llama

Форк
0
/
clip.cpp 
2628 строк · 109.7 Кб
1
// NOTE: This is modified from clip.cpp only for LLaVA,
2
// so there might be still unnecessary artifacts hanging around
3
// I'll gradually clean and extend it
4
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
5
#include "clip.h"
6
#include "ggml.h"
7
#include "ggml-alloc.h"
8
#include "ggml-backend.h"
9

10
#ifdef GGML_USE_CUDA
11
#include "ggml-cuda.h"
12
#endif
13

14
#ifdef GGML_USE_METAL
15
#include "ggml-metal.h"
16
#endif
17

18
#ifdef GGML_USE_CANN
19
#include "ggml-cann.h"
20
#endif
21

22
#ifdef GGML_USE_VULKAN
23
#include "ggml-vulkan.h"
24
#endif
25

26
#define STB_IMAGE_IMPLEMENTATION
27
#include "stb_image.h"
28

29
#include <cassert>
30
#include <cmath>
31
#include <cstdlib>
32
#include <cstring>
33
#include <fstream>
34
#include <map>
35
#include <regex>
36
#include <stdexcept>
37
#include <vector>
38
#include <sstream>
39
#include <cinttypes>
40
#include <limits>
41

42
#define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
43
#define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
44
#define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
45
#define LOG_DBG(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
46

47
//#define CLIP_DEBUG_FUNCTIONS
48

49
// RGB uint8 image
50
struct clip_image_u8 {
51
    int nx;
52
    int ny;
53

54
    std::vector<uint8_t> buf;
55
};
56

57
// RGB float32 image (NHWC)
58
// Memory layout: RGBRGBRGB...
59
struct clip_image_f32 {
60
    int nx;
61
    int ny;
62

63
    std::vector<float> buf;
64
};
65

66
static std::string format(const char * fmt, ...) {
67
    va_list ap;
68
    va_list ap2;
69
    va_start(ap, fmt);
70
    va_copy(ap2, ap);
71
    int size = vsnprintf(NULL, 0, fmt, ap);
72
    GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
73
    std::vector<char> buf(size + 1);
74
    int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
75
    GGML_ASSERT(size2 == size);
76
    va_end(ap2);
77
    va_end(ap);
78
    return std::string(buf.data(), buf.size());
79
}
80

81
//
82
// key constants
83
//
84

85
#define KEY_FTYPE               "general.file_type"
86
#define KEY_NAME                "general.name"
87
#define KEY_DESCRIPTION         "general.description"
88
#define KEY_HAS_TEXT_ENC        "clip.has_text_encoder"
89
#define KEY_HAS_VIS_ENC         "clip.has_vision_encoder"
90
#define KEY_HAS_LLAVA_PROJ      "clip.has_llava_projector"
91
#define KEY_HAS_MINICPMV_PROJ   "clip.has_minicpmv_projector"
92
#define KEY_MINICPMV_VERSION    "clip.minicpmv_version"
93
#define KEY_USE_GELU            "clip.use_gelu"
94
#define KEY_N_EMBD              "clip.%s.embedding_length"
95
#define KEY_N_FF                "clip.%s.feed_forward_length"
96
#define KEY_N_BLOCK             "clip.%s.block_count"
97
#define KEY_N_HEAD              "clip.%s.attention.head_count"
98
#define KEY_LAYER_NORM_EPS      "clip.%s.attention.layer_norm_epsilon"
99
#define KEY_PROJ_DIM            "clip.%s.projection_dim"
100
#define KEY_TOKENS              "tokenizer.ggml.tokens"
101
#define KEY_N_POSITIONS         "clip.text.context_length"
102
#define KEY_IMAGE_SIZE          "clip.vision.image_size"
103
#define KEY_PATCH_SIZE          "clip.vision.patch_size"
104
#define KEY_IMAGE_MEAN          "clip.vision.image_mean"
105
#define KEY_IMAGE_STD           "clip.vision.image_std"
106
#define KEY_PROJ_TYPE           "clip.projector_type"
107

108
#define KEY_MM_PATCH_MERGE_TYPE   "clip.vision.mm_patch_merge_type"
109
#define KEY_IMAGE_GRID_PINPOINTS  "clip.vision.image_grid_pinpoints"
110
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
111

112

113
//
114
// tensor name constants
115
//
116

117
#define TN_TOKEN_EMBD      "%s.token_embd.weight"
118
#define TN_POS_EMBD        "%s.position_embd.weight"
119
#define TN_CLASS_EMBD      "v.class_embd"
120
#define TN_PATCH_EMBD      "v.patch_embd.weight"
121
#define TN_PATCH_BIAS      "v.patch_embd.bias"
122
#define TN_ATTN_K          "%s.blk.%d.attn_k.%s"
123
#define TN_ATTN_Q          "%s.blk.%d.attn_q.%s"
124
#define TN_ATTN_V          "%s.blk.%d.attn_v.%s"
125
#define TN_ATTN_OUTPUT     "%s.blk.%d.attn_out.%s"
126
#define TN_FFN_DOWN        "%s.blk.%d.ffn_down.%s"
127
#define TN_FFN_UP          "%s.blk.%d.ffn_up.%s"
128
#define TN_LN_1            "%s.blk.%d.ln1.%s"
129
#define TN_LN_2            "%s.blk.%d.ln2.%s"
130
#define TN_LN_PRE          "%s.pre_ln.%s"
131
#define TN_LN_POST         "%s.post_ln.%s"
132
#define TN_TEXT_PROJ       "text_projection.weight"
133
#define TN_VIS_PROJ        "visual_projection.weight"
134
#define TN_LLAVA_PROJ      "mm.%d.%s"
135
#define TN_MVLM_PROJ_MLP   "mm.model.mlp.%d.%s"
136
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
137
#define TN_MVLM_PROJ_PEG   "mm.model.peg.%d.%s"
138
#define TN_IMAGE_NEWLINE   "model.image_newline"
139

140
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
141
#define TN_MINICPMV_QUERY "resampler.query"
142
#define TN_MINICPMV_PROJ "resampler.proj.weight"
143
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
144
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
145
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
146

147

148
enum projector_type {
149
    PROJECTOR_TYPE_MLP,
150
    PROJECTOR_TYPE_MLP_NORM,
151
    PROJECTOR_TYPE_LDP,
152
    PROJECTOR_TYPE_LDPV2,
153
    PROJECTOR_TYPE_RESAMPLER,
154
    PROJECTOR_TYPE_UNKNOWN,
155
};
156

157
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
158
    { PROJECTOR_TYPE_MLP, "mlp" },
159
    { PROJECTOR_TYPE_LDP, "ldp" },
160
    { PROJECTOR_TYPE_LDPV2, "ldpv2"},
161
    { PROJECTOR_TYPE_RESAMPLER, "resampler"},
162
};
163

164

165
//
166
// utilities to get data from a gguf file
167
//
168

169
static int get_key_idx(const gguf_context * ctx, const char * key) {
170
    int i = gguf_find_key(ctx, key);
171
    if (i == -1) {
172
        LOG_ERR("key %s not found in file\n", key);
173
        throw std::runtime_error(format("Missing required key: %s", key));
174
    }
175

176
    return i;
177
}
178

179
static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
180
    const int i = get_key_idx(ctx, key.c_str());
181

182
    return gguf_get_val_u32(ctx, i);
183
}
184

185
static float get_f32(const gguf_context * ctx, const std::string & key) {
186
    const int i = get_key_idx(ctx, key.c_str());
187

188
    return gguf_get_val_f32(ctx, i);
189
}
190

191
static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
192
    struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
193
    if (!cur) {
194
        throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
195
    }
196

197
    return cur;
198
}
199

200
static std::string get_ftype(int ftype) {
201
    return ggml_type_name(static_cast<ggml_type>(ftype));
202
}
203

204
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
205
    switch (type) {
206
        case GGUF_TYPE_UINT8:   return std::to_string(((const uint8_t  *)data)[i]);
207
        case GGUF_TYPE_INT8:    return std::to_string(((const int8_t   *)data)[i]);
208
        case GGUF_TYPE_UINT16:  return std::to_string(((const uint16_t *)data)[i]);
209
        case GGUF_TYPE_INT16:   return std::to_string(((const int16_t  *)data)[i]);
210
        case GGUF_TYPE_UINT32:  return std::to_string(((const uint32_t *)data)[i]);
211
        case GGUF_TYPE_INT32:   return std::to_string(((const int32_t  *)data)[i]);
212
        case GGUF_TYPE_UINT64:  return std::to_string(((const uint64_t *)data)[i]);
213
        case GGUF_TYPE_INT64:   return std::to_string(((const int64_t  *)data)[i]);
214
        case GGUF_TYPE_FLOAT32: return std::to_string(((const float    *)data)[i]);
215
        case GGUF_TYPE_FLOAT64: return std::to_string(((const double   *)data)[i]);
216
        case GGUF_TYPE_BOOL:    return ((const bool *)data)[i] ? "true" : "false";
217
        default:                return format("unknown type %d", type);
218
    }
219
}
220

221
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
222
    if (search.empty()) {
223
        return;
224
    }
225
    std::string builder;
226
    builder.reserve(s.length());
227
    size_t pos = 0;
228
    size_t last_pos = 0;
229
    while ((pos = s.find(search, last_pos)) != std::string::npos) {
230
        builder.append(s, last_pos, pos - last_pos);
231
        builder.append(replace);
232
        last_pos = pos + search.length();
233
    }
234
    builder.append(s, last_pos, std::string::npos);
235
    s = std::move(builder);
236
}
237

238
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
239
    const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
240

241
    switch (type) {
242
        case GGUF_TYPE_STRING:
243
            return gguf_get_val_str(ctx_gguf, i);
244
        case GGUF_TYPE_ARRAY:
245
            {
246
                const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
247
                int arr_n = gguf_get_arr_n(ctx_gguf, i);
248
                const void * data = gguf_get_arr_data(ctx_gguf, i);
249
                std::stringstream ss;
250
                ss << "[";
251
                for (int j = 0; j < arr_n; j++) {
252
                    if (arr_type == GGUF_TYPE_STRING) {
253
                        std::string val = gguf_get_arr_str(ctx_gguf, i, j);
254
                        // escape quotes
255
                        replace_all(val, "\\", "\\\\");
256
                        replace_all(val, "\"", "\\\"");
257
                        ss << '"' << val << '"';
258
                    } else if (arr_type == GGUF_TYPE_ARRAY) {
259
                        ss << "???";
260
                    } else {
261
                        ss << gguf_data_to_str(arr_type, data, j);
262
                    }
263
                    if (j < arr_n - 1) {
264
                        ss << ", ";
265
                    }
266
                }
267
                ss << "]";
268
                return ss.str();
269
            }
270
        default:
271
            return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
272
    }
273
}
274

275
static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
276
    size_t tensor_size = ggml_nbytes(tensor);
277
    LOG_INF("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
278
            prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
279
            tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
280
}
281

282
static projector_type clip_projector_type_from_string(const std::string & name) {
283
    for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
284
        if (kv.second == name) {
285
            return kv.first;
286
        }
287
    }
288
    return PROJECTOR_TYPE_UNKNOWN;
289
}
290

291
#ifdef CLIP_DEBUG_FUNCTIONS
292
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
293
    std::ofstream file(filename, std::ios::binary);
294
    if (!file.is_open()) {
295
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
296
        return;
297
    }
298

299
    // PPM header: P6 format, width, height, and max color value
300
    file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
301

302
    // Write pixel data
303
    for (size_t i = 0; i < img.buf.size(); i += 3) {
304
        // PPM expects binary data in RGB format, which matches our image buffer
305
        file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
306
    }
307

308
    file.close();
309
}
310

311
static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
312
    std::ofstream file(filename, std::ios::binary);
313
    if (!file.is_open()) {
314
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
315
        return;
316
    }
317

318
    int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
319
    int bytesPerPixel = 3;
320
    int widthInBytes = img.nx * bytesPerPixel;
321
    int paddingAmount = (4 - (widthInBytes % 4)) % 4;
322
    int stride = widthInBytes + paddingAmount;
323

324
    // Bitmap file header
325
    unsigned char fileHeader[14] = {
326
        'B','M',     // Signature
327
        0,0,0,0,    // Image file size in bytes
328
        0,0,0,0,    // Reserved
329
        54,0,0,0    // Start of pixel array
330
    };
331

332
    // Total file size
333
    fileSize = 54 + (stride * img.ny);
334
    fileHeader[2] = (unsigned char)(fileSize);
335
    fileHeader[3] = (unsigned char)(fileSize >> 8);
336
    fileHeader[4] = (unsigned char)(fileSize >> 16);
337
    fileHeader[5] = (unsigned char)(fileSize >> 24);
338

339
    // Bitmap information header (BITMAPINFOHEADER)
340
    unsigned char infoHeader[40] = {
341
        40,0,0,0,   // Size of this header (40 bytes)
342
        0,0,0,0,    // Image width
343
        0,0,0,0,    // Image height
344
        1,0,        // Number of color planes
345
        24,0,       // Bits per pixel
346
        0,0,0,0,    // No compression
347
        0,0,0,0,    // Image size (can be 0 for no compression)
348
        0,0,0,0,    // X pixels per meter (not specified)
349
        0,0,0,0,    // Y pixels per meter (not specified)
350
        0,0,0,0,    // Total colors (color table not used)
351
        0,0,0,0     // Important colors (all are important)
352
    };
353

354
    // Width and height in the information header
355
    infoHeader[4] = (unsigned char)(img.nx);
356
    infoHeader[5] = (unsigned char)(img.nx >> 8);
357
    infoHeader[6] = (unsigned char)(img.nx >> 16);
358
    infoHeader[7] = (unsigned char)(img.nx >> 24);
359
    infoHeader[8] = (unsigned char)(img.ny);
360
    infoHeader[9] = (unsigned char)(img.ny >> 8);
361
    infoHeader[10] = (unsigned char)(img.ny >> 16);
362
    infoHeader[11] = (unsigned char)(img.ny >> 24);
363

364
    // Write file headers
365
    file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
366
    file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
367

368
    // Pixel data
369
    std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
370
    for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
371
        for (int x = 0; x < img.nx; ++x) {
372
            // Each pixel
373
            size_t pixelIndex = (y * img.nx + x) * 3;
374
            unsigned char pixel[3] = {
375
                img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
376
                img.buf[pixelIndex + 1],
377
                img.buf[pixelIndex]
378
            };
379
            file.write(reinterpret_cast<char*>(pixel), 3);
380
        }
381
        // Write padding for the row
382
        file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
383
    }
384

385
    file.close();
386
}
387

388
// debug function to convert f32 to u8
389
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
390
    dst.nx = src.nx;
391
    dst.ny = src.ny;
392
    dst.buf.resize(3 * src.nx * src.ny);
393
    for (size_t i = 0; i < src.buf.size(); ++i) {
394
        dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
395
    }
396
}
397
#endif
398

399

400
//
401
// clip layers
402
//
403

404
struct clip_hparams {
405
    int32_t image_size;
406
    int32_t patch_size;
407
    int32_t hidden_size;
408
    int32_t n_intermediate;
409
    int32_t projection_dim;
410
    int32_t n_head;
411
    int32_t n_layer;
412

413
    float eps;
414

415
    char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
416

417
    int32_t image_grid_pinpoints[32];
418
    int32_t image_crop_resolution;
419
};
420

421
struct clip_layer {
422
    // attention
423
    struct ggml_tensor * k_w;
424
    struct ggml_tensor * k_b;
425
    struct ggml_tensor * q_w;
426
    struct ggml_tensor * q_b;
427
    struct ggml_tensor * v_w;
428
    struct ggml_tensor * v_b;
429

430
    struct ggml_tensor * o_w;
431
    struct ggml_tensor * o_b;
432

433
    // layernorm 1
434
    struct ggml_tensor * ln_1_w;
435
    struct ggml_tensor * ln_1_b;
436

437
    // ff
438
    struct ggml_tensor * ff_i_w;
439
    struct ggml_tensor * ff_i_b;
440

441
    struct ggml_tensor * ff_o_w;
442
    struct ggml_tensor * ff_o_b;
443

444
    // layernorm 2
445
    struct ggml_tensor * ln_2_w;
446
    struct ggml_tensor * ln_2_b;
447
};
448

449
struct clip_vision_model {
450
    struct clip_hparams hparams;
451

452
    // embeddings
453
    struct ggml_tensor * class_embedding;
454
    struct ggml_tensor * patch_embeddings;
455
    struct ggml_tensor * patch_bias;
456
    struct ggml_tensor * position_embeddings;
457

458
    struct ggml_tensor * pre_ln_w;
459
    struct ggml_tensor * pre_ln_b;
460

461
    std::vector<clip_layer> layers;
462

463
    struct ggml_tensor * post_ln_w;
464
    struct ggml_tensor * post_ln_b;
465

466
    struct ggml_tensor * projection;
467

468
    // LLaVA projection
469
    struct ggml_tensor * mm_0_w = NULL;
470
    struct ggml_tensor * mm_0_b = NULL;
471
    struct ggml_tensor * mm_2_w = NULL;
472
    struct ggml_tensor * mm_2_b = NULL;
473

474
    struct ggml_tensor * image_newline = NULL;
475

476
    // Yi type models with mlp+normalization projection
477
    struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
478
    struct ggml_tensor * mm_1_b = NULL;
479
    struct ggml_tensor * mm_3_w = NULL;
480
    struct ggml_tensor * mm_3_b = NULL;
481
    struct ggml_tensor * mm_4_w = NULL;
482
    struct ggml_tensor * mm_4_b = NULL;
483

484
    // MobileVLM projection
485
    struct ggml_tensor * mm_model_mlp_1_w;
486
    struct ggml_tensor * mm_model_mlp_1_b;
487
    struct ggml_tensor * mm_model_mlp_3_w;
488
    struct ggml_tensor * mm_model_mlp_3_b;
489
    struct ggml_tensor * mm_model_block_1_block_0_0_w;
490
    struct ggml_tensor * mm_model_block_1_block_0_1_w;
491
    struct ggml_tensor * mm_model_block_1_block_0_1_b;
492
    struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
493
    struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
494
    struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
495
    struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
496
    struct ggml_tensor * mm_model_block_1_block_2_0_w;
497
    struct ggml_tensor * mm_model_block_1_block_2_1_w;
498
    struct ggml_tensor * mm_model_block_1_block_2_1_b;
499
    struct ggml_tensor * mm_model_block_2_block_0_0_w;
500
    struct ggml_tensor * mm_model_block_2_block_0_1_w;
501
    struct ggml_tensor * mm_model_block_2_block_0_1_b;
502
    struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
503
    struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
504
    struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
505
    struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
506
    struct ggml_tensor * mm_model_block_2_block_2_0_w;
507
    struct ggml_tensor * mm_model_block_2_block_2_1_w;
508
    struct ggml_tensor * mm_model_block_2_block_2_1_b;
509

510
    // MobileVLM_V2 projection
511
    struct ggml_tensor * mm_model_mlp_0_w;
512
    struct ggml_tensor * mm_model_mlp_0_b;
513
    struct ggml_tensor * mm_model_mlp_2_w;
514
    struct ggml_tensor * mm_model_mlp_2_b;
515
    struct ggml_tensor * mm_model_peg_0_w;
516
    struct ggml_tensor * mm_model_peg_0_b;
517

518
    // MINICPMV projection
519
    struct ggml_tensor * mm_model_pos_embed_k;
520
    struct ggml_tensor * mm_model_query;
521
    struct ggml_tensor * mm_model_proj;
522
    struct ggml_tensor * mm_model_kv_proj;
523
    struct ggml_tensor * mm_model_attn_q_w;
524
    struct ggml_tensor * mm_model_attn_q_b;
525
    struct ggml_tensor * mm_model_attn_k_w;
526
    struct ggml_tensor * mm_model_attn_k_b;
527
    struct ggml_tensor * mm_model_attn_v_w;
528
    struct ggml_tensor * mm_model_attn_v_b;
529
    struct ggml_tensor * mm_model_attn_o_w;
530
    struct ggml_tensor * mm_model_attn_o_b;
531
    struct ggml_tensor * mm_model_ln_q_w;
532
    struct ggml_tensor * mm_model_ln_q_b;
533
    struct ggml_tensor * mm_model_ln_kv_w;
534
    struct ggml_tensor * mm_model_ln_kv_b;
535
    struct ggml_tensor * mm_model_ln_post_w;
536
    struct ggml_tensor * mm_model_ln_post_b;
537
};
538

539
struct clip_ctx {
540
    bool has_text_encoder    = false;
541
    bool has_vision_encoder  = false;
542
    bool has_llava_projector = false;
543
    bool has_minicpmv_projector = false;
544
    int minicpmv_version = 2;
545

546
    struct clip_vision_model vision_model;
547
    projector_type proj_type = PROJECTOR_TYPE_MLP;
548

549
    float image_mean[3];
550
    float image_std[3];
551
    bool use_gelu = false;
552
    int32_t ftype = 1;
553

554
    bool has_class_embedding = true;
555
    bool has_pre_norm = true;
556
    bool has_post_norm = false;
557
    bool has_patch_bias = false;
558

559
    struct gguf_context * ctx_gguf;
560
    struct ggml_context * ctx_data;
561

562
    std::vector<uint8_t> buf_compute_meta;
563

564
    // memory buffers to evaluate the model
565
    ggml_backend_buffer_t params_buffer  = NULL;
566

567
    ggml_backend_t backend       = NULL;
568
    ggml_gallocr_t compute_alloc = NULL;
569

570
    struct clip_image_size * load_image_size;
571
};
572

573
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
574
    if (!ctx->has_vision_encoder) {
575
        LOG_ERR("This gguf file seems to have no vision encoder\n");
576
        return nullptr;
577
    }
578

579
    const auto & model = ctx->vision_model;
580
    const auto & hparams = model.hparams;
581

582
    const int image_size = hparams.image_size;
583
    int image_size_width  = image_size;
584
    int image_size_height = image_size;
585
    if (ctx->has_minicpmv_projector) {
586
        if (load_image_size == nullptr) {
587
            load_image_size = clip_image_size_init();
588
        }
589
        LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
590
        image_size_width  = load_image_size->width;
591
        image_size_height = load_image_size->height;
592
        if (is_inf) {
593
            image_size_width  = imgs->data->nx;
594
            image_size_height = imgs->data->ny;
595
        }
596
    }
597
    const int patch_size           = hparams.patch_size;
598
    const int num_patches          = ((image_size_width / patch_size) * (image_size_height / patch_size));
599
    const int num_positions        = num_patches + (ctx->has_class_embedding ? 1 : 0);
600
    const int hidden_size          = hparams.hidden_size;
601
    const int n_head               = hparams.n_head;
602
    const int d_head               = hidden_size / n_head;
603
    int n_layer                    = hparams.n_layer;
604
    const float eps                = hparams.eps;
605

606
    const int batch_size = imgs->size;
607

608
    if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
609
        GGML_ASSERT(batch_size == 1);
610
    }
611

612
    struct ggml_init_params params = {
613
        /*.mem_size   =*/ ctx->buf_compute_meta.size(),
614
        /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
615
        /*.no_alloc   =*/ true,
616
    };
617

618
    struct ggml_context * ctx0 = ggml_init(params);
619
    struct ggml_cgraph * gf = ggml_new_graph(ctx0);
620

621
    struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
622
    ggml_set_name(inp_raw, "inp_raw");
623
    ggml_set_input(inp_raw);
624

625
    struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
626

627
    inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
628
    inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
629

630
    if (ctx->has_patch_bias) {
631
        // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
632
        inp = ggml_add(ctx0, inp, model.patch_bias);
633
    }
634
    struct ggml_tensor * embeddings = inp;
635
    struct ggml_tensor * pos_embed = nullptr;
636

637
    if (ctx->has_llava_projector) {
638
        // concat class_embeddings and patch_embeddings
639
        if (ctx->has_class_embedding) {
640
            embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
641
            ggml_set_name(embeddings, "embeddings");
642
            ggml_set_input(embeddings);
643
            embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
644
                    embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
645
            embeddings = ggml_acc(ctx0, embeddings, inp,
646
                    embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
647
        }
648
    }
649

650
    struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
651
    ggml_set_name(positions, "positions");
652
    ggml_set_input(positions);
653

654
    embeddings =
655
        ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
656

657
    if (ctx->has_minicpmv_projector) {
658
        int pos_w = image_size_width/patch_size;
659
        int pos_h = image_size_height/patch_size;
660
        if (ctx->minicpmv_version == 2) {
661
            pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
662
        }
663
        else if (ctx->minicpmv_version == 3) {
664
            pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
665
        }
666
        ggml_set_name(pos_embed, "pos_embed");
667
        ggml_set_input(pos_embed);
668
    }
669

670
    // pre-layernorm
671
    if (ctx->has_pre_norm) {
672
        embeddings = ggml_norm(ctx0, embeddings, eps);
673
        ggml_set_name(embeddings, "pre_ln");
674

675
        embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
676
    }
677

678
    // loop over layers
679
    if (ctx->has_minicpmv_projector) {
680
        n_layer += 1;
681
    }
682
    for (int il = 0; il < n_layer - 1; il++) {
683
        struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
684

685
        //const size_t nb_q_w = model.layers[il].q_w->nb[0];
686

687
        // layernorm1
688
        {
689
            cur = ggml_norm(ctx0, cur, eps);
690

691
            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
692
                           model.layers[il].ln_1_b);
693
        }
694

695
        // self-attention
696
        {
697

698
            struct ggml_tensor * Q =
699
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
700

701
            Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
702
            Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
703
            Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
704
            Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
705

706
            struct ggml_tensor * K =
707
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
708

709
            K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
710
            K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
711
            K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
712

713
            struct ggml_tensor * V =
714
                ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
715

716
            V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
717
            V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
718
            V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
719

720
            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
721
            KQ = ggml_soft_max_inplace(ctx0, KQ);
722
            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
723
            KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
724
            KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
725

726
            cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
727
        }
728

729
        // attention output
730
        cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
731

732
        // re-add the layer input, e.g., residual
733
        cur = ggml_add(ctx0, cur, embeddings);
734

735
        embeddings = cur; // embeddings = residual, cur = hidden_states
736

737
        // layernorm2
738
        {
739
            cur = ggml_norm(ctx0, cur, eps);
740

741
            cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
742
        }
743

744
        cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
745
        cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
746

747
        if (ctx->use_gelu) {
748
            cur = ggml_gelu_inplace(ctx0, cur);
749
        } else {
750
            cur = ggml_gelu_quick_inplace(ctx0, cur);
751
        }
752

753
        cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
754
        cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
755

756
        // residual 2
757
        cur = ggml_add(ctx0, embeddings, cur);
758

759
        embeddings = cur;
760
    }
761

762
    // post-layernorm
763
    if (ctx->has_post_norm) {
764
        embeddings = ggml_norm(ctx0, embeddings, eps);
765
        ggml_set_name(embeddings, "post_ln");
766

767
        embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
768
    }
769

770
    // llava projector
771
    if (ctx->has_llava_projector) {
772
        embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
773

774
        struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
775
        ggml_set_name(patches, "patches");
776
        ggml_set_input(patches);
777

778
        // shape [1, 576, 1024]
779
        // ne is whcn, ne = [1024, 576, 1, 1]
780
        embeddings = ggml_get_rows(ctx0, embeddings, patches);
781

782
        // print_tensor_info(embeddings, "embeddings");
783

784
        // llava projector
785
        if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
786
            embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
787
            embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
788

789
            embeddings = ggml_gelu(ctx0, embeddings);
790
            embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
791
            embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
792
        }
793
        else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
794
            embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
795
            embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
796
            // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
797
            // First LayerNorm
798
            embeddings = ggml_norm(ctx0, embeddings, eps);
799
            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
800
                                model.mm_1_b);
801

802
            // GELU activation
803
            embeddings = ggml_gelu(ctx0, embeddings);
804

805
            // Second linear layer
806
            embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
807
            embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
808

809
            // Second LayerNorm
810
            embeddings = ggml_norm(ctx0, embeddings, eps);
811
            embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
812
                                model.mm_4_b);
813
        }
814
        else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
815
            // MobileVLM projector
816
            int n_patch = 24;
817
            struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
818
            mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
819
            mlp_1 = ggml_gelu(ctx0, mlp_1);
820
            struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
821
            mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
822
            // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
823

824
            // block 1
825
            struct ggml_tensor * block_1 = nullptr;
826
            {
827
                // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
828
                mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
829
                mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
830
                // stride = 1, padding = 1, bias is nullptr
831
                block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
832

833
                // layer norm
834
                // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
835
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
836
                // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
837
                block_1 = ggml_norm(ctx0, block_1, eps);
838
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
839
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
840

841
                // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
842
                // hardswish
843
                struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
844

845
                block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
846
                // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
847
                // pointwise conv
848
                block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
849
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
850
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
851
                block_1 = ggml_relu(ctx0, block_1);
852
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
853
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
854
                block_1 = ggml_hardsigmoid(ctx0, block_1);
855
                // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
856
                block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
857
                block_1 = ggml_mul(ctx0, block_1_hw, block_1);
858

859
                int w = block_1->ne[0], h = block_1->ne[1];
860
                block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
861
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
862

863
                // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
864
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
865
                block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
866

867
                // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
868
                block_1 = ggml_norm(ctx0, block_1, eps);
869
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
870
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
871
                // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
872
                // residual
873
                block_1 = ggml_add(ctx0, mlp_3, block_1);
874
            }
875

876
            // block_2
877
            {
878
                // stride = 2
879
                block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
880

881
                // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
882
                // layer norm
883
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
884
                // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
885
                block_1 = ggml_norm(ctx0, block_1, eps);
886
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
887
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
888
                // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
889
                // hardswish
890
                struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
891

892
                // not sure the parameters is right for globalAvgPooling
893
                block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
894
                // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
895
                // pointwise conv
896
                block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
897
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
898
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
899
                block_1 = ggml_relu(ctx0, block_1);
900
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
901
                block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
902
                block_1 = ggml_hardsigmoid(ctx0, block_1);
903

904
                // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
905
                block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
906
                block_1 = ggml_mul(ctx0, block_1_hw, block_1);
907

908
                int w = block_1->ne[0], h = block_1->ne[1];
909
                block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
910
                block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
911
                // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
912
                block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
913
                block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
914

915

916
                // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
917
                block_1 = ggml_norm(ctx0, block_1, eps);
918
                block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
919
                block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
920
                // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
921
            }
922
            embeddings = block_1;
923
        }
924
        else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
925
        {
926
            int n_patch = 24;
927
            struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
928
            mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
929
            mlp_0 = ggml_gelu(ctx0, mlp_0);
930
            struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
931
            mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
932
            // mlp_2 ne = [2048, 576, 1, 1]
933
            // // AVG Pool Layer 2*2, strides = 2
934
            mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
935
            // mlp_2 ne = [576, 2048, 1, 1]
936
            mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
937
            // mlp_2 ne [24, 24, 2048, 1]
938
            mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
939
            // weight ne = [3, 3, 2048, 1]
940
            struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
941
            peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
942
            peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
943
            mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
944
            peg_0 = ggml_add(ctx0, peg_0, mlp_2);
945
            peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
946
            embeddings = peg_0;
947
        }
948
        else {
949
            GGML_ABORT("fatal error");
950
        }
951
    }
952
    // minicpmv projector
953
    else if (ctx->has_minicpmv_projector)
954
    {
955
        if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
956
            struct ggml_tensor * q = model.mm_model_query;
957
            { // layernorm
958
                q = ggml_norm(ctx0, q, eps);
959
                q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
960
            }
961
            struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
962
            { // layernorm
963
                v = ggml_norm(ctx0, v, eps);
964
                v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
965
            }
966
            struct ggml_tensor * k;
967
            { // position
968
                // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
969
                k = ggml_add(ctx0, v, pos_embed);
970
            }
971

972
            { // attention
973
                int hidden_size = 4096;
974
                const int d_head = 128;
975
                int n_head = hidden_size/d_head;
976
                int num_query = 96;
977
                if (ctx->minicpmv_version == 2) {
978
                    hidden_size = 4096;
979
                    n_head = hidden_size/d_head;
980
                    num_query = 96;
981
                }
982
                else if (ctx->minicpmv_version == 3) {
983
                    hidden_size = 3584;
984
                    n_head = hidden_size/d_head;
985
                    num_query = 64;
986
                }
987

988
                struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
989
                Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
990
                struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
991
                struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
992
                // permute
993
                Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
994
                Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
995
                Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
996
                K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
997
                K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
998
                K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
999
                V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
1000
                V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
1001
                V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
1002
                struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
1003
                KQ = ggml_soft_max_inplace(ctx0, KQ);
1004
                struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
1005
                KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
1006
                KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
1007
                KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
1008

1009
                embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
1010
            }
1011
            { // layernorm
1012
                embeddings = ggml_norm(ctx0, embeddings, eps);
1013
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
1014
            }
1015
            embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
1016
        }
1017
        else {
1018
            GGML_ASSERT(false);
1019
        }
1020
    }
1021

1022
    // build the graph
1023
    ggml_build_forward_expand(gf, embeddings);
1024

1025
    ggml_free(ctx0);
1026

1027
    return gf;
1028
}
1029

1030
// read and create ggml_context containing the tensors and their data
1031
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
1032
    struct ggml_context * meta = NULL;
1033

1034
    struct gguf_init_params params = {
1035
        /*.no_alloc = */ true,
1036
        /*.ctx      = */ &meta,
1037
    };
1038

1039
    struct gguf_context * ctx = gguf_init_from_file(fname, params);
1040
    if (!ctx) {
1041
        throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
1042
    }
1043

1044
    if (verbosity >= 1) {
1045
        const int n_tensors = gguf_get_n_tensors(ctx);
1046
        const int n_kv = gguf_get_n_kv(ctx);
1047
        const int ftype = get_u32(ctx, KEY_FTYPE);
1048
        const std::string ftype_str = get_ftype(ftype);
1049
        const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
1050
        const std::string description = gguf_get_val_str(ctx, idx_desc);
1051
        const int idx_name = gguf_find_key(ctx, KEY_NAME);
1052
        if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
1053
            const std::string name = gguf_get_val_str(ctx, idx_name);
1054
            LOG_INF("%s: model name:   %s\n", __func__, name.c_str());
1055
        }
1056
        LOG_INF("%s: description:  %s\n", __func__, description.c_str());
1057
        LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
1058
        LOG_INF("%s: alignment:    %zu\n", __func__, gguf_get_alignment(ctx));
1059
        LOG_INF("%s: n_tensors:    %d\n", __func__, n_tensors);
1060
        LOG_INF("%s: n_kv:         %d\n", __func__, n_kv);
1061
        LOG_INF("%s: ftype:        %s\n", __func__, ftype_str.c_str());
1062
        LOG_INF("\n");
1063
    }
1064
    const int n_tensors = gguf_get_n_tensors(ctx);
1065

1066
    // kv
1067
    const int n_kv = gguf_get_n_kv(ctx);
1068
    LOG_INF("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
1069
        __func__, n_kv, n_tensors, fname);
1070
    {
1071
        std::map<enum ggml_type, uint32_t> n_type;
1072

1073
        for (int i = 0; i < n_tensors; i++) {
1074
            enum ggml_type type = gguf_get_tensor_type(ctx, i);
1075

1076
            n_type[type]++;
1077
        }
1078

1079
        LOG_INF("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
1080
        for (int i = 0; i < n_kv; i++) {
1081
            const char * name           = gguf_get_key(ctx, i);
1082
            const enum gguf_type type   = gguf_get_kv_type(ctx, i);
1083
            const std::string type_name =
1084
                type == GGUF_TYPE_ARRAY
1085
                ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
1086
                : gguf_type_name(type);
1087

1088
            std::string value          = gguf_kv_to_str(ctx, i);
1089
            const size_t MAX_VALUE_LEN = 40;
1090
            if (value.size() > MAX_VALUE_LEN) {
1091
                value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
1092
            }
1093
            replace_all(value, "\n", "\\n");
1094

1095
            LOG_INF("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
1096
        }
1097

1098
        // print type counts
1099
        for (auto & kv : n_type) {
1100
            if (kv.second == 0) {
1101
                continue;
1102
            }
1103

1104
            LOG_INF("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
1105
        }
1106
    }
1107

1108
    // data
1109
    size_t model_size = 0;
1110
    {
1111
        for (int i = 0; i < n_tensors; ++i) {
1112
            const char * name = gguf_get_tensor_name(ctx, i);
1113
            const size_t offset = gguf_get_tensor_offset(ctx, i);
1114
            enum ggml_type type = gguf_get_tensor_type(ctx, i);
1115
            struct ggml_tensor * cur = ggml_get_tensor(meta, name);
1116
            size_t tensor_size = ggml_nbytes(cur);
1117
            model_size += tensor_size;
1118
            if (verbosity >= 3) {
1119
                LOG_INF("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
1120
                       __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
1121
            }
1122
        }
1123
    }
1124

1125
    clip_ctx * new_clip = new clip_ctx{};
1126

1127
    // update projector type
1128
    {
1129
        int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
1130
        if (idx != -1) {
1131
            const std::string proj_type = gguf_get_val_str(ctx, idx);
1132
            new_clip->proj_type = clip_projector_type_from_string(proj_type);
1133
        } else {
1134
            new_clip->proj_type = PROJECTOR_TYPE_MLP;
1135
        }
1136

1137
        if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
1138
            if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
1139
                new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
1140
            }
1141
        }
1142
    }
1143

1144
#ifdef GGML_USE_CUDA
1145
    new_clip->backend = ggml_backend_cuda_init(0);
1146
    LOG_INF("%s: CLIP using CUDA backend\n", __func__);
1147
#endif
1148

1149
#ifdef GGML_USE_METAL
1150
    new_clip->backend = ggml_backend_metal_init();
1151
    LOG_INF("%s: CLIP using Metal backend\n", __func__);
1152
#endif
1153

1154
#ifdef GGML_USE_CANN
1155
    new_clip->backend = ggml_backend_cann_init(0);
1156
    LOG_INF("%s: CLIP using CANN backend\n", __func__);
1157
#endif
1158

1159
#ifdef GGML_USE_VULKAN
1160
    new_clip->backend = ggml_backend_vk_init(0);
1161
    LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
1162
#endif
1163

1164
    if (!new_clip->backend) {
1165
        new_clip->backend = ggml_backend_cpu_init();
1166
        LOG_INF("%s: CLIP using CPU backend\n", __func__);
1167
    }
1168

1169
    // model size and capabilities
1170
    {
1171
        int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
1172
        new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
1173

1174
        idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
1175
        new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
1176

1177
        idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
1178
        if (idx != -1) {
1179
            new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
1180
        }
1181

1182
        idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ);
1183
        if (idx != -1) {
1184
            new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
1185
        }
1186

1187
        idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION);
1188
        if (idx != -1) {
1189
            new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
1190
        }
1191

1192
        // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
1193

1194
        GGML_ASSERT(new_clip->has_vision_encoder);
1195
        GGML_ASSERT(!new_clip->has_text_encoder);
1196

1197
        idx = get_key_idx(ctx, KEY_USE_GELU);
1198
        new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
1199

1200
        if (verbosity >= 1) {
1201
            LOG_INF("%s: text_encoder:   %d\n", __func__, new_clip->has_text_encoder);
1202
            LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
1203
            LOG_INF("%s: llava_projector:  %d\n", __func__, new_clip->has_llava_projector);
1204
            LOG_INF("%s: minicpmv_projector:  %d\n", __func__, new_clip->has_minicpmv_projector);
1205
            LOG_INF("%s: model size:     %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
1206
            LOG_INF("%s: metadata size:  %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
1207
        }
1208
    }
1209

1210
    LOG_INF("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
1211

1212
    // load tensors
1213
    {
1214
        std::vector<uint8_t> read_buf;
1215
        struct ggml_init_params params = {
1216
            /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
1217
            /*.mem_buffer =*/ NULL,
1218
            /*.no_alloc =*/ true,
1219
        };
1220

1221
        new_clip->ctx_data = ggml_init(params);
1222
        if (!new_clip->ctx_data) {
1223
            LOG_ERR("%s: ggml_init() failed\n", __func__);
1224
            clip_free(new_clip);
1225
            gguf_free(ctx);
1226
            return nullptr;
1227
        }
1228

1229
        auto fin = std::ifstream(fname, std::ios::binary);
1230
        if (!fin) {
1231
            LOG_ERR("cannot open model file for loading tensors\n");
1232
            clip_free(new_clip);
1233
            gguf_free(ctx);
1234
            return nullptr;
1235
        }
1236

1237
        // add tensors to context
1238
        for (int i = 0; i < n_tensors; ++i) {
1239
            const char * name = gguf_get_tensor_name(ctx, i);
1240
            struct ggml_tensor * t = ggml_get_tensor(meta, name);
1241
            struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
1242
            ggml_set_name(cur, name);
1243
        }
1244

1245
        // alloc memory and offload data
1246
        new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
1247
        for (int i = 0; i < n_tensors; ++i) {
1248
            const char * name = gguf_get_tensor_name(ctx, i);
1249
            struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
1250
            const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
1251
            fin.seekg(offset, std::ios::beg);
1252
            if (!fin) {
1253
                LOG_ERR("%s: failed to seek for tensor %s\n", __func__, name);
1254
                clip_free(new_clip);
1255
                gguf_free(ctx);
1256
                return nullptr;
1257
            }
1258
            int num_bytes = ggml_nbytes(cur);
1259
            if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
1260
                // for the CPU and Metal backend, we can read directly into the tensor
1261
                fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
1262
            } else {
1263
                // read into a temporary buffer first, then copy to device memory
1264
                read_buf.resize(num_bytes);
1265
                fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
1266
                ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
1267
            }
1268
        }
1269
        fin.close();
1270
    }
1271

1272
    // vision model
1273
    if (new_clip->has_vision_encoder) {
1274
        // load vision model
1275
        auto & vision_model = new_clip->vision_model;
1276
        auto & hparams = vision_model.hparams;
1277
        hparams.hidden_size    = get_u32(ctx, format(KEY_N_EMBD, "vision"));
1278
        hparams.n_head         = get_u32(ctx, format(KEY_N_HEAD, "vision"));
1279
        hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
1280
        hparams.n_layer        = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
1281
        hparams.image_size     = get_u32(ctx, KEY_IMAGE_SIZE);
1282
        hparams.patch_size     = get_u32(ctx, KEY_PATCH_SIZE);
1283
        hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
1284
        hparams.eps            = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
1285

1286
        try {
1287
            int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
1288
            int n = gguf_get_arr_n(ctx, idx);
1289
            const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
1290
            for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
1291
                hparams.image_grid_pinpoints[i] = pinpoints[i];
1292
            }
1293
            if (n < 32)
1294
                hparams.image_grid_pinpoints[n] = 0;
1295
        } catch (std::runtime_error & /*e*/) {
1296
            hparams.image_grid_pinpoints[0]=0;
1297
        }
1298

1299
        try {
1300
            int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
1301
            strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
1302
        } catch (std::runtime_error & /*e*/) {
1303
            strcpy(hparams.mm_patch_merge_type, "flat");
1304
        }
1305

1306
        try {
1307
            hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
1308
        } catch(const std::exception& /*e*/) {
1309
            hparams.image_crop_resolution = hparams.image_size;
1310
        }
1311

1312
        int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
1313
        int idx_std  = get_key_idx(ctx, KEY_IMAGE_STD);
1314

1315
        const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
1316
        const float * std_data  = (const float *)gguf_get_arr_data(ctx, idx_std);
1317

1318
        for (int i = 0; i < 3; ++i) {
1319
            new_clip->image_mean[i] = mean_data[i];
1320
            new_clip->image_std[i]  = std_data[i];
1321
        }
1322

1323
        if (verbosity >= 2) {
1324
            LOG_INF("\n%s: vision model hparams\n", __func__);
1325
            LOG_INF("image_size         %d\n", hparams.image_size);
1326
            LOG_INF("patch_size         %d\n", hparams.patch_size);
1327
            LOG_INF("v_hidden_size      %d\n", hparams.hidden_size);
1328
            LOG_INF("v_n_intermediate   %d\n", hparams.n_intermediate);
1329
            LOG_INF("v_projection_dim   %d\n", hparams.projection_dim);
1330
            LOG_INF("v_n_head           %d\n", hparams.n_head);
1331
            LOG_INF("v_n_layer          %d\n", hparams.n_layer);
1332
            LOG_INF("v_eps              %f\n", hparams.eps);
1333
            LOG_INF("v_image_mean       %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
1334
            LOG_INF("v_image_std        %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
1335
            LOG_INF("v_image_grid_pinpoints: ");
1336
            for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
1337
                LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
1338
            }
1339
            LOG_INF("\n");
1340
            LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
1341

1342
        }
1343

1344
        try {
1345
            vision_model.class_embedding  = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
1346
            new_clip->has_class_embedding = true;
1347
        } catch (const std::exception& /*e*/) {
1348
            new_clip->has_class_embedding = false;
1349
        }
1350

1351
        try {
1352
            vision_model.pre_ln_w  = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
1353
            vision_model.pre_ln_b  = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
1354
            new_clip->has_pre_norm = true;
1355
        } catch (std::exception & /*e*/) {
1356
            new_clip->has_pre_norm = false;
1357
        }
1358

1359
        try {
1360
            vision_model.post_ln_w  = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
1361
            vision_model.post_ln_b  = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
1362
            new_clip->has_post_norm = true;
1363
        } catch (std::exception & /*e*/) {
1364
            new_clip->has_post_norm = false;
1365
        }
1366

1367
        try {
1368
            vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
1369
            new_clip->has_patch_bias = true;
1370
        } catch (std::exception & /*e*/) {
1371
            new_clip->has_patch_bias = false;
1372
        }
1373

1374
        try {
1375
            vision_model.patch_embeddings    = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
1376
            vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
1377
        } catch(const std::exception& /*e*/) {
1378
            LOG_ERR("%s: failed to load vision model tensors\n", __func__);
1379
        }
1380

1381
        // LLaVA projection
1382
        if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
1383
            vision_model.mm_0_w              = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
1384
            vision_model.mm_0_b              = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
1385
            try {
1386
                // Yi-type llava
1387
                vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
1388
                vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
1389
            } catch (std::runtime_error & /*e*/) { }
1390
            try {
1391
                // missing in Yi-type llava
1392
                vision_model.mm_2_w              = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
1393
                vision_model.mm_2_b              = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
1394
            } catch (std::runtime_error & /*e*/) { }
1395
            try {
1396
                // Yi-type llava
1397
                vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
1398
                vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
1399
            } catch (std::runtime_error & /*e*/) { }
1400
            try {
1401
                // Yi-type llava
1402
                vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
1403
                vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
1404
            } catch (std::runtime_error & /*e*/) { }
1405
            try {
1406
                vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
1407
                // LOG_INF("%s: image_newline tensor (llava-1.6) found\n", __func__);
1408
            } catch (std::runtime_error & /*e*/) { }
1409
        } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
1410
            // MobileVLM projection
1411
            vision_model.mm_model_mlp_1_w               = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
1412
            vision_model.mm_model_mlp_1_b               = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
1413
            vision_model.mm_model_mlp_3_w               = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
1414
            vision_model.mm_model_mlp_3_b               = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
1415
            vision_model.mm_model_block_1_block_0_0_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
1416
            vision_model.mm_model_block_1_block_0_1_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
1417
            vision_model.mm_model_block_1_block_0_1_b   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
1418
            vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
1419
            vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
1420
            vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
1421
            vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
1422
            vision_model.mm_model_block_1_block_2_0_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
1423
            vision_model.mm_model_block_1_block_2_1_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
1424
            vision_model.mm_model_block_1_block_2_1_b   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
1425
            vision_model.mm_model_block_2_block_0_0_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
1426
            vision_model.mm_model_block_2_block_0_1_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
1427
            vision_model.mm_model_block_2_block_0_1_b   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
1428
            vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
1429
            vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
1430
            vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
1431
            vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
1432
            vision_model.mm_model_block_2_block_2_0_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
1433
            vision_model.mm_model_block_2_block_2_1_w   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
1434
            vision_model.mm_model_block_2_block_2_1_b   = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
1435
        }
1436
        else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
1437
        {
1438
            // MobilVLM_V2 projection
1439
            vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
1440
            vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
1441
            vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
1442
            vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
1443
            vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
1444
            vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
1445
        }
1446
        else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
1447
            // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
1448
            vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
1449
            vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
1450
            vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
1451
            vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
1452
            vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
1453
            vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
1454
            vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
1455
            vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
1456
            vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
1457
            vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
1458
            vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
1459
            vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
1460
            vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
1461
            vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
1462
            vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
1463
            vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
1464
            vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
1465
            vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
1466
        }
1467
        else {
1468
            std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
1469
            throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
1470
        }
1471

1472
        vision_model.layers.resize(hparams.n_layer);
1473

1474
        for (int il = 0; il < hparams.n_layer; ++il) {
1475
            auto & layer = vision_model.layers[il];
1476
            layer.k_w    = get_tensor(new_clip->ctx_data, format(TN_ATTN_K,      "v", il, "weight"));
1477
            layer.q_w    = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q,      "v", il, "weight"));
1478
            layer.v_w    = get_tensor(new_clip->ctx_data, format(TN_ATTN_V,      "v", il, "weight"));
1479
            layer.o_w    = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
1480
            layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1,        "v", il, "weight"));
1481
            layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2,        "v", il, "weight"));
1482
            layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN,    "v", il, "weight"));
1483
            layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP,      "v", il, "weight"));
1484
            layer.k_b    = get_tensor(new_clip->ctx_data, format(TN_ATTN_K,      "v", il, "bias"));
1485
            layer.q_b    = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q,      "v", il, "bias"));
1486
            layer.v_b    = get_tensor(new_clip->ctx_data, format(TN_ATTN_V,      "v", il, "bias"));
1487
            layer.o_b    = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
1488
            layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1,        "v", il, "bias"));
1489
            layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2,        "v", il, "bias"));
1490
            layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN,    "v", il, "bias"));
1491
            layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP,      "v", il, "bias"));
1492
        }
1493
    }
1494

1495
    ggml_free(meta);
1496

1497
    new_clip->ctx_gguf = ctx;
1498

1499
    // measure mem requirement and allocate
1500
    {
1501
        new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
1502
        new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
1503
        clip_image_f32_batch batch;
1504
        batch.size = 1;
1505
        ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
1506
        ggml_gallocr_reserve(new_clip->compute_alloc, gf);
1507
        size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
1508
        LOG_INF("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
1509
    }
1510

1511
    return new_clip;
1512
}
1513

1514
void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
1515
    ctx_clip->load_image_size = load_image_size;
1516
}
1517

1518
struct clip_image_size * clip_image_size_init() {
1519
    struct clip_image_size * load_image_size = new struct clip_image_size();
1520
    load_image_size->width = 448;
1521
    load_image_size->height = 448;
1522
    return load_image_size;
1523
}
1524

1525
struct clip_image_u8 * clip_image_u8_init() {
1526
    return new clip_image_u8();
1527
}
1528

1529
struct clip_image_f32 * clip_image_f32_init() {
1530
    return new clip_image_f32();
1531
}
1532

1533
void clip_image_u8_free(struct clip_image_u8  * img) { delete img; }
1534
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
1535
void clip_image_u8_batch_free(struct clip_image_u8_batch  * batch) {
1536
    if (batch->size > 0) {
1537
        delete[] batch->data;
1538
        batch->size = 0;
1539
    }
1540
}
1541
void clip_image_f32_batch_free(struct clip_image_f32_batch  * batch) {
1542
    if (batch->size > 0) {
1543
        delete[] batch->data;
1544
        batch->size = 0;
1545
    }
1546
}
1547

1548
static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
1549
    img->nx = nx;
1550
    img->ny = ny;
1551
    img->buf.resize(3 * nx * ny);
1552
    memcpy(img->buf.data(), data, img->buf.size());
1553
}
1554

1555
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
1556
    int nx, ny, nc;
1557
    auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
1558
    if (!data) {
1559
        LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
1560
        return false;
1561
    }
1562
    build_clip_img_from_data(data, nx, ny, img);
1563
    stbi_image_free(data);
1564
    return true;
1565
}
1566

1567
bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
1568
    int nx, ny, nc;
1569
    auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
1570
    if (!data) {
1571
        LOG_ERR("%s: failed to decode image bytes\n", __func__);
1572
        return false;
1573
    }
1574
    build_clip_img_from_data(data, nx, ny, img);
1575
    stbi_image_free(data);
1576
    return true;
1577
}
1578

1579
// Linear interpolation between two points
1580
inline float clip_lerp(float s, float e, float t) {
1581
    return s + (e - s) * t;
1582
}
1583
// Bilinear resize function
1584
static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
1585
    dst.nx = target_width;
1586
    dst.ny = target_height;
1587
    dst.buf.resize(3 * target_width * target_height);
1588

1589
    float x_ratio = static_cast<float>(src.nx - 1) / target_width;
1590
    float y_ratio = static_cast<float>(src.ny - 1) / target_height;
1591

1592
    for (int y = 0; y < target_height; y++) {
1593
        for (int x = 0; x < target_width; x++) {
1594
            float px = x_ratio * x;
1595
            float py = y_ratio * y;
1596
            int x_floor = static_cast<int>(px);
1597
            int y_floor = static_cast<int>(py);
1598
            float x_lerp = px - x_floor;
1599
            float y_lerp = py - y_floor;
1600

1601
            for (int c = 0; c < 3; c++) {
1602
                float top = clip_lerp(
1603
                    static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
1604
                    static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
1605
                    x_lerp
1606
                );
1607
                float bottom = clip_lerp(
1608
                    static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
1609
                    static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
1610
                    x_lerp
1611
                );
1612
                dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
1613
            }
1614
        }
1615
    }
1616
}
1617

1618
// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
1619
static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) {
1620
    dst->nx = src->nx;
1621
    dst->ny = src->ny;
1622
    dst->buf.resize(src->buf.size());
1623

1624
    for (size_t i = 0; i < src->buf.size(); ++i) {
1625
        int c = i % 3; // rgb
1626
        dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c];
1627
    }
1628
}
1629

1630
inline int clip(int x, int lower, int upper) {
1631
    return std::max(lower, std::min(x, upper));
1632
}
1633

1634
static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
1635
    const int nx = img.nx;
1636
    const int ny = img.ny;
1637

1638
    dst.nx = target_width;
1639
    dst.ny = target_height;
1640
    dst.buf.resize(3 * target_width * target_height);
1641

1642
    float Cc;
1643
    float C[5];
1644
    float d0, d2, d3, a0, a1, a2, a3;
1645
    int i, j, k, jj;
1646
    int x, y;
1647
    float dx, dy;
1648
    float tx, ty;
1649

1650
    tx = (float)nx / (float)target_width;
1651
    ty = (float)ny / (float)target_height;
1652

1653
    // Bicubic interpolation; adapted from ViT.cpp, inspired from :
1654
    //    -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
1655
    //    -> https://en.wikipedia.org/wiki/Bicubic_interpolation
1656

1657
    for (i = 0; i < target_height; i++) {
1658
        for (j = 0; j < target_width; j++) {
1659
            x = (int)(tx * j);
1660
            y = (int)(ty * i);
1661

1662
            dx = tx * j - x;
1663
            dy = ty * i - y;
1664

1665
            for (k = 0; k < 3; k++) {
1666
                for (jj = 0; jj <= 3; jj++) {
1667
                    d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
1668
                    d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
1669
                    d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
1670
                    a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
1671

1672
                    a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
1673
                    a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
1674
                    a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
1675

1676
                    C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
1677

1678
                    d0 = C[0] - C[1];
1679
                    d2 = C[2] - C[1];
1680
                    d3 = C[3] - C[1];
1681
                    a0 = C[1];
1682
                    a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
1683
                    a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
1684
                    a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
1685
                    Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
1686

1687
                    const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
1688
                    dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
1689
                }
1690
            }
1691
        }
1692
    }
1693

1694
    return true;
1695
}
1696

1697
// llava-1.6 type of resize_and_pad (black)
1698
static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
1699
    int target_width = target_resolution.first;
1700
    int target_height = target_resolution.second;
1701

1702
    float scale_w = static_cast<float>(target_width) / image.nx;
1703
    float scale_h = static_cast<float>(target_height) / image.ny;
1704

1705
    int new_width, new_height;
1706

1707
    if (scale_w < scale_h) {
1708
        new_width = target_width;
1709
        new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
1710
    } else {
1711
        new_height = target_height;
1712
        new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
1713
    }
1714

1715
    clip_image_u8 resized_image;
1716
    // bilinear_resize(image, resized_image, new_width, new_height);
1717
    bicubic_resize(image, resized_image, new_width, new_height);
1718

1719
    clip_image_u8 padded_image;
1720
    padded_image.nx = target_width;
1721
    padded_image.ny = target_height;
1722
    padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
1723

1724
    // Calculate padding offsets
1725
    int pad_x = (target_width - new_width) / 2;
1726
    int pad_y = (target_height - new_height) / 2;
1727

1728
    // Copy the resized image into the center of the padded buffer
1729
    for (int y = 0; y < new_height; ++y) {
1730
        for (int x = 0; x < new_width; ++x) {
1731
            for (int c = 0; c < 3; ++c) {
1732
                padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
1733
            }
1734
        }
1735
    }
1736
    image_output = std::move(padded_image);
1737
}
1738

1739
/**
1740
 * Selects the best resolution from a list of possible resolutions based on the original size.
1741
 *
1742
 * @param original_size The original size of the image in the format (width, height).
1743
 * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
1744
 * @return The best fit resolution in the format (width, height).
1745
 */
1746
static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
1747
    int original_width = original_size.first;
1748
    int original_height = original_size.second;
1749
    std::pair<int, int> best_fit;
1750
    int max_effective_resolution = 0;
1751
    int min_wasted_resolution = std::numeric_limits<int>::max();
1752

1753
    for (const auto& resolution : possible_resolutions) {
1754
        int width = resolution.first;
1755
        int height = resolution.second;
1756
        float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
1757
        int downscaled_width = static_cast<int>(original_width * scale);
1758
        int downscaled_height = static_cast<int>(original_height * scale);
1759
        int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
1760
        int wasted_resolution = (width * height) - effective_resolution;
1761
        // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
1762
        if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
1763
            max_effective_resolution = effective_resolution;
1764
            min_wasted_resolution = wasted_resolution;
1765
            best_fit = resolution;
1766
        }
1767
    }
1768

1769
    return best_fit;
1770
}
1771

1772
static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
1773
    std::vector<clip_image_u8*> patches;
1774
    int width = image.nx;
1775
    int height = image.ny;
1776
    for (int i = 0; i < height; i += patch_size) {
1777
        for (int j = 0; j < width; j += patch_size) {
1778
            clip_image_u8 *patch = clip_image_u8_init();
1779
            patch->nx = std::min(patch_size, width - j);
1780
            patch->ny = std::min(patch_size, height - i);
1781
            patch->buf.resize(3 * patch->nx * patch->ny);
1782
            for (int y = 0; y < patch->ny; ++y) {
1783
                for (int x = 0; x < patch->nx; ++x) {
1784
                    for (int c = 0; c < 3; ++c) {
1785
                        patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
1786
                    }
1787
                }
1788
            }
1789
            patches.push_back(patch);
1790
        }
1791
    }
1792
    return patches;
1793
}
1794

1795
static int ensure_divide(int length, int patch_size) {
1796
    return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
1797
}
1798

1799
static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
1800
    int width = original_size.first;
1801
    int height = original_size.second;
1802
    if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
1803
        float r = static_cast<float>(width) / height;
1804
        height = static_cast<int>(scale_resolution / std::sqrt(r));
1805
        width = static_cast<int>(height * r);
1806
    }
1807
    int best_width = ensure_divide(width, patch_size);
1808
    int best_height = ensure_divide(height, patch_size);
1809
    return std::make_pair(best_width, best_height);
1810
}
1811

1812
static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
1813
    int width, height;
1814
    std::tie(width, height) = original_size;
1815
    int grid_x, grid_y;
1816
    std::tie(grid_x, grid_y) = grid;
1817

1818
    int refine_width = ensure_divide(width, grid_x);
1819
    int refine_height = ensure_divide(height, grid_y);
1820

1821
    int grid_width = refine_width / grid_x;
1822
    int grid_height = refine_height / grid_y;
1823

1824
   // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
1825
    auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
1826
    int best_grid_width, best_grid_height;
1827
    std::tie(best_grid_width, best_grid_height) = best_grid_size;
1828

1829
  //  std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
1830
    std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
1831
    return refine_size;
1832
}
1833

1834
static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
1835
    std::vector<int> candidate_split_grids_nums;
1836
    for (int i : {multiple - 1, multiple, multiple + 1}) {
1837
        if (i == 1 || i > max_slice_nums) {
1838
            continue;
1839
        }
1840
        candidate_split_grids_nums.push_back(i);
1841
    }
1842

1843
    std::vector<std::pair<int, int>> candidate_grids;
1844
    for (int split_grids_nums : candidate_split_grids_nums) {
1845
        int m = 1;
1846
        while (m <= split_grids_nums) {
1847
            if (split_grids_nums % m == 0) {
1848
                candidate_grids.emplace_back(m, split_grids_nums / m);
1849
            }
1850
            ++m;
1851
        }
1852
    }
1853

1854
    std::pair<int, int> best_grid{1, 1};
1855
    float min_error = std::numeric_limits<float>::infinity();
1856
    for (const auto& grid : candidate_grids) {
1857
        float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
1858
        if (error < min_error) {
1859
            best_grid = grid;
1860
            min_error = error;
1861
        }
1862
    }
1863
    return best_grid;
1864
}
1865

1866
// inspired from LLaVA-UHD:
1867
//    -> https://arxiv.org/pdf/2403.11703
1868
//    -> https://github.com/thunlp/LLaVA-UHD
1869
//    -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
1870
static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
1871
    const std::pair<int, int> original_size={img->nx,img->ny};
1872
    const int original_width = img->nx;
1873
    const int original_height = img->ny;
1874
    const float log_ratio = log(1.0*original_width/original_height);
1875
    const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
1876
    const int multiple = fmin(ceil(ratio), max_slice_nums);
1877

1878
    std::vector<std::vector<clip_image_u8 *>> images;
1879
    LOG_INF("%s: multiple %d\n", __func__, multiple);
1880
    images.push_back(std::vector<clip_image_u8 *>());
1881

1882
    if (multiple <= 1) {
1883
        auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
1884
        clip_image_u8 * source_image = clip_image_u8_init();
1885
        bicubic_resize(*img, *source_image, best_size.first, best_size.second);
1886
        // source_image = image.resize(best_size, Image.Resampling.BICUBIC)
1887
        images[images.size()-1].push_back(source_image);
1888
    }
1889
    else if (multiple > 1) {
1890
        auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
1891
        clip_image_u8 * source_image = clip_image_u8_init();
1892
        bicubic_resize(*img, *source_image, best_size.first, best_size.second);
1893
        // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
1894
        LOG_INF("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
1895
        images[images.size()-1].push_back(source_image);
1896

1897
        std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
1898
        LOG_INF("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
1899

1900
        auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
1901
        clip_image_u8 * refine_image = clip_image_u8_init();
1902
        bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
1903

1904
        LOG_INF("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
1905

1906
        // split_to_patches
1907
        int width = refine_image->nx;
1908
        int height = refine_image->ny;
1909
        int grid_x = int(width / best_grid.first);
1910
        int grid_y = int(height / best_grid.second);
1911
        for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
1912
            images.push_back(std::vector<clip_image_u8 *>());
1913
            for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
1914
                clip_image_u8 * patch = clip_image_u8_init();
1915
                patch->nx = grid_x;
1916
                patch->ny = grid_y;
1917
                patch->buf.resize(3 * patch->nx * patch->ny);
1918
                for (int y = patches_i; y < patches_i + grid_y; ++y) {
1919
                    for (int x = patches_j; x < patches_j + grid_x; ++x) {
1920
                        const int i = 3 * (y * refine_image->nx + x);
1921
                        const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
1922
                        patch->buf[j]   = refine_image->buf[i];
1923
                        patch->buf[j+1] = refine_image->buf[i+1];
1924
                        patch->buf[j+2] = refine_image->buf[i+2];
1925
                    }
1926
                }
1927
                images[images.size()-1].push_back(patch);
1928
            }
1929
        }
1930
    }
1931
    return images;
1932
}
1933

1934
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
1935
    const int max_slice_nums=9;
1936
    const int scale_resolution=448;
1937
    const int original_width = ctx_clip->load_image_size->width;
1938
    const int original_height = ctx_clip->load_image_size->height;
1939
    const float log_ratio = log(1.0*original_width/original_height);
1940
    const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
1941
    const int multiple = fmin(ceil(ratio), max_slice_nums);
1942
    std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
1943
    return best_grid.first;
1944
}
1945

1946
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
1947
// res_imgs memory is being allocated here, previous allocations will be freed if found
1948
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
1949

1950
    if(clip_is_minicpmv(ctx)){
1951
        int max_slice_nums = 9;
1952
        std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums);
1953
        res_imgs->size = 0;
1954
        for (size_t i = 0; i < imgs.size(); ++i){
1955
            res_imgs->size += imgs[i].size();
1956
        }
1957
        res_imgs->data = new clip_image_f32[res_imgs->size];
1958
        int idx = 0;
1959
        for (size_t i = 0; i < imgs.size(); ++i) {
1960
            for (size_t j = 0; j < imgs[i].size(); ++j) {
1961
                LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
1962
                clip_image_f32 * res = clip_image_f32_init();
1963
                normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
1964
                res_imgs->data[idx++] = *res;
1965
                clip_image_f32_free(res);
1966
            }
1967
        }
1968
        return true;
1969
    }
1970

1971
    bool pad_to_square = true;
1972
    if (!ctx->has_vision_encoder) {
1973
        LOG_ERR("This gguf file seems to have no vision encoder\n");
1974
        return false;
1975
    }
1976
    auto & params = ctx->vision_model.hparams;
1977
    // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
1978
    if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) {
1979
        pad_to_square = false;
1980
    }
1981
    // free the previous res_imgs if any set
1982
    if (res_imgs->size > 0) {
1983
        clip_image_f32_batch_free(res_imgs);
1984
    }
1985
    res_imgs->data = nullptr;
1986
    res_imgs->size = 0;
1987

1988
    // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
1989
    // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
1990

1991
    clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
1992
    if (pad_to_square && img->nx != img->ny) {
1993
        int longer_side = std::max(img->nx, img->ny);
1994
        temp->nx = longer_side;
1995
        temp->ny = longer_side;
1996
        temp->buf.resize(3 * longer_side * longer_side);
1997
        const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
1998

1999
        // fill with background color
2000
        for (size_t i = 0; i < temp->buf.size(); i++) {
2001
            temp->buf[i] = bc[i % 3];
2002
        }
2003

2004
        // copy from the input image
2005
        for (int y = 0; y < img->ny; y++) {
2006
            for (int x = 0; x < img->nx; x++) {
2007
                const int i = 3 * (y * img->nx + x);
2008
                const int j = 3 * (y * temp->nx + x);
2009
                temp->buf[j]   = img->buf[i];
2010
                temp->buf[j+1] = img->buf[i+1];
2011
                temp->buf[j+2] = img->buf[i+2];
2012
            }
2013
        }
2014
    } else {
2015
        if (params.image_grid_pinpoints[0] != 0) {
2016
            // "spatial_unpad" with "anyres" processing for llava-1.6
2017
            std::vector<std::pair<int, int>> possible_resolutions;
2018
            for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
2019
                possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
2020
            }
2021
            std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
2022
            // clip_image_save_to_bmp(*img, "input.bmp");
2023
            resize_and_pad_image(*img, *temp, best_resolution);  // we do not pad with mean-bg color anymore in llava-1.6
2024
            // clip_image_save_to_bmp(*temp, "resized.bmp");
2025
            // visually verify normalized image:
2026
            // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
2027
            // {
2028
            //     clip_image_u8 * temp2 = clip_image_u8_init();
2029
            //     clip_image_convert_f32_to_u8(*res, *temp2);
2030
            //     clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
2031
            //     clip_image_u8_free(temp2);
2032
            // }
2033

2034
            std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
2035

2036
            clip_image_u8 *image_original_resize = clip_image_u8_init();
2037
            // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
2038
            bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
2039
            patches.insert(patches.begin(), image_original_resize);
2040
            // clip_image_f32_batch_init(patches.size());
2041
            res_imgs->size = patches.size();
2042
            res_imgs->data = new clip_image_f32[res_imgs->size];
2043
            int num=0;
2044
            for (auto& patch : patches) {
2045
                normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
2046
                num++;
2047
            }
2048

2049
            for (size_t i = 0; i < patches.size(); i++) {
2050
                // LOG_DBG("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
2051
                clip_image_u8_free(patches[i]);
2052
            }
2053

2054
            clip_image_u8_free(temp);
2055

2056
            return true;
2057
        } else {
2058
            temp->nx = img->nx;
2059
            temp->ny = img->ny;
2060
            temp->buf.resize(img->buf.size());
2061
            memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
2062
        }
2063
    }
2064

2065
    const int nx = temp->nx;
2066
    const int ny = temp->ny;
2067
    // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
2068

2069
    const int nx2 = ctx->vision_model.hparams.image_size;
2070
    const int ny2 = ctx->vision_model.hparams.image_size;
2071
    clip_image_f32 * res = clip_image_f32_init();
2072
    res->nx = nx2;
2073
    res->ny = ny2;
2074
    res->buf.resize(3 * nx2 * ny2);
2075

2076
    const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
2077

2078
    const int nx3 = int(nx / scale + 0.5f);
2079
    const int ny3 = int(ny / scale + 0.5f);
2080

2081
    const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
2082
    const auto & s3 = ctx->image_std;  // {0.26862954f, 0.26130258f, 0.27577711f};
2083

2084
    for (int y = 0; y < ny3; y++) {
2085
        for (int x = 0; x < nx3; x++) {
2086
            for (int c = 0; c < 3; c++) {
2087
                // linear interpolation
2088
                const float sx = (x + 0.5f) * scale - 0.5f;
2089
                const float sy = (y + 0.5f) * scale - 0.5f;
2090

2091
                const int x0 = std::max(0, (int)std::floor(sx));
2092
                const int y0 = std::max(0, (int)std::floor(sy));
2093

2094
                const int x1 = std::min(x0 + 1, nx - 1);
2095
                const int y1 = std::min(y0 + 1, ny - 1);
2096

2097
                const float dx = sx - x0;
2098
                const float dy = sy - y0;
2099

2100
                const int j00 = 3 * (y0 * nx + x0) + c;
2101
                const int j01 = 3 * (y0 * nx + x1) + c;
2102
                const int j10 = 3 * (y1 * nx + x0) + c;
2103
                const int j11 = 3 * (y1 * nx + x1) + c;
2104

2105
                const float v00 = temp->buf[j00];
2106
                const float v01 = temp->buf[j01];
2107
                const float v10 = temp->buf[j10];
2108
                const float v11 = temp->buf[j11];
2109

2110
                const float v0 = v00 * (1.0f - dx) + v01 * dx;
2111
                const float v1 = v10 * (1.0f - dx) + v11 * dx;
2112

2113
                const float v = v0 * (1.0f - dy) + v1 * dy;
2114

2115
                const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
2116

2117
                const int i = 3 * (y * nx3 + x) + c;
2118

2119
                res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
2120
            }
2121
        }
2122
    }
2123
    clip_image_u8_free(temp);
2124

2125
    // {
2126
    //     clip_image_u8 * temp2 = clip_image_u8_init();
2127
    //     clip_image_convert_f32_to_u8(*res, *temp2);
2128
    //     clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
2129
    //     clip_image_u8_free(temp2);
2130
    // }
2131
    // res_imgs.push_back(res);
2132

2133
    res_imgs->size = 1;
2134
    res_imgs->data = new clip_image_f32[res_imgs->size];
2135
    res_imgs->data[0] = *res;
2136
    clip_image_f32_free(res);
2137

2138
    return true;
2139
}
2140

2141
ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
2142
    return ctx->vision_model.image_newline;
2143
}
2144

2145
void clip_free(clip_ctx * ctx) {
2146
    ggml_free(ctx->ctx_data);
2147
    gguf_free(ctx->ctx_gguf);
2148

2149
    ggml_backend_buffer_free(ctx->params_buffer);
2150
    ggml_backend_free(ctx->backend);
2151
    ggml_gallocr_free(ctx->compute_alloc);
2152
    delete ctx;
2153
}
2154

2155
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
2156
    return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
2157
}
2158

2159
int32_t clip_image_size(const struct clip_ctx * ctx) {
2160
    return ctx->vision_model.hparams.image_size;
2161
}
2162

2163
int32_t clip_patch_size(const struct clip_ctx * ctx) {
2164
    return ctx->vision_model.hparams.patch_size;
2165
}
2166

2167
int32_t clip_hidden_size(const struct clip_ctx * ctx) {
2168
    return ctx->vision_model.hparams.hidden_size;
2169
}
2170

2171
const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
2172
    return ctx->vision_model.hparams.mm_patch_merge_type;
2173
}
2174

2175
const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
2176
    return ctx->vision_model.hparams.image_grid_pinpoints;
2177
}
2178

2179
int clip_n_patches(const struct clip_ctx * ctx) {
2180
    const auto & params = ctx->vision_model.hparams;
2181

2182
    int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
2183

2184
    if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
2185
        n_patches /= 4;
2186
    } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
2187
        if (ctx->minicpmv_version == 2) {
2188
            n_patches = 96;
2189
        }
2190
        else if (ctx->minicpmv_version == 3) {
2191
            n_patches = 64;
2192
        }
2193
    }
2194

2195
    return n_patches;
2196
}
2197

2198
static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
2199
    assert(embed_dim % 2 == 0);
2200
    int H = pos.size();
2201
    int W = pos[0].size();
2202

2203
    std::vector<float> omega(embed_dim / 2);
2204
    for (int i = 0; i < embed_dim / 2; ++i) {
2205
        omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
2206
    }
2207

2208
    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
2209
    for (int h = 0; h < H; ++h) {
2210
        for (int w = 0; w < W; ++w) {
2211
            for (int d = 0; d < embed_dim / 2; ++d) {
2212
                float out_value = pos[h][w] * omega[d];
2213
                emb[h][w][d] = sin(out_value);
2214
                emb[h][w][d + embed_dim / 2] = cos(out_value);
2215
            }
2216
        }
2217
    }
2218

2219
    return emb;
2220
}
2221

2222
static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
2223
    assert(embed_dim % 2 == 0);
2224
    std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
2225
    std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
2226

2227
    int H = emb_h.size();
2228
    int W = emb_h[0].size();
2229
    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
2230

2231
    for (int h = 0; h < H; ++h) {
2232
        for (int w = 0; w < W; ++w) {
2233
            for (int d = 0; d < embed_dim / 2; ++d) {
2234
                emb[h][w][d] = emb_h[h][w][d];
2235
                emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
2236
            }
2237
        }
2238
    }
2239
    return emb;
2240
}
2241

2242
static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
2243
    int grid_h_size = image_size.first;
2244
    int grid_w_size = image_size.second;
2245

2246
    std::vector<float> grid_h(grid_h_size);
2247
    std::vector<float> grid_w(grid_w_size);
2248

2249
    for (int i = 0; i < grid_h_size; ++i) {
2250
        grid_h[i] = static_cast<float>(i);
2251
    }
2252
    for (int i = 0; i < grid_w_size; ++i) {
2253
        grid_w[i] = static_cast<float>(i);
2254
    }
2255

2256
    std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
2257
    for (int h = 0; h < grid_h_size; ++h) {
2258
        for (int w = 0; w < grid_w_size; ++w) {
2259
            grid[h][w] = grid_w[w];
2260
        }
2261
    }
2262
    std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
2263
    for (int h = 0; h < grid_h_size; ++h) {
2264
        for (int w = 0; w < grid_w_size; ++w) {
2265
            grid_2d[0][h][w] = grid_h[h];
2266
            grid_2d[1][h][w] = grid_w[w];
2267
        }
2268
    }
2269

2270
    std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
2271

2272
    int H = image_size.first;
2273
    int W = image_size.second;
2274
    std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
2275
    for (int h = 0; h < H; ++h) {
2276
        for (int w = 0; w < W; ++w) {
2277
            pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
2278
        }
2279
    }
2280

2281
    return pos_embed_2d;
2282
}
2283

2284
bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
2285
    if (!ctx->has_vision_encoder) {
2286
        LOG_ERR("This gguf file seems to have no vision encoder\n");
2287
        return false;
2288
    }
2289

2290
    clip_image_f32_batch imgs{};
2291
    imgs.size = 1;
2292
    imgs.data = img;
2293
    return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
2294
}
2295

2296
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
2297
    if (!ctx->has_vision_encoder) {
2298
        LOG_ERR("This gguf file seems to have no vision encoder\n");
2299
        return false;
2300
    }
2301

2302
    int batch_size = imgs->size;
2303
    if (ctx->has_llava_projector) {
2304
        GGML_ASSERT(batch_size == 1); // TODO: support multiple images
2305
    }
2306
    if (ctx->has_minicpmv_projector) {
2307
        GGML_ASSERT(batch_size == 1);
2308
    }
2309

2310
    // build the inference graph
2311
    ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
2312
    ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
2313

2314
    // set inputs
2315
    const auto & model = ctx->vision_model;
2316
    const auto & hparams = model.hparams;
2317

2318
    const int image_size = hparams.image_size;
2319
    int image_size_width  = image_size;
2320
    int image_size_height = image_size;
2321
    if (ctx->has_minicpmv_projector) {
2322
        image_size_width  = imgs->data[0].nx;
2323
        image_size_height = imgs->data[0].ny;
2324
    }
2325
    const int patch_size    = hparams.patch_size;
2326
    const int num_patches   = ((image_size_width / patch_size) * (image_size_height / patch_size));
2327
    const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
2328
    if(ctx->load_image_size==nullptr){
2329
        ctx->load_image_size= clip_image_size_init();
2330
    }
2331
    const int pos_w = ctx->load_image_size->width/patch_size;
2332
    const int pos_h = ctx->load_image_size->height/patch_size;
2333

2334
    {
2335
        struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
2336
        float * data = (float *)malloc(ggml_nbytes(inp_raw));
2337

2338
        for (size_t i = 0; i < imgs->size; i++) {
2339
            const int nx = imgs->data[i].nx;
2340
            const int ny = imgs->data[i].ny;
2341
            if (!ctx->has_minicpmv_projector) {
2342
                GGML_ASSERT(nx == image_size && ny == image_size);
2343
            }
2344

2345
            const int n = nx * ny;
2346

2347
            for (int b = 0; b < batch_size; b++) {
2348
                for (int k = 0; k < 3; k++) {
2349
                    for (int y = 0; y < ny; y++) {
2350
                        for (int x = 0; x < nx; x++) {
2351
                            data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
2352
                        }
2353
                    }
2354
                }
2355
            }
2356
        }
2357
        ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
2358
        free(data);
2359
    }
2360
    if (ctx->has_minicpmv_projector) {
2361
        {
2362
            // inspired from siglip:
2363
            //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
2364
            //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
2365
            struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
2366
            int* positions_data = (int*)malloc(ggml_nbytes(positions));
2367
            int bucket_coords_h[70];
2368
            int bucket_coords_w[70];
2369
            for (int i = 0; i < pos_h; i++){
2370
                bucket_coords_h[i] = std::floor(70.0*i/pos_h);
2371
            }
2372
            for (int i = 0; i < pos_w; i++){
2373
                bucket_coords_w[i] = std::floor(70.0*i/pos_w);
2374
            }
2375
            for (int i = 0, id = 0; i < pos_h; i++){
2376
                for (int j = 0; j < pos_w; j++){
2377
                    positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
2378
                }
2379
            }
2380
            ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
2381
            free(positions_data);
2382
        }
2383

2384
        {
2385
            // inspired from resampler of Qwen-VL:
2386
            //    -> https://huggingface.co/Qwen/Qwen-VL/tree/main
2387
            //    -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
2388
            struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
2389
            int embed_dim = 4096;
2390
            if (ctx->minicpmv_version == 2) {
2391
                embed_dim = 4096;
2392
            }
2393
            else if (ctx->minicpmv_version == 3) {
2394
                embed_dim = 3584;
2395
            }
2396
            auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
2397

2398
            float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
2399
            for(int i=0;i<pos_w * pos_h;++i){
2400
                for(int j=0;j<embed_dim;++j){
2401
                    pos_embed_data[i*embed_dim+j]=pos_embed_t[i][j];
2402
                }
2403
            }
2404

2405
            ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
2406
            free(pos_embed_data);
2407
        }
2408
    }
2409
    else{
2410
        {
2411
            if (ctx->has_class_embedding) {
2412
                struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
2413

2414
                void* zero_mem = malloc(ggml_nbytes(embeddings));
2415
                memset(zero_mem, 0, ggml_nbytes(embeddings));
2416
                ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
2417
                free(zero_mem);
2418
            }
2419
        }
2420

2421
        {
2422
            struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
2423

2424
            int* positions_data = (int*)malloc(ggml_nbytes(positions));
2425
            for (int i = 0; i < num_positions; i++) {
2426
                positions_data[i] = i;
2427
            }
2428
            ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
2429
            free(positions_data);
2430
        }
2431

2432
        {
2433
            struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
2434
            int* patches_data = (int*)malloc(ggml_nbytes(patches));
2435
            for (int i = 0; i < num_patches; i++) {
2436
                patches_data[i] = i + 1;
2437
            }
2438
            ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
2439
            free(patches_data);
2440
        }
2441
    }
2442

2443
    if (ggml_backend_is_cpu(ctx->backend)) {
2444
        ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
2445
    }
2446

2447
#ifdef GGML_USE_METAL
2448
    if (ggml_backend_is_metal(ctx->backend)) {
2449
        ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
2450
    }
2451
#endif
2452

2453
    ggml_backend_graph_compute(ctx->backend, gf);
2454

2455
    // the last node is the embedding tensor
2456
    struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
2457

2458
    // copy the embeddings to the location passed by the user
2459
    ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
2460

2461
    return true;
2462
}
2463

2464
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
2465
    ggml_type type = GGML_TYPE_Q4_1;
2466

2467
    assert(itype < GGML_TYPE_COUNT);
2468
    type = static_cast<ggml_type>(itype);
2469

2470
    auto * ctx_clip = clip_model_load(fname_inp, 2);
2471

2472
    const auto & ctx_src = ctx_clip->ctx_gguf;
2473
    const auto & ctx_data = ctx_clip->ctx_data;
2474

2475
    auto * ctx_out = gguf_init_empty();
2476
    gguf_set_kv(ctx_out, ctx_src);
2477
    gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
2478
    gguf_set_val_u32(ctx_out, "general.file_type", itype);
2479

2480
    auto fout = std::ofstream(fname_out, std::ios::binary);
2481

2482
    const int n_tensors = gguf_get_n_tensors(ctx_src);
2483

2484
    for (int i = 0; i < n_tensors; ++i) {
2485
        const char * name = gguf_get_tensor_name(ctx_src, i);
2486
        struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
2487
        gguf_add_tensor(ctx_out, cur);
2488
    }
2489

2490
    const size_t meta_size = gguf_get_meta_size(ctx_out);
2491
    for (size_t i = 0; i < meta_size; ++i) {
2492
        fout.put(0);
2493
    }
2494

2495
    // regexes of tensor names to be quantized
2496
    const std::vector<std::string> k_names = {
2497
        ".*weight",
2498
    };
2499

2500
    std::vector<uint8_t> work(512);
2501
    std::vector<float> conv_buf(512);
2502
    size_t total_size_org = 0;
2503
    size_t total_size_new = 0;
2504

2505
    for (int i = 0; i < n_tensors; ++i) {
2506
        const std::string name = gguf_get_tensor_name(ctx_src, i);
2507
        struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
2508

2509
        enum ggml_type new_type;
2510
        void * new_data;
2511
        size_t new_size;
2512

2513
        bool quantize = false;
2514
        for (const auto & s : k_names) {
2515
            if (std::regex_match(name, std::regex(s))) {
2516
                quantize = true;
2517
                break;
2518
            }
2519
        }
2520

2521
        // quantize only 2D tensors
2522
        quantize &= (ggml_n_dims(cur) == 2);
2523

2524
        if (quantize) {
2525
            new_type = type;
2526
            if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
2527
                new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
2528
                // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
2529
            }
2530
            const size_t n_elms = ggml_nelements(cur);
2531
            float * f32_data;
2532

2533
            switch (cur->type) {
2534
            case GGML_TYPE_F32:
2535
                f32_data = (float *)cur->data;
2536
                break;
2537
            case GGML_TYPE_F16:
2538
                if (conv_buf.size() < n_elms) {
2539
                    conv_buf.resize(n_elms);
2540
                }
2541
                for (size_t j = 0; j < n_elms; ++j) {
2542
                    conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
2543
                }
2544
                f32_data = (float *)conv_buf.data();
2545
                break;
2546
            default:
2547
                LOG_ERR("Please use an input file in f32 or f16\n");
2548
                gguf_free(ctx_out);
2549
                return false;
2550
            }
2551

2552
            if (work.size() < n_elms * 4) {
2553
                work.resize(n_elms * 4);
2554
            }
2555
            new_data = work.data();
2556

2557
            new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
2558
        } else {
2559
            new_type = cur->type;
2560
            new_data = cur->data;
2561
            new_size = ggml_nbytes(cur);
2562
        }
2563
        const size_t orig_size = ggml_nbytes(cur);
2564
        total_size_org += orig_size;
2565
        total_size_new += new_size;
2566
        gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
2567
        gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
2568
        fout.write((const char *)new_data, new_size);
2569
        size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
2570
        for (size_t j = 0; j < pad; ++j) {
2571
            fout.put(0);
2572
        }
2573

2574
        LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
2575
               orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
2576
    }
2577

2578
    // go back to beginning of file and write the updated metadata
2579
    fout.seekp(0, std::ios::beg);
2580
    std::vector<uint8_t> meta(meta_size);
2581
    gguf_get_meta_data(ctx_out, meta.data());
2582
    fout.write((const char *)meta.data(), meta_size);
2583

2584
    fout.close();
2585

2586
    clip_free(ctx_clip);
2587
    gguf_free(ctx_out);
2588

2589
    {
2590
        LOG_INF("%s: original  size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
2591
        LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
2592
    }
2593

2594
    return true;
2595
}
2596

2597
int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
2598
    if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
2599
        return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
2600
    }
2601
    if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
2602
        return ctx->vision_model.mm_model_peg_0_b->ne[0];
2603
    }
2604
    if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
2605
        return ctx->vision_model.mm_2_b->ne[0];
2606
    }
2607
    if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
2608
        return ctx->vision_model.mm_3_b->ne[0];
2609
    }
2610
    if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
2611
        if (ctx->minicpmv_version == 2) {
2612
            return 4096;
2613
        }
2614
        else if (ctx->minicpmv_version == 3) {
2615
            return 3584;
2616
        }
2617
    }
2618

2619
    std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
2620
    throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
2621
}
2622

2623
int clip_is_minicpmv(const struct clip_ctx * ctx) {
2624
    if (ctx->has_minicpmv_projector) {
2625
        return ctx->minicpmv_version;
2626
    }
2627
    return 0;
2628
}
2629

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.