457
	}
458
	if minBits > tableLog {
459
		tableLog = minBits
460
	}
461
	// Need a minimum to safely represent all symbol values
462
	if tableLog < minEncTablelog {
463
		tableLog = minEncTablelog
464
	}
465
	if tableLog > maxEncTableLog {
466
		tableLog = maxEncTableLog
467
	}
468
	s.actualTableLog = tableLog
469
}
470

471
// validateNorm validates the normalized histogram table.
472
func (s *fseEncoder) validateNorm() (err error) {
473
	var total int
474
	for _, v := range s.norm[:s.symbolLen] {
475
		if v >= 0 {
476
			total += int(v)
477
		} else {
478
			total -= int(v)
479
		}
480
	}
481
	defer func() {
482
		if err == nil {
483
			return
484
		}
485
		fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen)
486
		for i, v := range s.norm[:s.symbolLen] {
487
			fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v)
488
		}
489
	}()
490
	if total != (1 << s.actualTableLog) {
491
		return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog)
492
	}
493
	for i, v := range s.count[s.symbolLen:] {
494
		if v != 0 {
495
			return fmt.Errorf("warning: Found symbol out of range, %d after cut", i)
496
		}
497
	}
498
	return nil
499
}
500

501
// writeCount will write the normalized histogram count to header.
502
// This is read back by readNCount.
503
func (s *fseEncoder) writeCount(out []byte) ([]byte, error) {
504
	if s.useRLE {
505
		return append(out, s.rleVal), nil
506
	}
507
	if s.preDefined || s.reUsed {
508
		// Never write predefined.
509
		return out, nil
510
	}
511

512
	var (
513
		tableLog  = s.actualTableLog
514
		tableSize = 1 << tableLog
515
		previous0 bool
516
		charnum   uint16
517

518
		// maximum header size plus 2 extra bytes for final output if bitCount == 0.
519
		maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3 + 2
520

521
		// Write Table Size
522
		bitStream = uint32(tableLog - minEncTablelog)
523
		bitCount  = uint(4)
524
		remaining = int16(tableSize + 1) /* +1 for extra accuracy */
525
		threshold = int16(tableSize)
526
		nbBits    = uint(tableLog + 1)
527
		outP      = len(out)
528
	)
529
	if cap(out) < outP+maxHeaderSize {
530
		out = append(out, make([]byte, maxHeaderSize*3)...)
531
		out = out[:len(out)-maxHeaderSize*3]
532
	}
533
	out = out[:outP+maxHeaderSize]
534

535
	// stops at 1
536
	for remaining > 1 {
537
		if previous0 {
538
			start := charnum
539
			for s.norm[charnum] == 0 {
540
				charnum++
541
			}
542
			for charnum >= start+24 {
543
				start += 24
544
				bitStream += uint32(0xFFFF) << bitCount
545
				out[outP] = byte(bitStream)
546
				out[outP+1] = byte(bitStream >> 8)
547
				outP += 2
548
				bitStream >>= 16
549
			}
550
			for charnum >= start+3 {
551
				start += 3
552
				bitStream += 3 << bitCount
553
				bitCount += 2
554
			}
555
			bitStream += uint32(charnum-start) << bitCount
556
			bitCount += 2
557
			if bitCount > 16 {
558
				out[outP] = byte(bitStream)
559
				out[outP+1] = byte(bitStream >> 8)
560
				outP += 2
561
				bitStream >>= 16
562
				bitCount -= 16
563
			}
564
		}
565

566
		count := s.norm[charnum]
567
		charnum++
568
		max := (2*threshold - 1) - remaining
569
		if count < 0 {
570
			remaining += count
571
		} else {
572
			remaining -= count
573
		}
574
		count++ // +1 for extra accuracy
575
		if count >= threshold {
576
			count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[
577
		}
578
		bitStream += uint32(count) << bitCount
579
		bitCount += nbBits
580
		if count < max {
581
			bitCount--
582
		}
583

584
		previous0 = count == 1
585
		if remaining < 1 {
586
			return nil, errors.New("internal error: remaining < 1")
587
		}
588
		for remaining < threshold {
589
			nbBits--
590
			threshold >>= 1
591
		}
592

593
		if bitCount > 16 {
594
			out[outP] = byte(bitStream)
595
			out[outP+1] = byte(bitStream >> 8)
596
			outP += 2
597
			bitStream >>= 16
598
			bitCount -= 16
599
		}
600
	}
601

602
	if outP+2 > len(out) {
603
		return nil, fmt.Errorf("internal error: %d > %d, maxheader: %d, sl: %d, tl: %d, normcount: %v", outP+2, len(out), maxHeaderSize, s.symbolLen, int(tableLog), s.norm[:s.symbolLen])
604
	}
605
	out[outP] = byte(bitStream)
606
	out[outP+1] = byte(bitStream >> 8)
607
	outP += int((bitCount + 7) / 8)
608

609
	if charnum > s.symbolLen {
610
		return nil, errors.New("internal error: charnum > s.symbolLen")
611
	}
612
	return out[:outP], nil
613
}
614

615
// Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
616
// note 1 : assume symbolValue is valid (<= maxSymbolValue)
617
// note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits *
618
func (s *fseEncoder) bitCost(symbolValue uint8, accuracyLog uint32) uint32 {
619
	minNbBits := s.ct.symbolTT[symbolValue].deltaNbBits >> 16
620
	threshold := (minNbBits + 1) << 16
621
	if debugAsserts {
622
		if !(s.actualTableLog < 16) {
623
			panic("!s.actualTableLog < 16")
624
		}
625
		// ensure enough room for renormalization double shift
626
		if !(uint8(accuracyLog) < 31-s.actualTableLog) {
627
			panic("!uint8(accuracyLog) < 31-s.actualTableLog")
628
		}
629
	}
630
	tableSize := uint32(1) << s.actualTableLog
631
	deltaFromThreshold := threshold - (s.ct.symbolTT[symbolValue].deltaNbBits + tableSize)
632
	// linear interpolation (very approximate)
633
	normalizedDeltaFromThreshold := (deltaFromThreshold << accuracyLog) >> s.actualTableLog
634
	bitMultiplier := uint32(1) << accuracyLog
635
	if debugAsserts {
636
		if s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold {
637
			panic("s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold")
638
		}
639
		if normalizedDeltaFromThreshold > bitMultiplier {
640
			panic("normalizedDeltaFromThreshold > bitMultiplier")
641
		}
642
	}
643
	return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold
644
}
645

646
// Returns the cost in bits of encoding the distribution in count using ctable.
647
// Histogram should only be up to the last non-zero symbol.
648
// Returns an -1 if ctable cannot represent all the symbols in count.
649
func (s *fseEncoder) approxSize(hist []uint32) uint32 {
650
	if int(s.symbolLen) < len(hist) {
651
		// More symbols than we have.
652
		return math.MaxUint32
653
	}
654
	if s.useRLE {
655
		// We will never reuse RLE encoders.
656
		return math.MaxUint32
657
	}
658
	const kAccuracyLog = 8
659
	badCost := (uint32(s.actualTableLog) + 1) << kAccuracyLog
660
	var cost uint32
661
	for i, v := range hist {
662
		if v == 0 {
663
			continue
664
		}
665
		if s.norm[i] == 0 {
666
			return math.MaxUint32
667
		}
668
		bitCost := s.bitCost(uint8(i), kAccuracyLog)
669
		if bitCost > badCost {
670
			return math.MaxUint32
671
		}
672
		cost += v * bitCost
673
	}
674
	return cost >> kAccuracyLog
675
}
676

677
// maxHeaderSize returns the maximum header size in bits.
678
// This is not exact size, but we want a penalty for new tables anyway.
679
func (s *fseEncoder) maxHeaderSize() uint32 {
680
	if s.preDefined {
681
		return 0
682
	}
683
	if s.useRLE {
684
		return 8
685
	}
686
	return (((uint32(s.symbolLen) * uint32(s.actualTableLog)) >> 3) + 3) * 8
687
}
688

689
// cState contains the compression state of a stream.
690
type cState struct {
691
	bw         *bitWriter
692
	stateTable []uint16
693
	state      uint16
694
}
695

696
// init will initialize the compression state to the first symbol of the stream.
697
func (c *cState) init(bw *bitWriter, ct *cTable, first symbolTransform) {
698
	c.bw = bw
699
	c.stateTable = ct.stateTable
700
	if len(c.stateTable) == 1 {
701
		// RLE
702
		c.stateTable[0] = uint16(0)
703
		c.state = 0
704
		return
705
	}
706
	nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16
707
	im := int32((nbBitsOut << 16) - first.deltaNbBits)
708
	lu := (im >> nbBitsOut) + int32(first.deltaFindState)
709
	c.state = c.stateTable[lu]
710
}
711

712
// encode the output symbol provided and write it to the bitstream.
713
func (c *cState) encode(symbolTT symbolTransform) {
714
	nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
715
	dstState := int32(c.state>>(nbBitsOut&15)) + int32(symbolTT.deltaFindState)
716
	c.bw.addBits16NC(c.state, uint8(nbBitsOut))
717
	c.state = c.stateTable[dstState]
718
}
719

720
// flush will write the tablelog to the output and flush the remaining full bytes.
721
func (c *cState) flush(tableLog uint8) {
722
	c.bw.flush32()
723
	c.bw.addBits16NC(c.state, tableLog)
724
}
725

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.