podman

Форк
0
416 строк · 11.6 Кб
1
// Copyright (c) 2017 The Go Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style
3
// license that can be found in the LICENSE file.
4

5
// Package field implements fast arithmetic modulo 2^255-19.
6
package field
7

8
import (
9
	"crypto/subtle"
10
	"encoding/binary"
11
	"math/bits"
12
)
13

14
// Element represents an element of the field GF(2^255-19). Note that this
15
// is not a cryptographically secure group, and should only be used to interact
16
// with edwards25519.Point coordinates.
17
//
18
// This type works similarly to math/big.Int, and all arguments and receivers
19
// are allowed to alias.
20
//
21
// The zero value is a valid zero element.
22
type Element struct {
23
	// An element t represents the integer
24
	//     t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
25
	//
26
	// Between operations, all limbs are expected to be lower than 2^52.
27
	l0 uint64
28
	l1 uint64
29
	l2 uint64
30
	l3 uint64
31
	l4 uint64
32
}
33

34
const maskLow51Bits uint64 = (1 << 51) - 1
35

36
var feZero = &Element{0, 0, 0, 0, 0}
37

38
// Zero sets v = 0, and returns v.
39
func (v *Element) Zero() *Element {
40
	*v = *feZero
41
	return v
42
}
43

44
var feOne = &Element{1, 0, 0, 0, 0}
45

46
// One sets v = 1, and returns v.
47
func (v *Element) One() *Element {
48
	*v = *feOne
49
	return v
50
}
51

52
// reduce reduces v modulo 2^255 - 19 and returns it.
53
func (v *Element) reduce() *Element {
54
	v.carryPropagate()
55

56
	// After the light reduction we now have a field element representation
57
	// v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
58

59
	// If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
60
	// generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
61
	c := (v.l0 + 19) >> 51
62
	c = (v.l1 + c) >> 51
63
	c = (v.l2 + c) >> 51
64
	c = (v.l3 + c) >> 51
65
	c = (v.l4 + c) >> 51
66

67
	// If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
68
	// effectively applying the reduction identity to the carry.
69
	v.l0 += 19 * c
70

71
	v.l1 += v.l0 >> 51
72
	v.l0 = v.l0 & maskLow51Bits
73
	v.l2 += v.l1 >> 51
74
	v.l1 = v.l1 & maskLow51Bits
75
	v.l3 += v.l2 >> 51
76
	v.l2 = v.l2 & maskLow51Bits
77
	v.l4 += v.l3 >> 51
78
	v.l3 = v.l3 & maskLow51Bits
79
	// no additional carry
80
	v.l4 = v.l4 & maskLow51Bits
81

82
	return v
83
}
84

85
// Add sets v = a + b, and returns v.
86
func (v *Element) Add(a, b *Element) *Element {
87
	v.l0 = a.l0 + b.l0
88
	v.l1 = a.l1 + b.l1
89
	v.l2 = a.l2 + b.l2
90
	v.l3 = a.l3 + b.l3
91
	v.l4 = a.l4 + b.l4
92
	// Using the generic implementation here is actually faster than the
93
	// assembly. Probably because the body of this function is so simple that
94
	// the compiler can figure out better optimizations by inlining the carry
95
	// propagation. TODO
96
	return v.carryPropagateGeneric()
97
}
98

99
// Subtract sets v = a - b, and returns v.
100
func (v *Element) Subtract(a, b *Element) *Element {
101
	// We first add 2 * p, to guarantee the subtraction won't underflow, and
102
	// then subtract b (which can be up to 2^255 + 2^13 * 19).
103
	v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
104
	v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
105
	v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
106
	v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
107
	v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
108
	return v.carryPropagate()
109
}
110

111
// Negate sets v = -a, and returns v.
112
func (v *Element) Negate(a *Element) *Element {
113
	return v.Subtract(feZero, a)
114
}
115

116
// Invert sets v = 1/z mod p, and returns v.
117
//
118
// If z == 0, Invert returns v = 0.
119
func (v *Element) Invert(z *Element) *Element {
120
	// Inversion is implemented as exponentiation with exponent p − 2. It uses the
121
	// same sequence of 255 squarings and 11 multiplications as [Curve25519].
122
	var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
123

124
	z2.Square(z)             // 2
125
	t.Square(&z2)            // 4
126
	t.Square(&t)             // 8
127
	z9.Multiply(&t, z)       // 9
128
	z11.Multiply(&z9, &z2)   // 11
129
	t.Square(&z11)           // 22
130
	z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
131

132
	t.Square(&z2_5_0) // 2^6 - 2^1
133
	for i := 0; i < 4; i++ {
134
		t.Square(&t) // 2^10 - 2^5
135
	}
136
	z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
137

138
	t.Square(&z2_10_0) // 2^11 - 2^1
139
	for i := 0; i < 9; i++ {
140
		t.Square(&t) // 2^20 - 2^10
141
	}
142
	z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
143

144
	t.Square(&z2_20_0) // 2^21 - 2^1
145
	for i := 0; i < 19; i++ {
146
		t.Square(&t) // 2^40 - 2^20
147
	}
148
	t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
149

150
	t.Square(&t) // 2^41 - 2^1
151
	for i := 0; i < 9; i++ {
152
		t.Square(&t) // 2^50 - 2^10
153
	}
154
	z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
155

156
	t.Square(&z2_50_0) // 2^51 - 2^1
157
	for i := 0; i < 49; i++ {
158
		t.Square(&t) // 2^100 - 2^50
159
	}
160
	z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
161

162
	t.Square(&z2_100_0) // 2^101 - 2^1
163
	for i := 0; i < 99; i++ {
164
		t.Square(&t) // 2^200 - 2^100
165
	}
166
	t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
167

168
	t.Square(&t) // 2^201 - 2^1
169
	for i := 0; i < 49; i++ {
170
		t.Square(&t) // 2^250 - 2^50
171
	}
172
	t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
173

174
	t.Square(&t) // 2^251 - 2^1
175
	t.Square(&t) // 2^252 - 2^2
176
	t.Square(&t) // 2^253 - 2^3
177
	t.Square(&t) // 2^254 - 2^4
178
	t.Square(&t) // 2^255 - 2^5
179

180
	return v.Multiply(&t, &z11) // 2^255 - 21
181
}
182

183
// Set sets v = a, and returns v.
184
func (v *Element) Set(a *Element) *Element {
185
	*v = *a
186
	return v
187
}
188

189
// SetBytes sets v to x, which must be a 32-byte little-endian encoding.
190
//
191
// Consistent with RFC 7748, the most significant bit (the high bit of the
192
// last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
193
// are accepted. Note that this is laxer than specified by RFC 8032.
194
func (v *Element) SetBytes(x []byte) *Element {
195
	if len(x) != 32 {
196
		panic("edwards25519: invalid field element input size")
197
	}
198

199
	// Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
200
	v.l0 = binary.LittleEndian.Uint64(x[0:8])
201
	v.l0 &= maskLow51Bits
202
	// Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
203
	v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
204
	v.l1 &= maskLow51Bits
205
	// Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
206
	v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
207
	v.l2 &= maskLow51Bits
208
	// Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
209
	v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
210
	v.l3 &= maskLow51Bits
211
	// Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51).
212
	// Note: not bytes 25:33, shift 4, to avoid overread.
213
	v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
214
	v.l4 &= maskLow51Bits
215

216
	return v
217
}
218

219
// Bytes returns the canonical 32-byte little-endian encoding of v.
220
func (v *Element) Bytes() []byte {
221
	// This function is outlined to make the allocations inline in the caller
222
	// rather than happen on the heap.
223
	var out [32]byte
224
	return v.bytes(&out)
225
}
226

227
func (v *Element) bytes(out *[32]byte) []byte {
228
	t := *v
229
	t.reduce()
230

231
	var buf [8]byte
232
	for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
233
		bitsOffset := i * 51
234
		binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
235
		for i, bb := range buf {
236
			off := bitsOffset/8 + i
237
			if off >= len(out) {
238
				break
239
			}
240
			out[off] |= bb
241
		}
242
	}
243

244
	return out[:]
245
}
246

247
// Equal returns 1 if v and u are equal, and 0 otherwise.
248
func (v *Element) Equal(u *Element) int {
249
	sa, sv := u.Bytes(), v.Bytes()
250
	return subtle.ConstantTimeCompare(sa, sv)
251
}
252

253
// mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
254
func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
255

256
// Select sets v to a if cond == 1, and to b if cond == 0.
257
func (v *Element) Select(a, b *Element, cond int) *Element {
258
	m := mask64Bits(cond)
259
	v.l0 = (m & a.l0) | (^m & b.l0)
260
	v.l1 = (m & a.l1) | (^m & b.l1)
261
	v.l2 = (m & a.l2) | (^m & b.l2)
262
	v.l3 = (m & a.l3) | (^m & b.l3)
263
	v.l4 = (m & a.l4) | (^m & b.l4)
264
	return v
265
}
266

267
// Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
268
func (v *Element) Swap(u *Element, cond int) {
269
	m := mask64Bits(cond)
270
	t := m & (v.l0 ^ u.l0)
271
	v.l0 ^= t
272
	u.l0 ^= t
273
	t = m & (v.l1 ^ u.l1)
274
	v.l1 ^= t
275
	u.l1 ^= t
276
	t = m & (v.l2 ^ u.l2)
277
	v.l2 ^= t
278
	u.l2 ^= t
279
	t = m & (v.l3 ^ u.l3)
280
	v.l3 ^= t
281
	u.l3 ^= t
282
	t = m & (v.l4 ^ u.l4)
283
	v.l4 ^= t
284
	u.l4 ^= t
285
}
286

287
// IsNegative returns 1 if v is negative, and 0 otherwise.
288
func (v *Element) IsNegative() int {
289
	return int(v.Bytes()[0] & 1)
290
}
291

292
// Absolute sets v to |u|, and returns v.
293
func (v *Element) Absolute(u *Element) *Element {
294
	return v.Select(new(Element).Negate(u), u, u.IsNegative())
295
}
296

297
// Multiply sets v = x * y, and returns v.
298
func (v *Element) Multiply(x, y *Element) *Element {
299
	feMul(v, x, y)
300
	return v
301
}
302

303
// Square sets v = x * x, and returns v.
304
func (v *Element) Square(x *Element) *Element {
305
	feSquare(v, x)
306
	return v
307
}
308

309
// Mult32 sets v = x * y, and returns v.
310
func (v *Element) Mult32(x *Element, y uint32) *Element {
311
	x0lo, x0hi := mul51(x.l0, y)
312
	x1lo, x1hi := mul51(x.l1, y)
313
	x2lo, x2hi := mul51(x.l2, y)
314
	x3lo, x3hi := mul51(x.l3, y)
315
	x4lo, x4hi := mul51(x.l4, y)
316
	v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
317
	v.l1 = x1lo + x0hi
318
	v.l2 = x2lo + x1hi
319
	v.l3 = x3lo + x2hi
320
	v.l4 = x4lo + x3hi
321
	// The hi portions are going to be only 32 bits, plus any previous excess,
322
	// so we can skip the carry propagation.
323
	return v
324
}
325

326
// mul51 returns lo + hi * 2⁵¹ = a * b.
327
func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
328
	mh, ml := bits.Mul64(a, uint64(b))
329
	lo = ml & maskLow51Bits
330
	hi = (mh << 13) | (ml >> 51)
331
	return
332
}
333

334
// Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
335
func (v *Element) Pow22523(x *Element) *Element {
336
	var t0, t1, t2 Element
337

338
	t0.Square(x)             // x^2
339
	t1.Square(&t0)           // x^4
340
	t1.Square(&t1)           // x^8
341
	t1.Multiply(x, &t1)      // x^9
342
	t0.Multiply(&t0, &t1)    // x^11
343
	t0.Square(&t0)           // x^22
344
	t0.Multiply(&t1, &t0)    // x^31
345
	t1.Square(&t0)           // x^62
346
	for i := 1; i < 5; i++ { // x^992
347
		t1.Square(&t1)
348
	}
349
	t0.Multiply(&t1, &t0)     // x^1023 -> 1023 = 2^10 - 1
350
	t1.Square(&t0)            // 2^11 - 2
351
	for i := 1; i < 10; i++ { // 2^20 - 2^10
352
		t1.Square(&t1)
353
	}
354
	t1.Multiply(&t1, &t0)     // 2^20 - 1
355
	t2.Square(&t1)            // 2^21 - 2
356
	for i := 1; i < 20; i++ { // 2^40 - 2^20
357
		t2.Square(&t2)
358
	}
359
	t1.Multiply(&t2, &t1)     // 2^40 - 1
360
	t1.Square(&t1)            // 2^41 - 2
361
	for i := 1; i < 10; i++ { // 2^50 - 2^10
362
		t1.Square(&t1)
363
	}
364
	t0.Multiply(&t1, &t0)     // 2^50 - 1
365
	t1.Square(&t0)            // 2^51 - 2
366
	for i := 1; i < 50; i++ { // 2^100 - 2^50
367
		t1.Square(&t1)
368
	}
369
	t1.Multiply(&t1, &t0)      // 2^100 - 1
370
	t2.Square(&t1)             // 2^101 - 2
371
	for i := 1; i < 100; i++ { // 2^200 - 2^100
372
		t2.Square(&t2)
373
	}
374
	t1.Multiply(&t2, &t1)     // 2^200 - 1
375
	t1.Square(&t1)            // 2^201 - 2
376
	for i := 1; i < 50; i++ { // 2^250 - 2^50
377
		t1.Square(&t1)
378
	}
379
	t0.Multiply(&t1, &t0)     // 2^250 - 1
380
	t0.Square(&t0)            // 2^251 - 2
381
	t0.Square(&t0)            // 2^252 - 4
382
	return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
383
}
384

385
// sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
386
var sqrtM1 = &Element{1718705420411056, 234908883556509,
387
	2233514472574048, 2117202627021982, 765476049583133}
388

389
// SqrtRatio sets r to the non-negative square root of the ratio of u and v.
390
//
391
// If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
392
// sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
393
// and returns r and 0.
394
func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) {
395
	var a, b Element
396

397
	// r = (u * v3) * (u * v7)^((p-5)/8)
398
	v2 := a.Square(v)
399
	uv3 := b.Multiply(u, b.Multiply(v2, v))
400
	uv7 := a.Multiply(uv3, a.Square(v2))
401
	r.Multiply(uv3, r.Pow22523(uv7))
402

403
	check := a.Multiply(v, a.Square(r)) // check = v * r^2
404

405
	uNeg := b.Negate(u)
406
	correctSignSqrt := check.Equal(u)
407
	flippedSignSqrt := check.Equal(uNeg)
408
	flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1))
409

410
	rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r
411
	// r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
412
	r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI)
413

414
	r.Absolute(r) // Choose the nonnegative square root.
415
	return r, correctSignSqrt | flippedSignSqrt
416
}
417

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.