podman

Форк
0
503 строки · 17.5 Кб
1
// Copyright 2018 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4

5
//go:build gc && !purego
6

7
#include "textflag.h"
8

9
// This implementation of Poly1305 uses the vector facility (vx)
10
// to process up to 2 blocks (32 bytes) per iteration using an
11
// algorithm based on the one described in:
12
//
13
// NEON crypto, Daniel J. Bernstein & Peter Schwabe
14
// https://cryptojedi.org/papers/neoncrypto-20120320.pdf
15
//
16
// This algorithm uses 5 26-bit limbs to represent a 130-bit
17
// value. These limbs are, for the most part, zero extended and
18
// placed into 64-bit vector register elements. Each vector
19
// register is 128-bits wide and so holds 2 of these elements.
20
// Using 26-bit limbs allows us plenty of headroom to accommodate
21
// accumulations before and after multiplication without
22
// overflowing either 32-bits (before multiplication) or 64-bits
23
// (after multiplication).
24
//
25
// In order to parallelise the operations required to calculate
26
// the sum we use two separate accumulators and then sum those
27
// in an extra final step. For compatibility with the generic
28
// implementation we perform this summation at the end of every
29
// updateVX call.
30
//
31
// To use two accumulators we must multiply the message blocks
32
// by r² rather than r. Only the final message block should be
33
// multiplied by r.
34
//
35
// Example:
36
//
37
// We want to calculate the sum (h) for a 64 byte message (m):
38
//
39
//   h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r
40
//
41
// To do this we split the calculation into the even indices
42
// and odd indices of the message. These form our SIMD 'lanes':
43
//
44
//   h = m[ 0:16]r⁴ + m[32:48]r² +   <- lane 0
45
//       m[16:32]r³ + m[48:64]r      <- lane 1
46
//
47
// To calculate this iteratively we refactor so that both lanes
48
// are written in terms of r² and r:
49
//
50
//   h = (m[ 0:16]r² + m[32:48])r² + <- lane 0
51
//       (m[16:32]r² + m[48:64])r    <- lane 1
52
//                ^             ^
53
//                |             coefficients for second iteration
54
//                coefficients for first iteration
55
//
56
// So in this case we would have two iterations. In the first
57
// both lanes are multiplied by r². In the second only the
58
// first lane is multiplied by r² and the second lane is
59
// instead multiplied by r. This gives use the odd and even
60
// powers of r that we need from the original equation.
61
//
62
// Notation:
63
//
64
//   h - accumulator
65
//   r - key
66
//   m - message
67
//
68
//   [a, b]       - SIMD register holding two 64-bit values
69
//   [a, b, c, d] - SIMD register holding four 32-bit values
70
//   xᵢ[n]        - limb n of variable x with bit width i
71
//
72
// Limbs are expressed in little endian order, so for 26-bit
73
// limbs x₂₆[4] will be the most significant limb and x₂₆[0]
74
// will be the least significant limb.
75

76
// masking constants
77
#define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits
78
#define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits
79

80
// expansion constants (see EXPAND macro)
81
#define EX0 V2
82
#define EX1 V3
83
#define EX2 V4
84

85
// key (r², r or 1 depending on context)
86
#define R_0 V5
87
#define R_1 V6
88
#define R_2 V7
89
#define R_3 V8
90
#define R_4 V9
91

92
// precalculated coefficients (5r², 5r or 0 depending on context)
93
#define R5_1 V10
94
#define R5_2 V11
95
#define R5_3 V12
96
#define R5_4 V13
97

98
// message block (m)
99
#define M_0 V14
100
#define M_1 V15
101
#define M_2 V16
102
#define M_3 V17
103
#define M_4 V18
104

105
// accumulator (h)
106
#define H_0 V19
107
#define H_1 V20
108
#define H_2 V21
109
#define H_3 V22
110
#define H_4 V23
111

112
// temporary registers (for short-lived values)
113
#define T_0 V24
114
#define T_1 V25
115
#define T_2 V26
116
#define T_3 V27
117
#define T_4 V28
118

119
GLOBL ·constants<>(SB), RODATA, $0x30
120
// EX0
121
DATA ·constants<>+0x00(SB)/8, $0x0006050403020100
122
DATA ·constants<>+0x08(SB)/8, $0x1016151413121110
123
// EX1
124
DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706
125
DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716
126
// EX2
127
DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d
128
DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d
129

130
// MULTIPLY multiplies each lane of f and g, partially reduced
131
// modulo 2¹³⁰ - 5. The result, h, consists of partial products
132
// in each lane that need to be reduced further to produce the
133
// final result.
134
//
135
//   h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰
136
//
137
// Note that the multiplication by 5 of the high bits is
138
// achieved by precalculating the multiplication of four of the
139
// g coefficients by 5. These are g51-g54.
140
#define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \
141
	VMLOF  f0, g0, h0        \
142
	VMLOF  f0, g3, h3        \
143
	VMLOF  f0, g1, h1        \
144
	VMLOF  f0, g4, h4        \
145
	VMLOF  f0, g2, h2        \
146
	VMLOF  f1, g54, T_0      \
147
	VMLOF  f1, g2, T_3       \
148
	VMLOF  f1, g0, T_1       \
149
	VMLOF  f1, g3, T_4       \
150
	VMLOF  f1, g1, T_2       \
151
	VMALOF f2, g53, h0, h0   \
152
	VMALOF f2, g1, h3, h3    \
153
	VMALOF f2, g54, h1, h1   \
154
	VMALOF f2, g2, h4, h4    \
155
	VMALOF f2, g0, h2, h2    \
156
	VMALOF f3, g52, T_0, T_0 \
157
	VMALOF f3, g0, T_3, T_3  \
158
	VMALOF f3, g53, T_1, T_1 \
159
	VMALOF f3, g1, T_4, T_4  \
160
	VMALOF f3, g54, T_2, T_2 \
161
	VMALOF f4, g51, h0, h0   \
162
	VMALOF f4, g54, h3, h3   \
163
	VMALOF f4, g52, h1, h1   \
164
	VMALOF f4, g0, h4, h4    \
165
	VMALOF f4, g53, h2, h2   \
166
	VAG    T_0, h0, h0       \
167
	VAG    T_3, h3, h3       \
168
	VAG    T_1, h1, h1       \
169
	VAG    T_4, h4, h4       \
170
	VAG    T_2, h2, h2
171

172
// REDUCE performs the following carry operations in four
173
// stages, as specified in Bernstein & Schwabe:
174
//
175
//   1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4]
176
//   2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0]
177
//   3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3]
178
//   4: h₂₆[3]->h₂₆[4]
179
//
180
// The result is that all of the limbs are limited to 26-bits
181
// except for h₂₆[1] and h₂₆[4] which are limited to 27-bits.
182
//
183
// Note that although each limb is aligned at 26-bit intervals
184
// they may contain values that exceed 2²⁶ - 1, hence the need
185
// to carry the excess bits in each limb.
186
#define REDUCE(h0, h1, h2, h3, h4) \
187
	VESRLG $26, h0, T_0  \
188
	VESRLG $26, h3, T_1  \
189
	VN     MOD26, h0, h0 \
190
	VN     MOD26, h3, h3 \
191
	VAG    T_0, h1, h1   \
192
	VAG    T_1, h4, h4   \
193
	VESRLG $26, h1, T_2  \
194
	VESRLG $26, h4, T_3  \
195
	VN     MOD26, h1, h1 \
196
	VN     MOD26, h4, h4 \
197
	VESLG  $2, T_3, T_4  \
198
	VAG    T_3, T_4, T_4 \
199
	VAG    T_2, h2, h2   \
200
	VAG    T_4, h0, h0   \
201
	VESRLG $26, h2, T_0  \
202
	VESRLG $26, h0, T_1  \
203
	VN     MOD26, h2, h2 \
204
	VN     MOD26, h0, h0 \
205
	VAG    T_0, h3, h3   \
206
	VAG    T_1, h1, h1   \
207
	VESRLG $26, h3, T_2  \
208
	VN     MOD26, h3, h3 \
209
	VAG    T_2, h4, h4
210

211
// EXPAND splits the 128-bit little-endian values in0 and in1
212
// into 26-bit big-endian limbs and places the results into
213
// the first and second lane of d₂₆[0:4] respectively.
214
//
215
// The EX0, EX1 and EX2 constants are arrays of byte indices
216
// for permutation. The permutation both reverses the bytes
217
// in the input and ensures the bytes are copied into the
218
// destination limb ready to be shifted into their final
219
// position.
220
#define EXPAND(in0, in1, d0, d1, d2, d3, d4) \
221
	VPERM  in0, in1, EX0, d0 \
222
	VPERM  in0, in1, EX1, d2 \
223
	VPERM  in0, in1, EX2, d4 \
224
	VESRLG $26, d0, d1       \
225
	VESRLG $30, d2, d3       \
226
	VESRLG $4, d2, d2        \
227
	VN     MOD26, d0, d0     \ // [in0₂₆[0], in1₂₆[0]]
228
	VN     MOD26, d3, d3     \ // [in0₂₆[3], in1₂₆[3]]
229
	VN     MOD26, d1, d1     \ // [in0₂₆[1], in1₂₆[1]]
230
	VN     MOD24, d4, d4     \ // [in0₂₆[4], in1₂₆[4]]
231
	VN     MOD26, d2, d2     // [in0₂₆[2], in1₂₆[2]]
232

233
// func updateVX(state *macState, msg []byte)
234
TEXT ·updateVX(SB), NOSPLIT, $0
235
	MOVD state+0(FP), R1
236
	LMG  msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len
237

238
	// load EX0, EX1 and EX2
239
	MOVD $·constants<>(SB), R5
240
	VLM  (R5), EX0, EX2
241

242
	// generate masks
243
	VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff]
244
	VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff]
245

246
	// load h (accumulator) and r (key) from state
247
	VZERO T_1               // [0, 0]
248
	VL    0(R1), T_0        // [h₆₄[0], h₆₄[1]]
249
	VLEG  $0, 16(R1), T_1   // [h₆₄[2], 0]
250
	VL    24(R1), T_2       // [r₆₄[0], r₆₄[1]]
251
	VPDI  $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]]
252
	VPDI  $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]]
253

254
	// unpack h and r into 26-bit limbs
255
	// note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value
256
	VN     MOD26, T_3, H_0            // [h₂₆[0], r₂₆[0]]
257
	VZERO  H_1                        // [0, 0]
258
	VZERO  H_3                        // [0, 0]
259
	VGMG   $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out
260
	VESLG  $24, T_1, T_1              // [h₆₄[2]<<24, 0]
261
	VERIMG $-26&63, T_3, MOD26, H_1   // [h₂₆[1], r₂₆[1]]
262
	VESRLG $+52&63, T_3, H_2          // [h₂₆[2], r₂₆[2]] - low 12 bits only
263
	VERIMG $-14&63, T_4, MOD26, H_3   // [h₂₆[1], r₂₆[1]]
264
	VESRLG $40, T_4, H_4              // [h₂₆[4], r₂₆[4]] - low 24 bits only
265
	VERIMG $+12&63, T_4, T_0, H_2     // [h₂₆[2], r₂₆[2]] - complete
266
	VO     T_1, H_4, H_4              // [h₂₆[4], r₂₆[4]] - complete
267

268
	// replicate r across all 4 vector elements
269
	VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]]
270
	VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]]
271
	VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]]
272
	VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]]
273
	VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]]
274

275
	// zero out lane 1 of h
276
	VLEIG $1, $0, H_0 // [h₂₆[0], 0]
277
	VLEIG $1, $0, H_1 // [h₂₆[1], 0]
278
	VLEIG $1, $0, H_2 // [h₂₆[2], 0]
279
	VLEIG $1, $0, H_3 // [h₂₆[3], 0]
280
	VLEIG $1, $0, H_4 // [h₂₆[4], 0]
281

282
	// calculate 5r (ignore least significant limb)
283
	VREPIF $5, T_0
284
	VMLF   T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]]
285
	VMLF   T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]]
286
	VMLF   T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]]
287
	VMLF   T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]]
288

289
	// skip r² calculation if we are only calculating one block
290
	CMPBLE R3, $16, skip
291

292
	// calculate r²
293
	MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4)
294
	REDUCE(M_0, M_1, M_2, M_3, M_4)
295
	VGBM   $0x0f0f, T_0
296
	VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]]
297
	VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]]
298
	VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]]
299
	VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]]
300
	VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]]
301

302
	// calculate 5r² (ignore least significant limb)
303
	VREPIF $5, T_0
304
	VMLF   T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]]
305
	VMLF   T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]]
306
	VMLF   T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]]
307
	VMLF   T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]]
308

309
loop:
310
	CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients
311

312
	// load next 2 blocks from message
313
	VLM (R2), T_0, T_1
314

315
	// update message slice
316
	SUB  $32, R3
317
	MOVD $32(R2), R2
318

319
	// unpack message blocks into 26-bit big-endian limbs
320
	EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
321

322
	// add 2¹²⁸ to each message block value
323
	VLEIB $4, $1, M_4
324
	VLEIB $12, $1, M_4
325

326
multiply:
327
	// accumulate the incoming message
328
	VAG H_0, M_0, M_0
329
	VAG H_3, M_3, M_3
330
	VAG H_1, M_1, M_1
331
	VAG H_4, M_4, M_4
332
	VAG H_2, M_2, M_2
333

334
	// multiply the accumulator by the key coefficient
335
	MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
336

337
	// carry and partially reduce the partial products
338
	REDUCE(H_0, H_1, H_2, H_3, H_4)
339

340
	CMPBNE R3, $0, loop
341

342
finish:
343
	// sum lane 0 and lane 1 and put the result in lane 1
344
	VZERO  T_0
345
	VSUMQG H_0, T_0, H_0
346
	VSUMQG H_3, T_0, H_3
347
	VSUMQG H_1, T_0, H_1
348
	VSUMQG H_4, T_0, H_4
349
	VSUMQG H_2, T_0, H_2
350

351
	// reduce again after summation
352
	// TODO(mundaym): there might be a more efficient way to do this
353
	// now that we only have 1 active lane. For example, we could
354
	// simultaneously pack the values as we reduce them.
355
	REDUCE(H_0, H_1, H_2, H_3, H_4)
356

357
	// carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1
358
	// TODO(mundaym): in testing this final carry was unnecessary.
359
	// Needs a proof before it can be removed though.
360
	VESRLG $26, H_1, T_1
361
	VN     MOD26, H_1, H_1
362
	VAQ    T_1, H_2, H_2
363
	VESRLG $26, H_2, T_2
364
	VN     MOD26, H_2, H_2
365
	VAQ    T_2, H_3, H_3
366
	VESRLG $26, H_3, T_3
367
	VN     MOD26, H_3, H_3
368
	VAQ    T_3, H_4, H_4
369

370
	// h is now < 2(2¹³⁰ - 5)
371
	// Pack each lane in h₂₆[0:4] into h₁₂₈[0:1].
372
	VESLG $26, H_1, H_1
373
	VESLG $26, H_3, H_3
374
	VO    H_0, H_1, H_0
375
	VO    H_2, H_3, H_2
376
	VESLG $4, H_2, H_2
377
	VLEIB $7, $48, H_1
378
	VSLB  H_1, H_2, H_2
379
	VO    H_0, H_2, H_0
380
	VLEIB $7, $104, H_1
381
	VSLB  H_1, H_4, H_3
382
	VO    H_3, H_0, H_0
383
	VLEIB $7, $24, H_1
384
	VSRLB H_1, H_4, H_1
385

386
	// update state
387
	VSTEG $1, H_0, 0(R1)
388
	VSTEG $0, H_0, 8(R1)
389
	VSTEG $1, H_1, 16(R1)
390
	RET
391

392
b2:  // 2 or fewer blocks remaining
393
	CMPBLE R3, $16, b1
394

395
	// Load the 2 remaining blocks (17-32 bytes remaining).
396
	MOVD $-17(R3), R0    // index of final byte to load modulo 16
397
	VL   (R2), T_0       // load full 16 byte block
398
	VLL  R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes
399

400
	// The Poly1305 algorithm requires that a 1 bit be appended to
401
	// each message block. If the final block is less than 16 bytes
402
	// long then it is easiest to insert the 1 before the message
403
	// block is split into 26-bit limbs. If, on the other hand, the
404
	// final message block is 16 bytes long then we append the 1 bit
405
	// after expansion as normal.
406
	MOVBZ  $1, R0
407
	MOVD   $-16(R3), R3   // index of byte in last block to insert 1 at (could be 16)
408
	CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long
409
	VLVGB  R3, R0, T_1    // insert 1 into the byte at index R3
410

411
	// Split both blocks into 26-bit limbs in the appropriate lanes.
412
	EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
413

414
	// Append a 1 byte to the end of the second to last block.
415
	VLEIB $4, $1, M_4
416

417
	// Append a 1 byte to the end of the last block only if it is a
418
	// full 16 byte block.
419
	CMPBNE R3, $16, 2(PC)
420
	VLEIB  $12, $1, M_4
421

422
	// Finally, set up the coefficients for the final multiplication.
423
	// We have previously saved r and 5r in the 32-bit even indexes
424
	// of the R_[0-4] and R5_[1-4] coefficient registers.
425
	//
426
	// We want lane 0 to be multiplied by r² so that can be kept the
427
	// same. We want lane 1 to be multiplied by r so we need to move
428
	// the saved r value into the 32-bit odd index in lane 1 by
429
	// rotating the 64-bit lane by 32.
430
	VGBM   $0x00ff, T_0         // [0, 0xffffffffffffffff] - mask lane 1 only
431
	VERIMG $32, R_0, T_0, R_0   // [_,  r²₂₆[0], _,  r₂₆[0]]
432
	VERIMG $32, R_1, T_0, R_1   // [_,  r²₂₆[1], _,  r₂₆[1]]
433
	VERIMG $32, R_2, T_0, R_2   // [_,  r²₂₆[2], _,  r₂₆[2]]
434
	VERIMG $32, R_3, T_0, R_3   // [_,  r²₂₆[3], _,  r₂₆[3]]
435
	VERIMG $32, R_4, T_0, R_4   // [_,  r²₂₆[4], _,  r₂₆[4]]
436
	VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]]
437
	VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]]
438
	VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]]
439
	VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]]
440

441
	MOVD $0, R3
442
	BR   multiply
443

444
skip:
445
	CMPBEQ R3, $0, finish
446

447
b1:  // 1 block remaining
448

449
	// Load the final block (1-16 bytes). This will be placed into
450
	// lane 0.
451
	MOVD $-1(R3), R0
452
	VLL  R0, (R2), T_0 // pad to 16 bytes with zeros
453

454
	// The Poly1305 algorithm requires that a 1 bit be appended to
455
	// each message block. If the final block is less than 16 bytes
456
	// long then it is easiest to insert the 1 before the message
457
	// block is split into 26-bit limbs. If, on the other hand, the
458
	// final message block is 16 bytes long then we append the 1 bit
459
	// after expansion as normal.
460
	MOVBZ  $1, R0
461
	CMPBEQ R3, $16, 2(PC)
462
	VLVGB  R3, R0, T_0
463

464
	// Set the message block in lane 1 to the value 0 so that it
465
	// can be accumulated without affecting the final result.
466
	VZERO T_1
467

468
	// Split the final message block into 26-bit limbs in lane 0.
469
	// Lane 1 will be contain 0.
470
	EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
471

472
	// Append a 1 byte to the end of the last block only if it is a
473
	// full 16 byte block.
474
	CMPBNE R3, $16, 2(PC)
475
	VLEIB  $4, $1, M_4
476

477
	// We have previously saved r and 5r in the 32-bit even indexes
478
	// of the R_[0-4] and R5_[1-4] coefficient registers.
479
	//
480
	// We want lane 0 to be multiplied by r so we need to move the
481
	// saved r value into the 32-bit odd index in lane 0. We want
482
	// lane 1 to be set to the value 1. This makes multiplication
483
	// a no-op. We do this by setting lane 1 in every register to 0
484
	// and then just setting the 32-bit index 3 in R_0 to 1.
485
	VZERO T_0
486
	MOVD  $0, R0
487
	MOVD  $0x10111213, R12
488
	VLVGP R12, R0, T_1         // [_, 0x10111213, _, 0x00000000]
489
	VPERM T_0, R_0, T_1, R_0   // [_,  r₂₆[0], _, 0]
490
	VPERM T_0, R_1, T_1, R_1   // [_,  r₂₆[1], _, 0]
491
	VPERM T_0, R_2, T_1, R_2   // [_,  r₂₆[2], _, 0]
492
	VPERM T_0, R_3, T_1, R_3   // [_,  r₂₆[3], _, 0]
493
	VPERM T_0, R_4, T_1, R_4   // [_,  r₂₆[4], _, 0]
494
	VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0]
495
	VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0]
496
	VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0]
497
	VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0]
498

499
	// Set the value of lane 1 to be 1.
500
	VLEIF $3, $1, R_0 // [_,  r₂₆[0], _, 1]
501

502
	MOVD $0, R3
503
	BR   multiply
504

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.