podman

Форк
0
1526 строк · 40.1 Кб
1
// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
2
// Use of this source code is governed by a MIT license found in the LICENSE file.
3

4
package codec
5

6
import (
7
	"encoding"
8
	"errors"
9
	"io"
10
	"reflect"
11
	"sort"
12
	"strconv"
13
	"time"
14
)
15

16
// defEncByteBufSize is the default size of []byte used
17
// for bufio buffer or []byte (when nil passed)
18
const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
19

20
var errEncoderNotInitialized = errors.New("Encoder not initialized")
21

22
// encDriver abstracts the actual codec (binc vs msgpack, etc)
23
type encDriver interface {
24
	EncodeNil()
25
	EncodeInt(i int64)
26
	EncodeUint(i uint64)
27
	EncodeBool(b bool)
28
	EncodeFloat32(f float32)
29
	EncodeFloat64(f float64)
30
	EncodeRawExt(re *RawExt)
31
	EncodeExt(v interface{}, basetype reflect.Type, xtag uint64, ext Ext)
32
	// EncodeString using cUTF8, honor'ing StringToRaw flag
33
	EncodeString(v string)
34
	EncodeStringBytesRaw(v []byte)
35
	EncodeTime(time.Time)
36
	WriteArrayStart(length int)
37
	WriteArrayEnd()
38
	WriteMapStart(length int)
39
	WriteMapEnd()
40

41
	// reset will reset current encoding runtime state, and cached information from the handle
42
	reset()
43

44
	encoder() *Encoder
45

46
	driverStateManager
47
}
48

49
type encDriverContainerTracker interface {
50
	WriteArrayElem()
51
	WriteMapElemKey()
52
	WriteMapElemValue()
53
}
54

55
type encDriverNoState struct{}
56

57
func (encDriverNoState) captureState() interface{}  { return nil }
58
func (encDriverNoState) reset()                     {}
59
func (encDriverNoState) resetState()                {}
60
func (encDriverNoState) restoreState(v interface{}) {}
61

62
type encDriverNoopContainerWriter struct{}
63

64
func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
65
func (encDriverNoopContainerWriter) WriteArrayEnd()             {}
66
func (encDriverNoopContainerWriter) WriteMapStart(length int)   {}
67
func (encDriverNoopContainerWriter) WriteMapEnd()               {}
68

69
// encStructFieldObj[Slice] is used for sorting when there are missing fields and canonical flag is set
70
type encStructFieldObj struct {
71
	key   string
72
	rv    reflect.Value
73
	intf  interface{}
74
	ascii bool
75
	isRv  bool
76
}
77

78
type encStructFieldObjSlice []encStructFieldObj
79

80
func (p encStructFieldObjSlice) Len() int      { return len(p) }
81
func (p encStructFieldObjSlice) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
82
func (p encStructFieldObjSlice) Less(i, j int) bool {
83
	return p[uint(i)].key < p[uint(j)].key
84
}
85

86
// EncodeOptions captures configuration options during encode.
87
type EncodeOptions struct {
88
	// WriterBufferSize is the size of the buffer used when writing.
89
	//
90
	// if > 0, we use a smart buffer internally for performance purposes.
91
	WriterBufferSize int
92

93
	// ChanRecvTimeout is the timeout used when selecting from a chan.
94
	//
95
	// Configuring this controls how we receive from a chan during the encoding process.
96
	//   - If ==0, we only consume the elements currently available in the chan.
97
	//   - if  <0, we consume until the chan is closed.
98
	//   - If  >0, we consume until this timeout.
99
	ChanRecvTimeout time.Duration
100

101
	// StructToArray specifies to encode a struct as an array, and not as a map
102
	StructToArray bool
103

104
	// Canonical representation means that encoding a value will always result in the same
105
	// sequence of bytes.
106
	//
107
	// This only affects maps, as the iteration order for maps is random.
108
	//
109
	// The implementation MAY use the natural sort order for the map keys if possible:
110
	//
111
	//     - If there is a natural sort order (ie for number, bool, string or []byte keys),
112
	//       then the map keys are first sorted in natural order and then written
113
	//       with corresponding map values to the strema.
114
	//     - If there is no natural sort order, then the map keys will first be
115
	//       encoded into []byte, and then sorted,
116
	//       before writing the sorted keys and the corresponding map values to the stream.
117
	//
118
	Canonical bool
119

120
	// CheckCircularRef controls whether we check for circular references
121
	// and error fast during an encode.
122
	//
123
	// If enabled, an error is received if a pointer to a struct
124
	// references itself either directly or through one of its fields (iteratively).
125
	//
126
	// This is opt-in, as there may be a performance hit to checking circular references.
127
	CheckCircularRef bool
128

129
	// RecursiveEmptyCheck controls how we determine whether a value is empty.
130
	//
131
	// If true, we descend into interfaces and pointers to reursively check if value is empty.
132
	//
133
	// We *might* check struct fields one by one to see if empty
134
	// (if we cannot directly check if a struct value is equal to its zero value).
135
	// If so, we honor IsZero, Comparable, IsCodecEmpty(), etc.
136
	// Note: This *may* make OmitEmpty more expensive due to the large number of reflect calls.
137
	//
138
	// If false, we check if the value is equal to its zero value (newly allocated state).
139
	RecursiveEmptyCheck bool
140

141
	// Raw controls whether we encode Raw values.
142
	// This is a "dangerous" option and must be explicitly set.
143
	// If set, we blindly encode Raw values as-is, without checking
144
	// if they are a correct representation of a value in that format.
145
	// If unset, we error out.
146
	Raw bool
147

148
	// StringToRaw controls how strings are encoded.
149
	//
150
	// As a go string is just an (immutable) sequence of bytes,
151
	// it can be encoded either as raw bytes or as a UTF string.
152
	//
153
	// By default, strings are encoded as UTF-8.
154
	// but can be treated as []byte during an encode.
155
	//
156
	// Note that things which we know (by definition) to be UTF-8
157
	// are ALWAYS encoded as UTF-8 strings.
158
	// These include encoding.TextMarshaler, time.Format calls, struct field names, etc.
159
	StringToRaw bool
160

161
	// OptimumSize controls whether we optimize for the smallest size.
162
	//
163
	// Some formats will use this flag to determine whether to encode
164
	// in the smallest size possible, even if it takes slightly longer.
165
	//
166
	// For example, some formats that support half-floats might check if it is possible
167
	// to store a float64 as a half float. Doing this check has a small performance cost,
168
	// but the benefit is that the encoded message will be smaller.
169
	OptimumSize bool
170

171
	// NoAddressableReadonly controls whether we try to force a non-addressable value
172
	// to be addressable so we can call a pointer method on it e.g. for types
173
	// that support Selfer, json.Marshaler, etc.
174
	//
175
	// Use it in the very rare occurrence that your types modify a pointer value when calling
176
	// an encode callback function e.g. JsonMarshal, TextMarshal, BinaryMarshal or CodecEncodeSelf.
177
	NoAddressableReadonly bool
178
}
179

180
// ---------------------------------------------
181

182
func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
183
	e.e.EncodeRawExt(rv2i(rv).(*RawExt))
184
}
185

186
func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
187
	e.e.EncodeExt(rv2i(rv), f.ti.rt, f.xfTag, f.xfFn)
188
}
189

190
func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
191
	rv2i(rv).(Selfer).CodecEncodeSelf(e)
192
}
193

194
func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
195
	bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
196
	e.marshalRaw(bs, fnerr)
197
}
198

199
func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
200
	bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
201
	e.marshalUtf8(bs, fnerr)
202
}
203

204
func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
205
	bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
206
	e.marshalAsis(bs, fnerr)
207
}
208

209
func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
210
	e.rawBytes(rv2i(rv).(Raw))
211
}
212

213
func (e *Encoder) encodeComplex64(v complex64) {
214
	if imag(v) != 0 {
215
		e.errorf("cannot encode complex number: %v, with imaginary values: %v", v, imag(v))
216
	}
217
	e.e.EncodeFloat32(real(v))
218
}
219

220
func (e *Encoder) encodeComplex128(v complex128) {
221
	if imag(v) != 0 {
222
		e.errorf("cannot encode complex number: %v, with imaginary values: %v", v, imag(v))
223
	}
224
	e.e.EncodeFloat64(real(v))
225
}
226

227
func (e *Encoder) kBool(f *codecFnInfo, rv reflect.Value) {
228
	e.e.EncodeBool(rvGetBool(rv))
229
}
230

231
func (e *Encoder) kTime(f *codecFnInfo, rv reflect.Value) {
232
	e.e.EncodeTime(rvGetTime(rv))
233
}
234

235
func (e *Encoder) kString(f *codecFnInfo, rv reflect.Value) {
236
	e.e.EncodeString(rvGetString(rv))
237
}
238

239
func (e *Encoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
240
	e.e.EncodeFloat32(rvGetFloat32(rv))
241
}
242

243
func (e *Encoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
244
	e.e.EncodeFloat64(rvGetFloat64(rv))
245
}
246

247
func (e *Encoder) kComplex64(f *codecFnInfo, rv reflect.Value) {
248
	e.encodeComplex64(rvGetComplex64(rv))
249
}
250

251
func (e *Encoder) kComplex128(f *codecFnInfo, rv reflect.Value) {
252
	e.encodeComplex128(rvGetComplex128(rv))
253
}
254

255
func (e *Encoder) kInt(f *codecFnInfo, rv reflect.Value) {
256
	e.e.EncodeInt(int64(rvGetInt(rv)))
257
}
258

259
func (e *Encoder) kInt8(f *codecFnInfo, rv reflect.Value) {
260
	e.e.EncodeInt(int64(rvGetInt8(rv)))
261
}
262

263
func (e *Encoder) kInt16(f *codecFnInfo, rv reflect.Value) {
264
	e.e.EncodeInt(int64(rvGetInt16(rv)))
265
}
266

267
func (e *Encoder) kInt32(f *codecFnInfo, rv reflect.Value) {
268
	e.e.EncodeInt(int64(rvGetInt32(rv)))
269
}
270

271
func (e *Encoder) kInt64(f *codecFnInfo, rv reflect.Value) {
272
	e.e.EncodeInt(int64(rvGetInt64(rv)))
273
}
274

275
func (e *Encoder) kUint(f *codecFnInfo, rv reflect.Value) {
276
	e.e.EncodeUint(uint64(rvGetUint(rv)))
277
}
278

279
func (e *Encoder) kUint8(f *codecFnInfo, rv reflect.Value) {
280
	e.e.EncodeUint(uint64(rvGetUint8(rv)))
281
}
282

283
func (e *Encoder) kUint16(f *codecFnInfo, rv reflect.Value) {
284
	e.e.EncodeUint(uint64(rvGetUint16(rv)))
285
}
286

287
func (e *Encoder) kUint32(f *codecFnInfo, rv reflect.Value) {
288
	e.e.EncodeUint(uint64(rvGetUint32(rv)))
289
}
290

291
func (e *Encoder) kUint64(f *codecFnInfo, rv reflect.Value) {
292
	e.e.EncodeUint(uint64(rvGetUint64(rv)))
293
}
294

295
func (e *Encoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
296
	e.e.EncodeUint(uint64(rvGetUintptr(rv)))
297
}
298

299
func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
300
	e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
301
}
302

303
func chanToSlice(rv reflect.Value, rtslice reflect.Type, timeout time.Duration) (rvcs reflect.Value) {
304
	rvcs = rvZeroK(rtslice, reflect.Slice)
305
	if timeout < 0 { // consume until close
306
		for {
307
			recv, recvOk := rv.Recv()
308
			if !recvOk {
309
				break
310
			}
311
			rvcs = reflect.Append(rvcs, recv)
312
		}
313
	} else {
314
		cases := make([]reflect.SelectCase, 2)
315
		cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
316
		if timeout == 0 {
317
			cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
318
		} else {
319
			tt := time.NewTimer(timeout)
320
			cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
321
		}
322
		for {
323
			chosen, recv, recvOk := reflect.Select(cases)
324
			if chosen == 1 || !recvOk {
325
				break
326
			}
327
			rvcs = reflect.Append(rvcs, recv)
328
		}
329
	}
330
	return
331
}
332

333
func (e *Encoder) kSeqFn(rtelem reflect.Type) (fn *codecFn) {
334
	for rtelem.Kind() == reflect.Ptr {
335
		rtelem = rtelem.Elem()
336
	}
337
	// if kind is reflect.Interface, do not pre-determine the encoding type,
338
	// because preEncodeValue may break it down to a concrete type and kInterface will bomb.
339
	if rtelem.Kind() != reflect.Interface {
340
		fn = e.h.fn(rtelem)
341
	}
342
	return
343
}
344

345
func (e *Encoder) kSliceWMbs(rv reflect.Value, ti *typeInfo) {
346
	var l = rvLenSlice(rv)
347
	if l == 0 {
348
		e.mapStart(0)
349
	} else {
350
		e.haltOnMbsOddLen(l)
351
		e.mapStart(l >> 1) // e.mapStart(l / 2)
352
		fn := e.kSeqFn(ti.elem)
353
		for j := 0; j < l; j++ {
354
			if j&1 == 0 { // j%2 == 0 {
355
				e.mapElemKey()
356
			} else {
357
				e.mapElemValue()
358
			}
359
			e.encodeValue(rvSliceIndex(rv, j, ti), fn)
360
		}
361
	}
362
	e.mapEnd()
363
}
364

365
func (e *Encoder) kSliceW(rv reflect.Value, ti *typeInfo) {
366
	var l = rvLenSlice(rv)
367
	e.arrayStart(l)
368
	if l > 0 {
369
		fn := e.kSeqFn(ti.elem)
370
		for j := 0; j < l; j++ {
371
			e.arrayElem()
372
			e.encodeValue(rvSliceIndex(rv, j, ti), fn)
373
		}
374
	}
375
	e.arrayEnd()
376
}
377

378
func (e *Encoder) kArrayWMbs(rv reflect.Value, ti *typeInfo) {
379
	var l = rv.Len()
380
	if l == 0 {
381
		e.mapStart(0)
382
	} else {
383
		e.haltOnMbsOddLen(l)
384
		e.mapStart(l >> 1) // e.mapStart(l / 2)
385
		fn := e.kSeqFn(ti.elem)
386
		for j := 0; j < l; j++ {
387
			if j&1 == 0 { // j%2 == 0 {
388
				e.mapElemKey()
389
			} else {
390
				e.mapElemValue()
391
			}
392
			e.encodeValue(rv.Index(j), fn)
393
		}
394
	}
395
	e.mapEnd()
396
}
397

398
func (e *Encoder) kArrayW(rv reflect.Value, ti *typeInfo) {
399
	var l = rv.Len()
400
	e.arrayStart(l)
401
	if l > 0 {
402
		fn := e.kSeqFn(ti.elem)
403
		for j := 0; j < l; j++ {
404
			e.arrayElem()
405
			e.encodeValue(rv.Index(j), fn)
406
		}
407
	}
408
	e.arrayEnd()
409
}
410

411
func (e *Encoder) kChan(f *codecFnInfo, rv reflect.Value) {
412
	if f.ti.chandir&uint8(reflect.RecvDir) == 0 {
413
		e.errorf("send-only channel cannot be encoded")
414
	}
415
	if !f.ti.mbs && uint8TypId == rt2id(f.ti.elem) {
416
		e.kSliceBytesChan(rv)
417
		return
418
	}
419
	rtslice := reflect.SliceOf(f.ti.elem)
420
	rv = chanToSlice(rv, rtslice, e.h.ChanRecvTimeout)
421
	ti := e.h.getTypeInfo(rt2id(rtslice), rtslice)
422
	if f.ti.mbs {
423
		e.kSliceWMbs(rv, ti)
424
	} else {
425
		e.kSliceW(rv, ti)
426
	}
427
}
428

429
func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
430
	if f.ti.mbs {
431
		e.kSliceWMbs(rv, f.ti)
432
	} else if f.ti.rtid == uint8SliceTypId || uint8TypId == rt2id(f.ti.elem) {
433
		e.e.EncodeStringBytesRaw(rvGetBytes(rv))
434
	} else {
435
		e.kSliceW(rv, f.ti)
436
	}
437
}
438

439
func (e *Encoder) kArray(f *codecFnInfo, rv reflect.Value) {
440
	if f.ti.mbs {
441
		e.kArrayWMbs(rv, f.ti)
442
	} else if handleBytesWithinKArray && uint8TypId == rt2id(f.ti.elem) {
443
		e.e.EncodeStringBytesRaw(rvGetArrayBytes(rv, []byte{}))
444
	} else {
445
		e.kArrayW(rv, f.ti)
446
	}
447
}
448

449
func (e *Encoder) kSliceBytesChan(rv reflect.Value) {
450
	// do not use range, so that the number of elements encoded
451
	// does not change, and encoding does not hang waiting on someone to close chan.
452

453
	bs0 := e.blist.peek(32, true)
454
	bs := bs0
455

456
	irv := rv2i(rv)
457
	ch, ok := irv.(<-chan byte)
458
	if !ok {
459
		ch = irv.(chan byte)
460
	}
461

462
L1:
463
	switch timeout := e.h.ChanRecvTimeout; {
464
	case timeout == 0: // only consume available
465
		for {
466
			select {
467
			case b := <-ch:
468
				bs = append(bs, b)
469
			default:
470
				break L1
471
			}
472
		}
473
	case timeout > 0: // consume until timeout
474
		tt := time.NewTimer(timeout)
475
		for {
476
			select {
477
			case b := <-ch:
478
				bs = append(bs, b)
479
			case <-tt.C:
480
				// close(tt.C)
481
				break L1
482
			}
483
		}
484
	default: // consume until close
485
		for b := range ch {
486
			bs = append(bs, b)
487
		}
488
	}
489

490
	e.e.EncodeStringBytesRaw(bs)
491
	e.blist.put(bs)
492
	if !byteSliceSameData(bs0, bs) {
493
		e.blist.put(bs0)
494
	}
495
}
496

497
func (e *Encoder) kStructSfi(f *codecFnInfo) []*structFieldInfo {
498
	if e.h.Canonical {
499
		return f.ti.sfi.sorted()
500
	}
501
	return f.ti.sfi.source()
502
}
503

504
func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
505
	var tisfi []*structFieldInfo
506
	if f.ti.toArray || e.h.StructToArray { // toArray
507
		tisfi = f.ti.sfi.source()
508
		e.arrayStart(len(tisfi))
509
		for _, si := range tisfi {
510
			e.arrayElem()
511
			e.encodeValue(si.path.field(rv), nil)
512
		}
513
		e.arrayEnd()
514
	} else {
515
		tisfi = e.kStructSfi(f)
516
		e.mapStart(len(tisfi))
517
		keytyp := f.ti.keyType
518
		for _, si := range tisfi {
519
			e.mapElemKey()
520
			e.kStructFieldKey(keytyp, si.path.encNameAsciiAlphaNum, si.encName)
521
			e.mapElemValue()
522
			e.encodeValue(si.path.field(rv), nil)
523
		}
524
		e.mapEnd()
525
	}
526
}
527

528
func (e *Encoder) kStructFieldKey(keyType valueType, encNameAsciiAlphaNum bool, encName string) {
529
	encStructFieldKey(encName, e.e, e.w(), keyType, encNameAsciiAlphaNum, e.js)
530
}
531

532
func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
533
	var newlen int
534
	ti := f.ti
535
	toMap := !(ti.toArray || e.h.StructToArray)
536
	var mf map[string]interface{}
537
	if ti.flagMissingFielder {
538
		mf = rv2i(rv).(MissingFielder).CodecMissingFields()
539
		toMap = true
540
		newlen += len(mf)
541
	} else if ti.flagMissingFielderPtr {
542
		rv2 := e.addrRV(rv, ti.rt, ti.ptr)
543
		mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
544
		toMap = true
545
		newlen += len(mf)
546
	}
547
	tisfi := ti.sfi.source()
548
	newlen += len(tisfi)
549

550
	var fkvs = e.slist.get(newlen)[:newlen]
551

552
	recur := e.h.RecursiveEmptyCheck
553

554
	var kv sfiRv
555
	var j int
556
	if toMap {
557
		newlen = 0
558
		for _, si := range e.kStructSfi(f) {
559
			kv.r = si.path.field(rv)
560
			if si.path.omitEmpty && isEmptyValue(kv.r, e.h.TypeInfos, recur) {
561
				continue
562
			}
563
			kv.v = si
564
			fkvs[newlen] = kv
565
			newlen++
566
		}
567

568
		var mf2s []stringIntf
569
		if len(mf) > 0 {
570
			mf2s = make([]stringIntf, 0, len(mf))
571
			for k, v := range mf {
572
				if k == "" {
573
					continue
574
				}
575
				if ti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur) {
576
					continue
577
				}
578
				mf2s = append(mf2s, stringIntf{k, v})
579
			}
580
		}
581

582
		e.mapStart(newlen + len(mf2s))
583

584
		// When there are missing fields, and Canonical flag is set,
585
		// we cannot have the missing fields and struct fields sorted independently.
586
		// We have to capture them together and sort as a unit.
587

588
		if len(mf2s) > 0 && e.h.Canonical {
589
			mf2w := make([]encStructFieldObj, newlen+len(mf2s))
590
			for j = 0; j < newlen; j++ {
591
				kv = fkvs[j]
592
				mf2w[j] = encStructFieldObj{kv.v.encName, kv.r, nil, kv.v.path.encNameAsciiAlphaNum, true}
593
			}
594
			for _, v := range mf2s {
595
				mf2w[j] = encStructFieldObj{v.v, reflect.Value{}, v.i, false, false}
596
				j++
597
			}
598
			sort.Sort((encStructFieldObjSlice)(mf2w))
599
			for _, v := range mf2w {
600
				e.mapElemKey()
601
				e.kStructFieldKey(ti.keyType, v.ascii, v.key)
602
				e.mapElemValue()
603
				if v.isRv {
604
					e.encodeValue(v.rv, nil)
605
				} else {
606
					e.encode(v.intf)
607
				}
608
			}
609
		} else {
610
			keytyp := ti.keyType
611
			for j = 0; j < newlen; j++ {
612
				kv = fkvs[j]
613
				e.mapElemKey()
614
				e.kStructFieldKey(keytyp, kv.v.path.encNameAsciiAlphaNum, kv.v.encName)
615
				e.mapElemValue()
616
				e.encodeValue(kv.r, nil)
617
			}
618
			for _, v := range mf2s {
619
				e.mapElemKey()
620
				e.kStructFieldKey(keytyp, false, v.v)
621
				e.mapElemValue()
622
				e.encode(v.i)
623
			}
624
		}
625

626
		e.mapEnd()
627
	} else {
628
		newlen = len(tisfi)
629
		for i, si := range tisfi { // use unsorted array (to match sequence in struct)
630
			kv.r = si.path.field(rv)
631
			// use the zero value.
632
			// if a reference or struct, set to nil (so you do not output too much)
633
			if si.path.omitEmpty && isEmptyValue(kv.r, e.h.TypeInfos, recur) {
634
				switch kv.r.Kind() {
635
				case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
636
					kv.r = reflect.Value{} //encode as nil
637
				}
638
			}
639
			fkvs[i] = kv
640
		}
641
		// encode it all
642
		e.arrayStart(newlen)
643
		for j = 0; j < newlen; j++ {
644
			e.arrayElem()
645
			e.encodeValue(fkvs[j].r, nil)
646
		}
647
		e.arrayEnd()
648
	}
649

650
	// do not use defer. Instead, use explicit pool return at end of function.
651
	// defer has a cost we are trying to avoid.
652
	// If there is a panic and these slices are not returned, it is ok.
653
	e.slist.put(fkvs)
654
}
655

656
func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
657
	l := rvLenMap(rv)
658
	e.mapStart(l)
659
	if l == 0 {
660
		e.mapEnd()
661
		return
662
	}
663

664
	// determine the underlying key and val encFn's for the map.
665
	// This eliminates some work which is done for each loop iteration i.e.
666
	// rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
667
	//
668
	// However, if kind is reflect.Interface, do not pre-determine the
669
	// encoding type, because preEncodeValue may break it down to
670
	// a concrete type and kInterface will bomb.
671

672
	var keyFn, valFn *codecFn
673

674
	ktypeKind := reflect.Kind(f.ti.keykind)
675
	vtypeKind := reflect.Kind(f.ti.elemkind)
676

677
	rtval := f.ti.elem
678
	rtvalkind := vtypeKind
679
	for rtvalkind == reflect.Ptr {
680
		rtval = rtval.Elem()
681
		rtvalkind = rtval.Kind()
682
	}
683
	if rtvalkind != reflect.Interface {
684
		valFn = e.h.fn(rtval)
685
	}
686

687
	var rvv = mapAddrLoopvarRV(f.ti.elem, vtypeKind)
688

689
	rtkey := f.ti.key
690
	var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
691
	if keyTypeIsString {
692
		keyFn = e.h.fn(rtkey)
693
	} else {
694
		for rtkey.Kind() == reflect.Ptr {
695
			rtkey = rtkey.Elem()
696
		}
697
		if rtkey.Kind() != reflect.Interface {
698
			keyFn = e.h.fn(rtkey)
699
		}
700
	}
701

702
	if e.h.Canonical {
703
		e.kMapCanonical(f.ti, rv, rvv, keyFn, valFn)
704
		e.mapEnd()
705
		return
706
	}
707

708
	var rvk = mapAddrLoopvarRV(f.ti.key, ktypeKind)
709

710
	var it mapIter
711
	mapRange(&it, rv, rvk, rvv, true)
712

713
	for it.Next() {
714
		e.mapElemKey()
715
		if keyTypeIsString {
716
			e.e.EncodeString(it.Key().String())
717
		} else {
718
			e.encodeValue(it.Key(), keyFn)
719
		}
720
		e.mapElemValue()
721
		e.encodeValue(it.Value(), valFn)
722
	}
723
	it.Done()
724

725
	e.mapEnd()
726
}
727

728
func (e *Encoder) kMapCanonical(ti *typeInfo, rv, rvv reflect.Value, keyFn, valFn *codecFn) {
729
	// The base kind of the type of the map key is sufficient for ordering.
730
	// We only do out of band if that kind is not ordered (number or string), bool or time.Time.
731
	// If the key is a predeclared type, directly call methods on encDriver e.g. EncodeString
732
	// but if not, call encodeValue, in case it has an extension registered or otherwise.
733
	rtkey := ti.key
734
	rtkeydecl := rtkey.PkgPath() == "" && rtkey.Name() != "" // key type is predeclared
735

736
	mks := rv.MapKeys()
737
	rtkeyKind := rtkey.Kind()
738
	kfast := mapKeyFastKindFor(rtkeyKind)
739
	visindirect := mapStoresElemIndirect(uintptr(ti.elemsize))
740
	visref := refBitset.isset(ti.elemkind)
741

742
	switch rtkeyKind {
743
	case reflect.Bool:
744
		// though bool keys make no sense in a map, it *could* happen.
745
		// in that case, we MUST support it in reflection mode,
746
		// as that is the fallback for even codecgen and others.
747

748
		// sort the keys so that false comes before true
749
		// ie if 2 keys in order (true, false), then swap them
750
		if len(mks) == 2 && mks[0].Bool() {
751
			mks[0], mks[1] = mks[1], mks[0]
752
		}
753
		for i := range mks {
754
			e.mapElemKey()
755
			if rtkeydecl {
756
				e.e.EncodeBool(mks[i].Bool())
757
			} else {
758
				e.encodeValueNonNil(mks[i], keyFn)
759
			}
760
			e.mapElemValue()
761
			e.encodeValue(mapGet(rv, mks[i], rvv, kfast, visindirect, visref), valFn)
762
		}
763
	case reflect.String:
764
		mksv := make([]stringRv, len(mks))
765
		for i, k := range mks {
766
			v := &mksv[i]
767
			v.r = k
768
			v.v = k.String()
769
		}
770
		sort.Sort(stringRvSlice(mksv))
771
		for i := range mksv {
772
			e.mapElemKey()
773
			if rtkeydecl {
774
				e.e.EncodeString(mksv[i].v)
775
			} else {
776
				e.encodeValueNonNil(mksv[i].r, keyFn)
777
			}
778
			e.mapElemValue()
779
			e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
780
		}
781
	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
782
		mksv := make([]uint64Rv, len(mks))
783
		for i, k := range mks {
784
			v := &mksv[i]
785
			v.r = k
786
			v.v = k.Uint()
787
		}
788
		sort.Sort(uint64RvSlice(mksv))
789
		for i := range mksv {
790
			e.mapElemKey()
791
			if rtkeydecl {
792
				e.e.EncodeUint(mksv[i].v)
793
			} else {
794
				e.encodeValueNonNil(mksv[i].r, keyFn)
795
			}
796
			e.mapElemValue()
797
			e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
798
		}
799
	case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
800
		mksv := make([]int64Rv, len(mks))
801
		for i, k := range mks {
802
			v := &mksv[i]
803
			v.r = k
804
			v.v = k.Int()
805
		}
806
		sort.Sort(int64RvSlice(mksv))
807
		for i := range mksv {
808
			e.mapElemKey()
809
			if rtkeydecl {
810
				e.e.EncodeInt(mksv[i].v)
811
			} else {
812
				e.encodeValueNonNil(mksv[i].r, keyFn)
813
			}
814
			e.mapElemValue()
815
			e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
816
		}
817
	case reflect.Float32:
818
		mksv := make([]float64Rv, len(mks))
819
		for i, k := range mks {
820
			v := &mksv[i]
821
			v.r = k
822
			v.v = k.Float()
823
		}
824
		sort.Sort(float64RvSlice(mksv))
825
		for i := range mksv {
826
			e.mapElemKey()
827
			if rtkeydecl {
828
				e.e.EncodeFloat32(float32(mksv[i].v))
829
			} else {
830
				e.encodeValueNonNil(mksv[i].r, keyFn)
831
			}
832
			e.mapElemValue()
833
			e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
834
		}
835
	case reflect.Float64:
836
		mksv := make([]float64Rv, len(mks))
837
		for i, k := range mks {
838
			v := &mksv[i]
839
			v.r = k
840
			v.v = k.Float()
841
		}
842
		sort.Sort(float64RvSlice(mksv))
843
		for i := range mksv {
844
			e.mapElemKey()
845
			if rtkeydecl {
846
				e.e.EncodeFloat64(mksv[i].v)
847
			} else {
848
				e.encodeValueNonNil(mksv[i].r, keyFn)
849
			}
850
			e.mapElemValue()
851
			e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
852
		}
853
	default:
854
		if rtkey == timeTyp {
855
			mksv := make([]timeRv, len(mks))
856
			for i, k := range mks {
857
				v := &mksv[i]
858
				v.r = k
859
				v.v = rv2i(k).(time.Time)
860
			}
861
			sort.Sort(timeRvSlice(mksv))
862
			for i := range mksv {
863
				e.mapElemKey()
864
				e.e.EncodeTime(mksv[i].v)
865
				e.mapElemValue()
866
				e.encodeValue(mapGet(rv, mksv[i].r, rvv, kfast, visindirect, visref), valFn)
867
			}
868
			break
869
		}
870

871
		// out-of-band
872
		// first encode each key to a []byte first, then sort them, then record
873
		bs0 := e.blist.get(len(mks) * 16)
874
		mksv := bs0
875
		mksbv := make([]bytesRv, len(mks))
876

877
		func() {
878
			// replicate sideEncode logic
879
			defer func(wb bytesEncAppender, bytes bool, c containerState, state interface{}) {
880
				e.wb = wb
881
				e.bytes = bytes
882
				e.c = c
883
				e.e.restoreState(state)
884
			}(e.wb, e.bytes, e.c, e.e.captureState())
885

886
			// e2 := NewEncoderBytes(&mksv, e.hh)
887
			e.wb = bytesEncAppender{mksv[:0], &mksv}
888
			e.bytes = true
889
			e.c = 0
890
			e.e.resetState()
891

892
			for i, k := range mks {
893
				v := &mksbv[i]
894
				l := len(mksv)
895

896
				e.c = containerMapKey
897
				e.encodeValue(k, nil)
898
				e.atEndOfEncode()
899
				e.w().end()
900

901
				v.r = k
902
				v.v = mksv[l:]
903
			}
904
		}()
905

906
		sort.Sort(bytesRvSlice(mksbv))
907
		for j := range mksbv {
908
			e.mapElemKey()
909
			e.encWr.writeb(mksbv[j].v)
910
			e.mapElemValue()
911
			e.encodeValue(mapGet(rv, mksbv[j].r, rvv, kfast, visindirect, visref), valFn)
912
		}
913
		e.blist.put(mksv)
914
		if !byteSliceSameData(bs0, mksv) {
915
			e.blist.put(bs0)
916
		}
917
	}
918
}
919

920
// Encoder writes an object to an output stream in a supported format.
921
//
922
// Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
923
// concurrently in multiple goroutines.
924
//
925
// However, as Encoder could be allocation heavy to initialize, a Reset method is provided
926
// so its state can be reused to decode new input streams repeatedly.
927
// This is the idiomatic way to use.
928
type Encoder struct {
929
	panicHdl
930

931
	e encDriver
932

933
	h *BasicHandle
934

935
	// hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
936
	encWr
937

938
	// ---- cpu cache line boundary
939
	hh Handle
940

941
	blist bytesFreelist
942
	err   error
943

944
	// ---- cpu cache line boundary
945

946
	// ---- writable fields during execution --- *try* to keep in sep cache line
947

948
	// ci holds interfaces during an encoding (if CheckCircularRef=true)
949
	//
950
	// We considered using a []uintptr (slice of pointer addresses) retrievable via rv.UnsafeAddr.
951
	// However, it is possible for the same pointer to point to 2 different types e.g.
952
	//    type T struct { tHelper }
953
	//    Here, for var v T; &v and &v.tHelper are the same pointer.
954
	// Consequently, we need a tuple of type and pointer, which interface{} natively provides.
955
	ci []interface{} // []uintptr
956

957
	perType encPerType
958

959
	slist sfiRvFreelist
960
}
961

962
// NewEncoder returns an Encoder for encoding into an io.Writer.
963
//
964
// For efficiency, Users are encouraged to configure WriterBufferSize on the handle
965
// OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
966
func NewEncoder(w io.Writer, h Handle) *Encoder {
967
	e := h.newEncDriver().encoder()
968
	if w != nil {
969
		e.Reset(w)
970
	}
971
	return e
972
}
973

974
// NewEncoderBytes returns an encoder for encoding directly and efficiently
975
// into a byte slice, using zero-copying to temporary slices.
976
//
977
// It will potentially replace the output byte slice pointed to.
978
// After encoding, the out parameter contains the encoded contents.
979
func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
980
	e := h.newEncDriver().encoder()
981
	if out != nil {
982
		e.ResetBytes(out)
983
	}
984
	return e
985
}
986

987
func (e *Encoder) HandleName() string {
988
	return e.hh.Name()
989
}
990

991
func (e *Encoder) init(h Handle) {
992
	initHandle(h)
993
	e.err = errEncoderNotInitialized
994
	e.bytes = true
995
	e.hh = h
996
	e.h = h.getBasicHandle()
997
	e.be = e.hh.isBinary()
998
}
999

1000
func (e *Encoder) w() *encWr {
1001
	return &e.encWr
1002
}
1003

1004
func (e *Encoder) resetCommon() {
1005
	e.e.reset()
1006
	if e.ci != nil {
1007
		e.ci = e.ci[:0]
1008
	}
1009
	e.c = 0
1010
	e.calls = 0
1011
	e.seq = 0
1012
	e.err = nil
1013
}
1014

1015
// Reset resets the Encoder with a new output stream.
1016
//
1017
// This accommodates using the state of the Encoder,
1018
// where it has "cached" information about sub-engines.
1019
func (e *Encoder) Reset(w io.Writer) {
1020
	e.bytes = false
1021
	if e.wf == nil {
1022
		e.wf = new(bufioEncWriter)
1023
	}
1024
	e.wf.reset(w, e.h.WriterBufferSize, &e.blist)
1025
	e.resetCommon()
1026
}
1027

1028
// ResetBytes resets the Encoder with a new destination output []byte.
1029
func (e *Encoder) ResetBytes(out *[]byte) {
1030
	e.bytes = true
1031
	e.wb.reset(encInBytes(out), out)
1032
	e.resetCommon()
1033
}
1034

1035
// Encode writes an object into a stream.
1036
//
1037
// Encoding can be configured via the struct tag for the fields.
1038
// The key (in the struct tags) that we look at is configurable.
1039
//
1040
// By default, we look up the "codec" key in the struct field's tags,
1041
// and fall bak to the "json" key if "codec" is absent.
1042
// That key in struct field's tag value is the key name,
1043
// followed by an optional comma and options.
1044
//
1045
// To set an option on all fields (e.g. omitempty on all fields), you
1046
// can create a field called _struct, and set flags on it. The options
1047
// which can be set on _struct are:
1048
//   - omitempty: so all fields are omitted if empty
1049
//   - toarray: so struct is encoded as an array
1050
//   - int: so struct key names are encoded as signed integers (instead of strings)
1051
//   - uint: so struct key names are encoded as unsigned integers (instead of strings)
1052
//   - float: so struct key names are encoded as floats (instead of strings)
1053
//
1054
// More details on these below.
1055
//
1056
// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
1057
//   - the field's tag is "-", OR
1058
//   - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
1059
//
1060
// When encoding as a map, the first string in the tag (before the comma)
1061
// is the map key string to use when encoding.
1062
// ...
1063
// This key is typically encoded as a string.
1064
// However, there are instances where the encoded stream has mapping keys encoded as numbers.
1065
// For example, some cbor streams have keys as integer codes in the stream, but they should map
1066
// to fields in a structured object. Consequently, a struct is the natural representation in code.
1067
// For these, configure the struct to encode/decode the keys as numbers (instead of string).
1068
// This is done with the int,uint or float option on the _struct field (see above).
1069
//
1070
// However, struct values may encode as arrays. This happens when:
1071
//   - StructToArray Encode option is set, OR
1072
//   - the tag on the _struct field sets the "toarray" option
1073
//
1074
// Note that omitempty is ignored when encoding struct values as arrays,
1075
// as an entry must be encoded for each field, to maintain its position.
1076
//
1077
// Values with types that implement MapBySlice are encoded as stream maps.
1078
//
1079
// The empty values (for omitempty option) are false, 0, any nil pointer
1080
// or interface value, and any array, slice, map, or string of length zero.
1081
//
1082
// Anonymous fields are encoded inline except:
1083
//   - the struct tag specifies a replacement name (first value)
1084
//   - the field is of an interface type
1085
//
1086
// Examples:
1087
//
1088
//	// NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
1089
//	type MyStruct struct {
1090
//	    _struct bool    `codec:",omitempty"`   //set omitempty for every field
1091
//	    Field1 string   `codec:"-"`            //skip this field
1092
//	    Field2 int      `codec:"myName"`       //Use key "myName" in encode stream
1093
//	    Field3 int32    `codec:",omitempty"`   //use key "Field3". Omit if empty.
1094
//	    Field4 bool     `codec:"f4,omitempty"` //use key "f4". Omit if empty.
1095
//	    io.Reader                              //use key "Reader".
1096
//	    MyStruct        `codec:"my1"           //use key "my1".
1097
//	    MyStruct                               //inline it
1098
//	    ...
1099
//	}
1100
//
1101
//	type MyStruct struct {
1102
//	    _struct bool    `codec:",toarray"`     //encode struct as an array
1103
//	}
1104
//
1105
//	type MyStruct struct {
1106
//	    _struct bool    `codec:",uint"`        //encode struct with "unsigned integer" keys
1107
//	    Field1 string   `codec:"1"`            //encode Field1 key using: EncodeInt(1)
1108
//	    Field2 string   `codec:"2"`            //encode Field2 key using: EncodeInt(2)
1109
//	}
1110
//
1111
// The mode of encoding is based on the type of the value. When a value is seen:
1112
//   - If a Selfer, call its CodecEncodeSelf method
1113
//   - If an extension is registered for it, call that extension function
1114
//   - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
1115
//   - Else encode it based on its reflect.Kind
1116
//
1117
// Note that struct field names and keys in map[string]XXX will be treated as symbols.
1118
// Some formats support symbols (e.g. binc) and will properly encode the string
1119
// only once in the stream, and use a tag to refer to it thereafter.
1120
func (e *Encoder) Encode(v interface{}) (err error) {
1121
	// tried to use closure, as runtime optimizes defer with no params.
1122
	// This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
1123
	// Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
1124
	if !debugging {
1125
		defer func() {
1126
			// if error occurred during encoding, return that error;
1127
			// else if error occurred on end'ing (i.e. during flush), return that error.
1128
			if x := recover(); x != nil {
1129
				panicValToErr(e, x, &e.err)
1130
				err = e.err
1131
			}
1132
		}()
1133
	}
1134

1135
	e.MustEncode(v)
1136
	return
1137
}
1138

1139
// MustEncode is like Encode, but panics if unable to Encode.
1140
//
1141
// Note: This provides insight to the code location that triggered the error.
1142
func (e *Encoder) MustEncode(v interface{}) {
1143
	halt.onerror(e.err)
1144
	if e.hh == nil {
1145
		halt.onerror(errNoFormatHandle)
1146
	}
1147

1148
	e.calls++
1149
	e.encode(v)
1150
	e.calls--
1151
	if e.calls == 0 {
1152
		e.atEndOfEncode()
1153
		e.w().end()
1154
	}
1155
}
1156

1157
// Release is a no-op.
1158
//
1159
// Deprecated: Pooled resources are not used with an Encoder.
1160
// This method is kept for compatibility reasons only.
1161
func (e *Encoder) Release() {
1162
}
1163

1164
func (e *Encoder) encode(iv interface{}) {
1165
	// MARKER: a switch with only concrete types can be optimized.
1166
	// consequently, we deal with nil and interfaces outside the switch.
1167

1168
	if iv == nil {
1169
		e.e.EncodeNil()
1170
		return
1171
	}
1172

1173
	rv, ok := isNil(iv)
1174
	if ok {
1175
		e.e.EncodeNil()
1176
		return
1177
	}
1178

1179
	switch v := iv.(type) {
1180
	// case nil:
1181
	// case Selfer:
1182
	case Raw:
1183
		e.rawBytes(v)
1184
	case reflect.Value:
1185
		e.encodeValue(v, nil)
1186

1187
	case string:
1188
		e.e.EncodeString(v)
1189
	case bool:
1190
		e.e.EncodeBool(v)
1191
	case int:
1192
		e.e.EncodeInt(int64(v))
1193
	case int8:
1194
		e.e.EncodeInt(int64(v))
1195
	case int16:
1196
		e.e.EncodeInt(int64(v))
1197
	case int32:
1198
		e.e.EncodeInt(int64(v))
1199
	case int64:
1200
		e.e.EncodeInt(v)
1201
	case uint:
1202
		e.e.EncodeUint(uint64(v))
1203
	case uint8:
1204
		e.e.EncodeUint(uint64(v))
1205
	case uint16:
1206
		e.e.EncodeUint(uint64(v))
1207
	case uint32:
1208
		e.e.EncodeUint(uint64(v))
1209
	case uint64:
1210
		e.e.EncodeUint(v)
1211
	case uintptr:
1212
		e.e.EncodeUint(uint64(v))
1213
	case float32:
1214
		e.e.EncodeFloat32(v)
1215
	case float64:
1216
		e.e.EncodeFloat64(v)
1217
	case complex64:
1218
		e.encodeComplex64(v)
1219
	case complex128:
1220
		e.encodeComplex128(v)
1221
	case time.Time:
1222
		e.e.EncodeTime(v)
1223
	case []byte:
1224
		e.e.EncodeStringBytesRaw(v)
1225
	case *Raw:
1226
		e.rawBytes(*v)
1227
	case *string:
1228
		e.e.EncodeString(*v)
1229
	case *bool:
1230
		e.e.EncodeBool(*v)
1231
	case *int:
1232
		e.e.EncodeInt(int64(*v))
1233
	case *int8:
1234
		e.e.EncodeInt(int64(*v))
1235
	case *int16:
1236
		e.e.EncodeInt(int64(*v))
1237
	case *int32:
1238
		e.e.EncodeInt(int64(*v))
1239
	case *int64:
1240
		e.e.EncodeInt(*v)
1241
	case *uint:
1242
		e.e.EncodeUint(uint64(*v))
1243
	case *uint8:
1244
		e.e.EncodeUint(uint64(*v))
1245
	case *uint16:
1246
		e.e.EncodeUint(uint64(*v))
1247
	case *uint32:
1248
		e.e.EncodeUint(uint64(*v))
1249
	case *uint64:
1250
		e.e.EncodeUint(*v)
1251
	case *uintptr:
1252
		e.e.EncodeUint(uint64(*v))
1253
	case *float32:
1254
		e.e.EncodeFloat32(*v)
1255
	case *float64:
1256
		e.e.EncodeFloat64(*v)
1257
	case *complex64:
1258
		e.encodeComplex64(*v)
1259
	case *complex128:
1260
		e.encodeComplex128(*v)
1261
	case *time.Time:
1262
		e.e.EncodeTime(*v)
1263
	case *[]byte:
1264
		if *v == nil {
1265
			e.e.EncodeNil()
1266
		} else {
1267
			e.e.EncodeStringBytesRaw(*v)
1268
		}
1269
	default:
1270
		// we can't check non-predefined types, as they might be a Selfer or extension.
1271
		if skipFastpathTypeSwitchInDirectCall || !fastpathEncodeTypeSwitch(iv, e) {
1272
			e.encodeValue(rv, nil)
1273
		}
1274
	}
1275
}
1276

1277
// encodeValue will encode a value.
1278
//
1279
// Note that encodeValue will handle nil in the stream early, so that the
1280
// subsequent calls i.e. kXXX methods, etc do not have to handle it themselves.
1281
func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn) {
1282
	// if a valid fn is passed, it MUST BE for the dereferenced type of rv
1283

1284
	// MARKER: We check if value is nil here, so that the kXXX method do not have to.
1285

1286
	var sptr interface{}
1287
	var rvp reflect.Value
1288
	var rvpValid bool
1289
TOP:
1290
	switch rv.Kind() {
1291
	case reflect.Ptr:
1292
		if rvIsNil(rv) {
1293
			e.e.EncodeNil()
1294
			return
1295
		}
1296
		rvpValid = true
1297
		rvp = rv
1298
		rv = rv.Elem()
1299
		goto TOP
1300
	case reflect.Interface:
1301
		if rvIsNil(rv) {
1302
			e.e.EncodeNil()
1303
			return
1304
		}
1305
		rvpValid = false
1306
		rvp = reflect.Value{}
1307
		rv = rv.Elem()
1308
		goto TOP
1309
	case reflect.Struct:
1310
		if rvpValid && e.h.CheckCircularRef {
1311
			sptr = rv2i(rvp)
1312
			for _, vv := range e.ci {
1313
				if eq4i(sptr, vv) { // error if sptr already seen
1314
					e.errorf("circular reference found: %p, %T", sptr, sptr)
1315
				}
1316
			}
1317
			e.ci = append(e.ci, sptr)
1318
		}
1319
	case reflect.Slice, reflect.Map, reflect.Chan:
1320
		if rvIsNil(rv) {
1321
			e.e.EncodeNil()
1322
			return
1323
		}
1324
	case reflect.Invalid, reflect.Func:
1325
		e.e.EncodeNil()
1326
		return
1327
	}
1328

1329
	if fn == nil {
1330
		fn = e.h.fn(rv.Type())
1331
	}
1332

1333
	if !fn.i.addrE { // typically, addrE = false, so check it first
1334
		// keep rv same
1335
	} else if rvpValid {
1336
		rv = rvp
1337
	} else {
1338
		rv = e.addrRV(rv, fn.i.ti.rt, fn.i.ti.ptr)
1339
	}
1340
	fn.fe(e, &fn.i, rv)
1341

1342
	if sptr != nil { // remove sptr
1343
		e.ci = e.ci[:len(e.ci)-1]
1344
	}
1345
}
1346

1347
// encodeValueNonNil can encode a number, bool, or string
1348
// OR non-nil values of kind map, slice and chan.
1349
func (e *Encoder) encodeValueNonNil(rv reflect.Value, fn *codecFn) {
1350
	if fn == nil {
1351
		fn = e.h.fn(rv.Type())
1352
	}
1353

1354
	if fn.i.addrE { // typically, addrE = false, so check it first
1355
		rv = e.addrRV(rv, fn.i.ti.rt, fn.i.ti.ptr)
1356
	}
1357
	fn.fe(e, &fn.i, rv)
1358
}
1359

1360
// addrRV returns a addressable value which may be readonly
1361
func (e *Encoder) addrRV(rv reflect.Value, typ, ptrType reflect.Type) (rva reflect.Value) {
1362
	if rv.CanAddr() {
1363
		return rvAddr(rv, ptrType)
1364
	}
1365
	if e.h.NoAddressableReadonly {
1366
		rva = reflect.New(typ)
1367
		rvSetDirect(rva.Elem(), rv)
1368
		return
1369
	}
1370
	return rvAddr(e.perType.AddressableRO(rv), ptrType)
1371
}
1372

1373
func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
1374
	e.onerror(fnerr)
1375
	if bs == nil {
1376
		e.e.EncodeNil()
1377
	} else {
1378
		e.e.EncodeString(stringView(bs))
1379
	}
1380
}
1381

1382
func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
1383
	e.onerror(fnerr)
1384
	if bs == nil {
1385
		e.e.EncodeNil()
1386
	} else {
1387
		e.encWr.writeb(bs) // e.asis(bs)
1388
	}
1389
}
1390

1391
func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
1392
	e.onerror(fnerr)
1393
	if bs == nil {
1394
		e.e.EncodeNil()
1395
	} else {
1396
		e.e.EncodeStringBytesRaw(bs)
1397
	}
1398
}
1399

1400
func (e *Encoder) rawBytes(vv Raw) {
1401
	v := []byte(vv)
1402
	if !e.h.Raw {
1403
		e.errorf("Raw values cannot be encoded: %v", v)
1404
	}
1405
	e.encWr.writeb(v)
1406
}
1407

1408
func (e *Encoder) wrapErr(v error, err *error) {
1409
	*err = wrapCodecErr(v, e.hh.Name(), 0, true)
1410
}
1411

1412
// ---- container tracker methods
1413
// Note: We update the .c after calling the callback.
1414
// This way, the callback can know what the last status was.
1415

1416
func (e *Encoder) mapStart(length int) {
1417
	e.e.WriteMapStart(length)
1418
	e.c = containerMapStart
1419
}
1420

1421
func (e *Encoder) mapElemKey() {
1422
	if e.js {
1423
		e.jsondriver().WriteMapElemKey()
1424
	}
1425
	e.c = containerMapKey
1426
}
1427

1428
func (e *Encoder) mapElemValue() {
1429
	if e.js {
1430
		e.jsondriver().WriteMapElemValue()
1431
	}
1432
	e.c = containerMapValue
1433
}
1434

1435
func (e *Encoder) mapEnd() {
1436
	e.e.WriteMapEnd()
1437
	e.c = 0
1438
}
1439

1440
func (e *Encoder) arrayStart(length int) {
1441
	e.e.WriteArrayStart(length)
1442
	e.c = containerArrayStart
1443
}
1444

1445
func (e *Encoder) arrayElem() {
1446
	if e.js {
1447
		e.jsondriver().WriteArrayElem()
1448
	}
1449
	e.c = containerArrayElem
1450
}
1451

1452
func (e *Encoder) arrayEnd() {
1453
	e.e.WriteArrayEnd()
1454
	e.c = 0
1455
}
1456

1457
// ----------
1458

1459
func (e *Encoder) haltOnMbsOddLen(length int) {
1460
	if length&1 != 0 { // similar to &1==1 or %2 == 1
1461
		e.errorf("mapBySlice requires even slice length, but got %v", length)
1462
	}
1463
}
1464

1465
func (e *Encoder) atEndOfEncode() {
1466
	// e.e.atEndOfEncode()
1467
	if e.js {
1468
		e.jsondriver().atEndOfEncode()
1469
	}
1470
}
1471

1472
func (e *Encoder) sideEncode(v interface{}, basetype reflect.Type, bs *[]byte) {
1473
	// rv := baseRV(v)
1474
	// e2 := NewEncoderBytes(bs, e.hh)
1475
	// e2.encodeValue(rv, e2.h.fnNoExt(basetype))
1476
	// e2.atEndOfEncode()
1477
	// e2.w().end()
1478

1479
	defer func(wb bytesEncAppender, bytes bool, c containerState, state interface{}) {
1480
		e.wb = wb
1481
		e.bytes = bytes
1482
		e.c = c
1483
		e.e.restoreState(state)
1484
	}(e.wb, e.bytes, e.c, e.e.captureState())
1485

1486
	e.wb = bytesEncAppender{encInBytes(bs)[:0], bs}
1487
	e.bytes = true
1488
	e.c = 0
1489
	e.e.resetState()
1490

1491
	// must call using fnNoExt
1492
	rv := baseRV(v)
1493
	e.encodeValue(rv, e.h.fnNoExt(basetype))
1494
	e.atEndOfEncode()
1495
	e.w().end()
1496
}
1497

1498
func encInBytes(out *[]byte) (in []byte) {
1499
	in = *out
1500
	if in == nil {
1501
		in = make([]byte, defEncByteBufSize)
1502
	}
1503
	return
1504
}
1505

1506
func encStructFieldKey(encName string, ee encDriver, w *encWr,
1507
	keyType valueType, encNameAsciiAlphaNum bool, js bool) {
1508
	// use if-else-if, not switch (which compiles to binary-search)
1509
	// since keyType is typically valueTypeString, branch prediction is pretty good.
1510

1511
	if keyType == valueTypeString {
1512
		if js && encNameAsciiAlphaNum { // keyType == valueTypeString
1513
			w.writeqstr(encName)
1514
		} else { // keyType == valueTypeString
1515
			ee.EncodeString(encName)
1516
		}
1517
	} else if keyType == valueTypeInt {
1518
		ee.EncodeInt(must.Int(strconv.ParseInt(encName, 10, 64)))
1519
	} else if keyType == valueTypeUint {
1520
		ee.EncodeUint(must.Uint(strconv.ParseUint(encName, 10, 64)))
1521
	} else if keyType == valueTypeFloat {
1522
		ee.EncodeFloat64(must.Float(strconv.ParseFloat(encName, 64)))
1523
	} else {
1524
		halt.errorf("invalid struct key type: %v", keyType)
1525
	}
1526
}
1527

Использование cookies

Мы используем файлы cookie в соответствии с Политикой конфиденциальности и Политикой использования cookies.

Нажимая кнопку «Принимаю», Вы даете АО «СберТех» согласие на обработку Ваших персональных данных в целях совершенствования нашего веб-сайта и Сервиса GitVerse, а также повышения удобства их использования.

Запретить использование cookies Вы можете самостоятельно в настройках Вашего браузера.