cubefs

Форк
0
289 строк · 9.1 Кб
1
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4

5
package snapref
6

7
import (
8
	"encoding/binary"
9
	"errors"
10
	"io"
11
)
12

13
// Encode returns the encoded form of src. The returned slice may be a sub-
14
// slice of dst if dst was large enough to hold the entire encoded block.
15
// Otherwise, a newly allocated slice will be returned.
16
//
17
// The dst and src must not overlap. It is valid to pass a nil dst.
18
//
19
// Encode handles the Snappy block format, not the Snappy stream format.
20
func Encode(dst, src []byte) []byte {
21
	if n := MaxEncodedLen(len(src)); n < 0 {
22
		panic(ErrTooLarge)
23
	} else if len(dst) < n {
24
		dst = make([]byte, n)
25
	}
26

27
	// The block starts with the varint-encoded length of the decompressed bytes.
28
	d := binary.PutUvarint(dst, uint64(len(src)))
29

30
	for len(src) > 0 {
31
		p := src
32
		src = nil
33
		if len(p) > maxBlockSize {
34
			p, src = p[:maxBlockSize], p[maxBlockSize:]
35
		}
36
		if len(p) < minNonLiteralBlockSize {
37
			d += emitLiteral(dst[d:], p)
38
		} else {
39
			d += encodeBlock(dst[d:], p)
40
		}
41
	}
42
	return dst[:d]
43
}
44

45
// inputMargin is the minimum number of extra input bytes to keep, inside
46
// encodeBlock's inner loop. On some architectures, this margin lets us
47
// implement a fast path for emitLiteral, where the copy of short (<= 16 byte)
48
// literals can be implemented as a single load to and store from a 16-byte
49
// register. That literal's actual length can be as short as 1 byte, so this
50
// can copy up to 15 bytes too much, but that's OK as subsequent iterations of
51
// the encoding loop will fix up the copy overrun, and this inputMargin ensures
52
// that we don't overrun the dst and src buffers.
53
const inputMargin = 16 - 1
54

55
// minNonLiteralBlockSize is the minimum size of the input to encodeBlock that
56
// could be encoded with a copy tag. This is the minimum with respect to the
57
// algorithm used by encodeBlock, not a minimum enforced by the file format.
58
//
59
// The encoded output must start with at least a 1 byte literal, as there are
60
// no previous bytes to copy. A minimal (1 byte) copy after that, generated
61
// from an emitCopy call in encodeBlock's main loop, would require at least
62
// another inputMargin bytes, for the reason above: we want any emitLiteral
63
// calls inside encodeBlock's main loop to use the fast path if possible, which
64
// requires being able to overrun by inputMargin bytes. Thus,
65
// minNonLiteralBlockSize equals 1 + 1 + inputMargin.
66
//
67
// The C++ code doesn't use this exact threshold, but it could, as discussed at
68
// https://groups.google.com/d/topic/snappy-compression/oGbhsdIJSJ8/discussion
69
// The difference between Go (2+inputMargin) and C++ (inputMargin) is purely an
70
// optimization. It should not affect the encoded form. This is tested by
71
// TestSameEncodingAsCppShortCopies.
72
const minNonLiteralBlockSize = 1 + 1 + inputMargin
73

74
// MaxEncodedLen returns the maximum length of a snappy block, given its
75
// uncompressed length.
76
//
77
// It will return a negative value if srcLen is too large to encode.
78
func MaxEncodedLen(srcLen int) int {
79
	n := uint64(srcLen)
80
	if n > 0xffffffff {
81
		return -1
82
	}
83
	// Compressed data can be defined as:
84
	//    compressed := item* literal*
85
	//    item       := literal* copy
86
	//
87
	// The trailing literal sequence has a space blowup of at most 62/60
88
	// since a literal of length 60 needs one tag byte + one extra byte
89
	// for length information.
90
	//
91
	// Item blowup is trickier to measure. Suppose the "copy" op copies
92
	// 4 bytes of data. Because of a special check in the encoding code,
93
	// we produce a 4-byte copy only if the offset is < 65536. Therefore
94
	// the copy op takes 3 bytes to encode, and this type of item leads
95
	// to at most the 62/60 blowup for representing literals.
96
	//
97
	// Suppose the "copy" op copies 5 bytes of data. If the offset is big
98
	// enough, it will take 5 bytes to encode the copy op. Therefore the
99
	// worst case here is a one-byte literal followed by a five-byte copy.
100
	// That is, 6 bytes of input turn into 7 bytes of "compressed" data.
101
	//
102
	// This last factor dominates the blowup, so the final estimate is:
103
	n = 32 + n + n/6
104
	if n > 0xffffffff {
105
		return -1
106
	}
107
	return int(n)
108
}
109

110
var errClosed = errors.New("snappy: Writer is closed")
111

112
// NewWriter returns a new Writer that compresses to w.
113
//
114
// The Writer returned does not buffer writes. There is no need to Flush or
115
// Close such a Writer.
116
//
117
// Deprecated: the Writer returned is not suitable for many small writes, only
118
// for few large writes. Use NewBufferedWriter instead, which is efficient
119
// regardless of the frequency and shape of the writes, and remember to Close
120
// that Writer when done.
121
func NewWriter(w io.Writer) *Writer {
122
	return &Writer{
123
		w:    w,
124
		obuf: make([]byte, obufLen),
125
	}
126
}
127

128
// NewBufferedWriter returns a new Writer that compresses to w, using the
129
// framing format described at
130
// https://github.com/google/snappy/blob/master/framing_format.txt
131
//
132
// The Writer returned buffers writes. Users must call Close to guarantee all
133
// data has been forwarded to the underlying io.Writer. They may also call
134
// Flush zero or more times before calling Close.
135
func NewBufferedWriter(w io.Writer) *Writer {
136
	return &Writer{
137
		w:    w,
138
		ibuf: make([]byte, 0, maxBlockSize),
139
		obuf: make([]byte, obufLen),
140
	}
141
}
142

143
// Writer is an io.Writer that can write Snappy-compressed bytes.
144
//
145
// Writer handles the Snappy stream format, not the Snappy block format.
146
type Writer struct {
147
	w   io.Writer
148
	err error
149

150
	// ibuf is a buffer for the incoming (uncompressed) bytes.
151
	//
152
	// Its use is optional. For backwards compatibility, Writers created by the
153
	// NewWriter function have ibuf == nil, do not buffer incoming bytes, and
154
	// therefore do not need to be Flush'ed or Close'd.
155
	ibuf []byte
156

157
	// obuf is a buffer for the outgoing (compressed) bytes.
158
	obuf []byte
159

160
	// wroteStreamHeader is whether we have written the stream header.
161
	wroteStreamHeader bool
162
}
163

164
// Reset discards the writer's state and switches the Snappy writer to write to
165
// w. This permits reusing a Writer rather than allocating a new one.
166
func (w *Writer) Reset(writer io.Writer) {
167
	w.w = writer
168
	w.err = nil
169
	if w.ibuf != nil {
170
		w.ibuf = w.ibuf[:0]
171
	}
172
	w.wroteStreamHeader = false
173
}
174

175
// Write satisfies the io.Writer interface.
176
func (w *Writer) Write(p []byte) (nRet int, errRet error) {
177
	if w.ibuf == nil {
178
		// Do not buffer incoming bytes. This does not perform or compress well
179
		// if the caller of Writer.Write writes many small slices. This
180
		// behavior is therefore deprecated, but still supported for backwards
181
		// compatibility with code that doesn't explicitly Flush or Close.
182
		return w.write(p)
183
	}
184

185
	// The remainder of this method is based on bufio.Writer.Write from the
186
	// standard library.
187

188
	for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
189
		var n int
190
		if len(w.ibuf) == 0 {
191
			// Large write, empty buffer.
192
			// Write directly from p to avoid copy.
193
			n, _ = w.write(p)
194
		} else {
195
			n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
196
			w.ibuf = w.ibuf[:len(w.ibuf)+n]
197
			w.Flush()
198
		}
199
		nRet += n
200
		p = p[n:]
201
	}
202
	if w.err != nil {
203
		return nRet, w.err
204
	}
205
	n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
206
	w.ibuf = w.ibuf[:len(w.ibuf)+n]
207
	nRet += n
208
	return nRet, nil
209
}
210

211
func (w *Writer) write(p []byte) (nRet int, errRet error) {
212
	if w.err != nil {
213
		return 0, w.err
214
	}
215
	for len(p) > 0 {
216
		obufStart := len(magicChunk)
217
		if !w.wroteStreamHeader {
218
			w.wroteStreamHeader = true
219
			copy(w.obuf, magicChunk)
220
			obufStart = 0
221
		}
222

223
		var uncompressed []byte
224
		if len(p) > maxBlockSize {
225
			uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
226
		} else {
227
			uncompressed, p = p, nil
228
		}
229
		checksum := crc(uncompressed)
230

231
		// Compress the buffer, discarding the result if the improvement
232
		// isn't at least 12.5%.
233
		compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
234
		chunkType := uint8(chunkTypeCompressedData)
235
		chunkLen := 4 + len(compressed)
236
		obufEnd := obufHeaderLen + len(compressed)
237
		if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
238
			chunkType = chunkTypeUncompressedData
239
			chunkLen = 4 + len(uncompressed)
240
			obufEnd = obufHeaderLen
241
		}
242

243
		// Fill in the per-chunk header that comes before the body.
244
		w.obuf[len(magicChunk)+0] = chunkType
245
		w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
246
		w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
247
		w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
248
		w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
249
		w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
250
		w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
251
		w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
252

253
		if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
254
			w.err = err
255
			return nRet, err
256
		}
257
		if chunkType == chunkTypeUncompressedData {
258
			if _, err := w.w.Write(uncompressed); err != nil {
259
				w.err = err
260
				return nRet, err
261
			}
262
		}
263
		nRet += len(uncompressed)
264
	}
265
	return nRet, nil
266
}
267

268
// Flush flushes the Writer to its underlying io.Writer.
269
func (w *Writer) Flush() error {
270
	if w.err != nil {
271
		return w.err
272
	}
273
	if len(w.ibuf) == 0 {
274
		return nil
275
	}
276
	w.write(w.ibuf)
277
	w.ibuf = w.ibuf[:0]
278
	return w.err
279
}
280

281
// Close calls Flush and then closes the Writer.
282
func (w *Writer) Close() error {
283
	w.Flush()
284
	ret := w.err
285
	if w.err == nil {
286
		w.err = errClosed
287
	}
288
	return ret
289
}
290

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.